1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
|
c\BeginDoc
c
c\Name: dseupd
c
c\Description:
c
c This subroutine returns the converged approximations to eigenvalues
c of A*z = lambda*B*z and (optionally):
c
c (1) the corresponding approximate eigenvectors,
c
c (2) an orthonormal (Lanczos) basis for the associated approximate
c invariant subspace,
c
c (3) Both.
c
c There is negligible additional cost to obtain eigenvectors. An orthonormal
c (Lanczos) basis is always computed. There is an additional storage cost
c of n*nev if both are requested (in this case a separate array Z must be
c supplied).
c
c These quantities are obtained from the Lanczos factorization computed
c by DSAUPD for the linear operator OP prescribed by the MODE selection
c (see IPARAM(7) in DSAUPD documentation.) DSAUPD must be called before
c this routine is called. These approximate eigenvalues and vectors are
c commonly called Ritz values and Ritz vectors respectively. They are
c referred to as such in the comments that follow. The computed orthonormal
c basis for the invariant subspace corresponding to these Ritz values is
c referred to as a Lanczos basis.
c
c See documentation in the header of the subroutine DSAUPD for a definition
c of OP as well as other terms and the relation of computed Ritz values
c and vectors of OP with respect to the given problem A*z = lambda*B*z.
c
c The approximate eigenvalues of the original problem are returned in
c ascending algebraic order. The user may elect to call this routine
c once for each desired Ritz vector and store it peripherally if desired.
c There is also the option of computing a selected set of these vectors
c with a single call.
c
c\Usage:
c call dseupd
c ( RVEC, HOWMNY, SELECT, D, Z, LDZ, SIGMA, BMAT, N, WHICH, NEV, TOL,
c RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, WORKL, LWORKL, INFO )
c
c RVEC LOGICAL (INPUT)
c Specifies whether Ritz vectors corresponding to the Ritz value
c approximations to the eigenproblem A*z = lambda*B*z are computed.
c
c RVEC = .FALSE. Compute Ritz values only.
c
c RVEC = .TRUE. Compute Ritz vectors.
c
c HOWMNY Character*1 (INPUT)
c Specifies how many Ritz vectors are wanted and the form of Z
c the matrix of Ritz vectors. See remark 1 below.
c = 'A': compute NEV Ritz vectors;
c = 'S': compute some of the Ritz vectors, specified
c by the logical array SELECT.
c
c SELECT Logical array of dimension NCV. (INPUT/WORKSPACE)
c If HOWMNY = 'S', SELECT specifies the Ritz vectors to be
c computed. To select the Ritz vector corresponding to a
c Ritz value D(j), SELECT(j) must be set to .TRUE..
c If HOWMNY = 'A' , SELECT is used as a workspace for
c reordering the Ritz values.
c
c D Double precision array of dimension NEV. (OUTPUT)
c On exit, D contains the Ritz value approximations to the
c eigenvalues of A*z = lambda*B*z. The values are returned
c in ascending order. If IPARAM(7) = 3,4,5 then D represents
c the Ritz values of OP computed by dsaupd transformed to
c those of the original eigensystem A*z = lambda*B*z. If
c IPARAM(7) = 1,2 then the Ritz values of OP are the same
c as the those of A*z = lambda*B*z.
c
c Z Double precision N by NEV array if HOWMNY = 'A'. (OUTPUT)
c On exit, Z contains the B-orthonormal Ritz vectors of the
c eigensystem A*z = lambda*B*z corresponding to the Ritz
c value approximations.
c If RVEC = .FALSE. then Z is not referenced.
c NOTE: The array Z may be set equal to first NEV columns of the
c Arnoldi/Lanczos basis array V computed by DSAUPD .
c
c LDZ Integer. (INPUT)
c The leading dimension of the array Z. If Ritz vectors are
c desired, then LDZ .ge. max( 1, N ). In any case, LDZ .ge. 1.
