1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
|
c-----------------------------------------------------------------------
c\BeginDoc
c
c\Name: snaitr
c
c\Description:
c Reverse communication interface for applying NP additional steps to
c a K step nonsymmetric Arnoldi factorization.
c
c Input: OP*V_{k} - V_{k}*H = r_{k}*e_{k}^T
c
c with (V_{k}^T)*B*V_{k} = I, (V_{k}^T)*B*r_{k} = 0.
c
c Output: OP*V_{k+p} - V_{k+p}*H = r_{k+p}*e_{k+p}^T
c
c with (V_{k+p}^T)*B*V_{k+p} = I, (V_{k+p}^T)*B*r_{k+p} = 0.
c
c where OP and B are as in snaupd. The B-norm of r_{k+p} is also
c computed and returned.
c
c\Usage:
c call snaitr
c ( IDO, BMAT, N, K, NP, NB, RESID, RNORM, V, LDV, H, LDH,
c IPNTR, WORKD, INFO )
c
c\Arguments
c IDO Integer. (INPUT/OUTPUT)
c Reverse communication flag.
c -------------------------------------------------------------
c IDO = 0: first call to the reverse communication interface
c IDO = -1: compute Y = OP * X where
c IPNTR(1) is the pointer into WORK for X,
c IPNTR(2) is the pointer into WORK for Y.
c This is for the restart phase to force the new
c starting vector into the range of OP.
c IDO = 1: compute Y = OP * X where
c IPNTR(1) is the pointer into WORK for X,
c IPNTR(2) is the pointer into WORK for Y,
c IPNTR(3) is the pointer into WORK for B * X.
c IDO = 2: compute Y = B * X where
c IPNTR(1) is the pointer into WORK for X,
c IPNTR(2) is the pointer into WORK for Y.
c IDO = 99: done
c -------------------------------------------------------------
c When the routine is used in the "shift-and-invert" mode, the
c vector B * Q is already available and do not need to be
c recompute in forming OP * Q.
c
c BMAT Character*1. (INPUT)
c BMAT specifies the type of the matrix B that defines the
c semi-inner product for the operator OP