c
c SIGMA Double precision (INPUT)
c If IPARAM(7) = 3,4,5 represents the shift. Not referenced if
c IPARAM(7) = 1 or 2.
c
c
c **** The remaining arguments MUST be the same as for the ****
c **** call to DSAUPD that was just completed. ****
c
c NOTE: The remaining arguments
c
c BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR,
c WORKD, WORKL, LWORKL, INFO
c
c must be passed directly to DSEUPD following the last call
c to DSAUPD . These arguments MUST NOT BE MODIFIED between
c the the last call to DSAUPD and the call to DSEUPD .
c
c Two of these parameters (WORKL, INFO) are also output parameters:
c
c WORKL Double precision work array of length LWORKL. (OUTPUT/WORKSPACE)
c WORKL(1:4*ncv) contains information obtained in
c dsaupd . They are not changed by dseupd .
c WORKL(4*ncv+1:ncv*ncv+8*ncv) holds the
c untransformed Ritz values, the computed error estimates,
c and the associated eigenvector matrix of H.
c
c Note: IPNTR(8:10) contains the pointer into WORKL for addresses
c of the above information computed by dseupd .
c -------------------------------------------------------------
c IPNTR(8): pointer to the NCV RITZ values of the original system.
c IPNTR(9): pointer to the NCV corresponding error bounds.
c IPNTR(10): pointer to the NCV by NCV matrix of eigenvectors
c of the tridiagonal matrix T. Only referenced by
c dseupd if RVEC = .TRUE. See Remarks.
c -------------------------------------------------------------
c
c INFO Integer. (OUTPUT)
c Error flag on output.
c = 0: Normal exit.
c = -1: N must be positive.
c = -2: NEV must be positive.
c = -3: NCV must be greater than NEV and less than or equal to N.
c = -5: WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.
c = -6: BMAT must be one of 'I' or 'G'.
c = -7: Length of private work WORKL array is not sufficient.
c = -8: Error return from trid. eigenvalue calculation;
c Information error from LAPACK routine dsteqr .
c = -9: Starting vector is zero.
c = -10: IPARAM(7) must be 1,2,3,4,5.
c = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
c = -12: NEV and WHICH = 'BE' are incompatible.
c = -14: DSAUPD did not find any eigenvalues to sufficient
c accuracy.
c = -15: HOWMNY must be one of 'A' or 'S' if RVEC = .true.
c = -16: HOWMNY = 'S' not yet implemented
c = -17: DSEUPD got a different count of the number of converged
c Ritz values than DSAUPD got. This indicates the user
c probably made an error in passing data from DSAUPD to
c DSEUPD or that the data was modified before entering
c DSEUPD .
c
c\BeginLib
c
c\References:
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c pp 357-385.
c 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
c Restarted Arnoldi Iteration", Rice University Technical Report
c TR95-13, Department of Computational and Applied Mathematics.
c 3. B.N. Parlett, "The Symmetric Eigenvalue Problem". Prentice-Hall,
c 1980.
c 4. B.N. Parlett, B. Nour-Omid, "Towards a Black Box Lanczos Program",
c Computer Physics Communications, 53 (1989), pp 169-179.
c 5. B. Nour-Omid, B.N. Parlett, T. Ericson, P.S. Jensen, "How to
c Implement the Spectral Transformation", Math. Comp., 48 (1987),
c pp 663-673.
c 6. R.G. Grimes, J.G. Lewis and H.D. Simon, "A Shifted Block Lanczos
c Algorithm for Solving Sparse Symmetric Generalized Eigenproblems",
c SIAM J. Matr. Anal. Apps., January (1993).
c 7. L. Reichel, W.B. Gragg, "Algorithm 686: FORTRAN Subroutines
c for Updating the QR decomposition", ACM TOMS, December 1990,
c Volume 16 Number 4, pp 369-377.
c
c\Remarks
c 1. The converged Ritz values are always returned in increasing
c (algebraic) order.
c
c 2. Currently only HOWMNY = 'A' is implemented. It is included at this
c stage for the user who wants to incorporate it.
c
c\Routines called:
c dsesrt ARPACK routine that sorts an array X, and applies the
c corresponding permutation to a matrix A.
c dsortr dsortr ARPACK sorting routine.
c ivout ARPACK utility routine that prints integers.
c dvout ARPACK utility routine that prints vectors.
c dgeqr2 LAPACK routine that computes the QR factorization of
c a matrix.
c dlacpy LAPACK matrix copy routine.
c dlamch LAPACK routine that determines machine constants.
c dorm2r LAPACK routine that applies an orthogonal matrix in
c factored form.
c dsteqr LAPACK routine that computes eigenvalues and eigenvectors
c of a tridiagonal matrix.
c dger Level 2 BLAS rank one update to a matrix.
c dcopy Level 1 BLAS that copies one vector to another .
c dnrm2 Level 1 BLAS that computes the norm of a vector.
c dscal Level 1 BLAS that scales a vector.
c dswap Level 1 BLAS that swaps the contents of two vectors.
c\Authors
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Chao Yang Houston, Texas
c Dept. of Computational &
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\Revision history:
c 12/15/93: Version ' 2.1'
c
c\SCCS Information: @(#)
c FILE: seupd.F SID: 2.11 DATE OF SID: 04/10/01 RELEASE: 2
c
c\EndLib
c
c-----------------------------------------------------------------------
subroutine dseupd (rvec , howmny, select, d ,
& z , ldz , sigma , bmat ,
& n , which , nev , tol ,
& resid , ncv , v , ldv ,
& iparam, ipntr , workd , workl,
& lworkl, info )
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
character bmat, howmny, which*2
logical rvec
integer info, ldz, ldv, lworkl, n, ncv, nev
Double precision
& sigma, tol
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
integer iparam(7), ipntr(11)
logical select(ncv)
Double precision
& d(nev) , resid(n) , v(ldv,ncv),
& z(ldz, nev), workd(2*n), workl(lworkl)
c
c %------------%
c | Parameters |
c %------------%
c
Double precision
& one, zero
parameter (one = 1.0D+0 , zero = 0.0D+0 )
c
c %---------------%
c | Local Scalars |
c %---------------%
c
character type*6
integer bounds , ierr , ih , ihb , ihd ,
& iq , iw , j , k , ldh ,
& ldq , mode , msglvl, nconv , next ,
& ritz , irz , ibd , np , ishift,
& leftptr, rghtptr, numcnv, jj
Double precision
& bnorm2 , rnorm, temp, temp1, eps23
logical reord
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external dcopy , dger , dgeqr2 , dlacpy , dorm2r , dscal ,
& dsesrt , dsteqr , dswap , dvout , ivout , dsortr
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Double precision
& dnrm2 , dlamch
external dnrm2 , dlamch
c
c %---------------------%
c | Intrinsic Functions |
c %---------------------%
c
intrinsic min
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
c %------------------------%
c | Set default parameters |
c %------------------------%
c
msglvl = mseupd
mode = iparam(7)
nconv = iparam(5)
info = 0
c
c %--------------%
c | Quick return |
c %--------------%
c
if (nconv .eq. 0) go to 9000
ierr = 0
c
if (nconv .le. 0) ierr = -14
if (n .le. 0) ierr = -1
if (nev .le. 0) ierr = -2
if (ncv .le. nev .or. ncv .gt. n) ierr = -3
if (which .ne. 'LM' .and.
& which .ne. 'SM' .and.
& which .ne. 'LA' .and.
& which .ne. 'SA' .and.
& which .ne. 'BE') ierr = -5
if (bmat .ne. 'I' .and. bmat .ne. 'G') ierr = -6
if ( (howmny .ne. 'A' .and.
& howmny .ne. 'P' .and.
& howmny .ne. 'S') .and. rvec )
& ierr = -15
if (rvec .and. howmny .eq. 'S') ierr = -16
c
if (rvec .and. lworkl .lt. ncv**2+8*ncv) ierr = -7
c
if (mode .eq. 1 .or. mode .eq. 2) then
type = 'REGULR'
else if (mode .eq. 3 ) then
type = 'SHIFTI'
else if (mode .eq. 4 ) then
type = 'BUCKLE'
else if (mode .eq. 5 ) then
type = 'CAYLEY'
else
ierr = -10
end if
if (mode .eq. 1 .and. bmat .eq. 'G') ierr = -11
if (nev .eq. 1 .and. which .eq. 'BE') ierr = -12
c
c %------------%
c | Error Exit |
c %------------%
c
if (ierr .ne. 0) then
info = ierr
go to 9000
end if
c
c %-------------------------------------------------------%
c | Pointer into WORKL for address of H, RITZ, BOUNDS, Q |
c | etc... and the remaining workspace. |
c | Also update pointer to be used on output. |
c | Memory is laid out as follows: |
c | workl(1:2*ncv) := generated tridiagonal matrix H |
c | The subdiagonal is stored in workl(2:ncv). |
c | The dead spot is workl(1) but upon exiting |
c | dsaupd stores the B-norm of the last residual |
c | vector in workl(1). We use this !!! |
c | workl(2*ncv+1:2*ncv+ncv) := ritz values |
c | The wanted values are in the first NCONV spots. |
c | workl(3*ncv+1:3*ncv+ncv) := computed Ritz estimates |
c | The wanted values are in the first NCONV spots. |
c | NOTE: workl(1:4*ncv) is set by dsaupd and is not |
c | modified by dseupd . |
c %-------------------------------------------------------%
c
c %-------------------------------------------------------%
c | The following is used and set by dseupd . |
c | workl(4*ncv+1:4*ncv+ncv) := used as workspace during |
c | computation of the eigenvectors of H. Stores |
c | the diagonal of H. Upon EXIT contains the NCV |
c | Ritz values of the original system. The first |
c | NCONV spots have the wanted values. If MODE = |
c | 1 or 2 then will equal workl(2*ncv+1:3*ncv). |
c | workl(5*ncv+1:5*ncv+ncv) := used as workspace during |
c | computation of the eigenvectors of H. Stores |
c | the subdiagonal of H. Upon EXIT contains the |
c | NCV corresponding Ritz estimates of the |
c | original system. The first NCONV spots have the |
c | wanted values. If MODE = 1,2 then will equal |
c | workl(3*ncv+1:4*ncv). |
c | workl(6*ncv+1:6*ncv+ncv*ncv) := orthogonal Q that is |
c | the eigenvector matrix for H as returned by |
c | dsteqr . Not referenced if RVEC = .False. |
c | Ordering follows that of workl(4*ncv+1:5*ncv) |
c | workl(6*ncv+ncv*ncv+1:6*ncv+ncv*ncv+2*ncv) := |
c | Workspace. Needed by dsteqr and by dseupd . |
c | GRAND total of NCV*(NCV+8) locations. |
c %-------------------------------------------------------%
c
c
ih = ipntr(5)
ritz = ipntr(6)
bounds = ipntr(7)
ldh = ncv
ldq = ncv
ihd = bounds + ldh
ihb = ihd + ldh
iq = ihb + ldh
iw = iq + ldh*ncv
next = iw + 2*ncv
ipntr(4) = next
ipntr(8) = ihd
ipntr(9) = ihb
ipntr(10) = iq
c
c %----------------------------------------%
c | irz points to the Ritz values computed |
c | by _seigt before exiting _saup2. |
c | ibd points to the Ritz estimates |
c | computed by _seigt before exiting |
c | _saup2. |
c %----------------------------------------%
c
irz = ipntr(11)+ncv
ibd = irz+ncv
c
c
c %---------------------------------%
c | Set machine dependent constant. |
c %---------------------------------%
c
eps23 = dlamch ('Epsilon-Machine')
eps23 = eps23**(2.0D+0 / 3.0D+0 )
c
c %---------------------------------------%
c | RNORM is B-norm of the RESID(1:N). |
c | BNORM2 is the 2 norm of B*RESID(1:N). |
c | Upon exit of dsaupd WORKD(1:N) has |
c | B*RESID(1:N). |
c %---------------------------------------%
c
rnorm = workl(ih)
if (bmat .eq. 'I') then
bnorm2 = rnorm
else if (bmat .eq. 'G') then
bnorm2 = dnrm2 (n, workd, 1)
end if
c
if (msglvl .gt. 2) then
call dvout (logfil, ncv, workl(irz), ndigit,
& '_seupd: Ritz values passed in from _SAUPD.')
call dvout (logfil, ncv, workl(ibd), ndigit,
& '_seupd: Ritz estimates passed in from _SAUPD.')
end if
c
if (rvec) then
c
reord = .false.
c
c %---------------------------------------------------%
c | Use the temporary bounds array to store indices |
c | These will be used to mark the select array later |
c %---------------------------------------------------%
c
do 10 j = 1,ncv
workl(bounds+j-1) = j
select(j) = .false.
10 continue
c
c %-------------------------------------%
c | Select the wanted Ritz values. |
c | Sort the Ritz values so that the |
c | wanted ones appear at the tailing |
c | NEV positions of workl(irr) and |
c | workl(iri). Move the corresponding |
c | error estimates in workl(bound) |
c | accordingly. |
c %-------------------------------------%
c
np = ncv - nev
ishift = 0
call dsgets (ishift, which , nev ,
& np , workl(irz) , workl(bounds),
& workl)
c
if (msglvl .gt. 2) then
call dvout (logfil, ncv, workl(irz), ndigit,
& '_seupd: Ritz values after calling _SGETS.')
call dvout (logfil, ncv, workl(bounds), ndigit,
& '_seupd: Ritz value indices after calling _SGETS.')
end if
c
c %-----------------------------------------------------%
c | Record indices of the converged wanted Ritz values |
c | Mark the select array for possible reordering |
c %-----------------------------------------------------%
c
numcnv = 0
do 11 j = 1,ncv
temp1 = max(eps23, abs(workl(irz+ncv-j)) )
jj = workl(bounds + ncv - j)
if (numcnv .lt. nconv .and.
& workl(ibd+jj-1) .le. tol*temp1) then
select(jj) = .true.
numcnv = numcnv + 1
if (jj .gt. nconv) reord = .true.
endif
11 continue
c
c %-----------------------------------------------------------%
c | Check the count (numcnv) of converged Ritz values with |
c | the number (nconv) reported by _saupd. If these two |
c | are different then there has probably been an error |
c | caused by incorrect passing of the _saupd data. |
c %-----------------------------------------------------------%
c
if (msglvl .gt. 2) then
call ivout(logfil, 1, numcnv, ndigit,
& '_seupd: Number of specified eigenvalues')
call ivout(logfil, 1, nconv, ndigit,
& '_seupd: Number of "converged" eigenvalues')
end if
c
if (numcnv .ne. nconv) then
info = -17
go to 9000
end if
c
c %-----------------------------------------------------------%
c | Call LAPACK routine _steqr to compute the eigenvalues and |
c | eigenvectors of the final symmetric tridiagonal matrix H. |
c | Initialize the eigenvector matrix Q to the identity. |
c %-----------------------------------------------------------%
c
call dcopy (ncv-1, workl(ih+1), 1, workl(ihb), 1)
call dcopy (ncv, workl(ih+ldh), 1, workl(ihd), 1)
c
call dsteqr ('Identity', ncv, workl(ihd), workl(ihb),
& workl(iq) , ldq, workl(iw), ierr)
c
if (ierr .ne. 0) then
info = -8
go to 9000
end if
c
if (msglvl .gt. 1) then
call dcopy (ncv, workl(iq+ncv-1), ldq, workl(iw), 1)
call dvout (logfil, ncv, workl(ihd), ndigit,
& '_seupd: NCV Ritz values of the final H matrix')
call dvout (logfil, ncv, workl(iw), ndigit,
& '_seupd: last row of the eigenvector matrix for H')
end if
c
if (reord) then
c
c %---------------------------------------------%
c | Reordered the eigenvalues and eigenvectors |
c | computed by _steqr so that the "converged" |
c | eigenvalues appear in the first NCONV |
c | positions of workl(ihd), and the associated |
c | eigenvectors appear in the first NCONV |
c | columns. |
c %---------------------------------------------%
c
leftptr = 1
rghtptr = ncv
c
if (ncv .eq. 1) go to 30
c
20 if (select(leftptr)) then
c
c %-------------------------------------------%
c | Search, from the left, for the first Ritz |
c | value that has not converged. |
c %-------------------------------------------%
c
leftptr = leftptr + 1
c
else if ( .not. select(rghtptr)) then
c
c %----------------------------------------------%
c | Search, from the right, the first Ritz value |
c | that has converged. |
c %----------------------------------------------%
c
rghtptr = rghtptr - 1
c
else
c
c %----------------------------------------------%
c | Swap the Ritz value on the left that has not |
c | converged with the Ritz value on the right |
c | that has converged. Swap the associated |
c | eigenvector of the tridiagonal matrix H as |
c | well. |
c %----------------------------------------------%
c
temp = workl(ihd+leftptr-1)
workl(ihd+leftptr-1) = workl(ihd+rghtptr-1)
workl(ihd+rghtptr-1) = temp
call dcopy (ncv, workl(iq+ncv*(leftptr-1)), 1,
& workl(iw), 1)
call dcopy (ncv, workl(iq+ncv*(rghtptr-1)), 1,
& workl(iq+ncv*(leftptr-1)), 1)
call dcopy (ncv, workl(iw), 1,
& workl(iq+ncv*(rghtptr-1)), 1)
leftptr = leftptr + 1
rghtptr = rghtptr - 1
c
end if
c
if (leftptr .lt. rghtptr) go to 20
c
end if
c
30 if (msglvl .gt. 2) then
call dvout (logfil, ncv, workl(ihd), ndigit,
& '_seupd: The eigenvalues of H--reordered')
end if
c
c %----------------------------------------%
c | Load the converged Ritz values into D. |
c %----------------------------------------%
c
call dcopy (nconv, workl(ihd), 1, d, 1)
c
else
c
c %-----------------------------------------------------%
c | Ritz vectors not required. Load Ritz values into D. |
c %-----------------------------------------------------%
c
call dcopy (nconv, workl(ritz), 1, d, 1)
call dcopy (ncv, workl(ritz), 1, workl(ihd), 1)
c
end if
c
c %------------------------------------------------------------------%
c | Transform the Ritz values and possibly vectors and corresponding |
c | Ritz estimates of OP to those of A*x=lambda*B*x. The Ritz values |
c | (and corresponding data) are returned in ascending order. |
c %------------------------------------------------------------------%
c
if (type .eq. 'REGULR') then
c
c %---------------------------------------------------------%
c | Ascending sort of wanted Ritz values, vectors and error |
c | bounds. Not necessary if only Ritz values are desired. |
c %---------------------------------------------------------%
c
if (rvec) then
call dsesrt ('LA', rvec , nconv, d, ncv, workl(iq), ldq)
else
call dcopy (ncv, workl(bounds), 1, workl(ihb), 1)
end if
c
else
c
c %-------------------------------------------------------------%
c | * Make a copy of all the Ritz values. |
c | * Transform the Ritz values back to the original system. |
c | For TYPE = 'SHIFTI' the transformation is |
c | lambda = 1/theta + sigma |
c | For TYPE = 'BUCKLE' the transformation is |
c | lambda = sigma * theta / ( theta - 1 ) |
c | For TYPE = 'CAYLEY' the transformation is |
c | lambda = sigma * (theta + 1) / (theta - 1 ) |
c | where the theta are the Ritz values returned by dsaupd . |
c | NOTES: |
c | *The Ritz vectors are not affected by the transformation. |
c | They are only reordered. |
c %-------------------------------------------------------------%
c
call dcopy (ncv, workl(ihd), 1, workl(iw), 1)
if (type .eq. 'SHIFTI') then
do 40 k=1, ncv
workl(ihd+k-1) = one / workl(ihd+k-1) + sigma
40 continue
else if (type .eq. 'BUCKLE') then
do 50 k=1, ncv
workl(ihd+k-1) = sigma * workl(ihd+k-1) /
& (workl(ihd+k-1) - one)
50 continue
else if (type .eq. 'CAYLEY') then
do 60 k=1, ncv
workl(ihd+k-1) = sigma * (workl(ihd+k-1) + one) /
& (workl(ihd+k-1) - one)
60 continue
end if
c
c %-------------------------------------------------------------%
c | * Store the wanted NCONV lambda values into D. |
c | * Sort the NCONV wanted lambda in WORKL(IHD:IHD+NCONV-1) |
c | into ascending order and apply sort to the NCONV theta |
c | values in the transformed system. We will need this to |
c | compute Ritz estimates in the original system. |
c | * Finally sort the lambda`s into ascending order and apply |
c | to Ritz vectors if wanted. Else just sort lambda`s into |
c | ascending order. |
c | NOTES: |
c | *workl(iw:iw+ncv-1) contain the theta ordered so that they |
c | match the ordering of the lambda. We`ll use them again for |
c | Ritz vector purification. |
c %-------------------------------------------------------------%
c
call dcopy (nconv, workl(ihd), 1, d, 1)
call dsortr ('LA', .true., nconv, workl(ihd), workl(iw))
if (rvec) then
call dsesrt ('LA', rvec , nconv, d, ncv, workl(iq), ldq)
else
call dcopy (ncv, workl(bounds), 1, workl(ihb), 1)
call dscal (ncv, bnorm2/rnorm, workl(ihb), 1)
call dsortr ('LA', .true., nconv, d, workl(ihb))
end if
c
end if
c
c %------------------------------------------------%
c | Compute the Ritz vectors. Transform the wanted |
c | eigenvectors of the symmetric tridiagonal H by |
c | the Lanczos basis matrix V. |
c %------------------------------------------------%
c
if (rvec .and. howmny .eq. 'A') then
c
c %----------------------------------------------------------%
c | Compute the QR factorization of the matrix representing |
c | the wanted invariant subspace located in the first NCONV |
c | columns of workl(iq,ldq). |
c %----------------------------------------------------------%
c
call dgeqr2 (ncv, nconv , workl(iq) ,
& ldq, workl(iw+ncv), workl(ihb),
& ierr)
c
c %--------------------------------------------------------%
c | * Postmultiply V by Q. |
c | * Copy the first NCONV columns of VQ into Z. |
c | The N by NCONV matrix Z is now a matrix representation |
c | of the approximate invariant subspace associated with |
c | the Ritz values in workl(ihd). |
c %--------------------------------------------------------%
c
call dorm2r ('Right', 'Notranspose', n ,
& ncv , nconv , workl(iq),
& ldq , workl(iw+ncv), v ,
& ldv , workd(n+1) , ierr)
call dlacpy ('All', n, nconv, v, ldv, z, ldz)
c
c %-----------------------------------------------------%
c | In order to compute the Ritz estimates for the Ritz |
c | values in both systems, need the last row of the |
c | eigenvector matrix. Remember, it`s in factored form |
c %-----------------------------------------------------%
c
do 65 j = 1, ncv-1
workl(ihb+j-1) = zero
65 continue
workl(ihb+ncv-1) = one
call dorm2r ('Left', 'Transpose' , ncv ,
& 1 , nconv , workl(iq) ,
& ldq , workl(iw+ncv), workl(ihb),
& ncv , temp , ierr)
c
c %-----------------------------------------------------%
c | Make a copy of the last row into |
c | workl(iw+ncv:iw+2*ncv), as it is needed again in |
c | the Ritz vector purification step below |
c %-----------------------------------------------------%
c
do 67 j = 1, nconv
workl(iw+ncv+j-1) = workl(ihb+j-1)
67 continue
else if (rvec .and. howmny .eq. 'S') then
c
c Not yet implemented. See remark 2 above.
c
end if
c
if (type .eq. 'REGULR' .and. rvec) then
c
do 70 j=1, ncv
workl(ihb+j-1) = rnorm * abs( workl(ihb+j-1) )
70 continue
c
else if (type .ne. 'REGULR' .and. rvec) then
c
c %-------------------------------------------------%
c | * Determine Ritz estimates of the theta. |
c | If RVEC = .true. then compute Ritz estimates |
c | of the theta. |
c | If RVEC = .false. then copy Ritz estimates |
c | as computed by dsaupd . |
c | * Determine Ritz estimates of the lambda. |
c %-------------------------------------------------%
c
call dscal (ncv, bnorm2, workl(ihb), 1)
if (type .eq. 'SHIFTI') then
c
do 80 k=1, ncv
workl(ihb+k-1) = abs( workl(ihb+k-1) )
& / workl(iw+k-1)**2
80 continue
c
else if (type .eq. 'BUCKLE') then
c
do 90 k=1, ncv
workl(ihb+k-1) = sigma * abs( workl(ihb+k-1) )
& / (workl(iw+k-1)-one )**2
90 continue
c
else if (type .eq. 'CAYLEY') then
c
do 100 k=1, ncv
workl(ihb+k-1) = abs( workl(ihb+k-1)
& / workl(iw+k-1)*(workl(iw+k-1)-one) )
100 continue
c
end if
c
end if
c
if (type .ne. 'REGULR' .and. msglvl .gt. 1) then
call dvout (logfil, nconv, d, ndigit,
& '_seupd: Untransformed converged Ritz values')
call dvout (logfil, nconv, workl(ihb), ndigit,
& '_seupd: Ritz estimates of the untransformed Ritz values')
else if (msglvl .gt. 1) then
call dvout (logfil, nconv, d, ndigit,
& '_seupd: Converged Ritz values')
call dvout (logfil, nconv, workl(ihb), ndigit,
& '_seupd: Associated Ritz estimates')
end if
c
c %-------------------------------------------------%
c | Ritz vector purification step. Formally perform |
c | one of inverse subspace iteration. Only used |
c | for MODE = 3,4,5. See reference 7 |
c %-------------------------------------------------%
c
if (rvec .and. (type .eq. 'SHIFTI' .or. type .eq. 'CAYLEY')) then
c
do 110 k=0, nconv-1
workl(iw+k) = workl(iw+ncv+k)
& / workl(iw+k)
110 continue
c
else if (rvec .and. type .eq. 'BUCKLE') then
c
do 120 k=0, nconv-1
workl(iw+k) = workl(iw+ncv+k)
& / (workl(iw+k)-one)
120 continue
c
end if
c
if (rvec .and. type .ne. 'REGULR')
& call dger (n, nconv, one, resid, 1, workl(iw), 1, z, ldz)
c
9000 continue
c
return
c
c %---------------%
c | End of dseupd |
c %---------------%
c
end
|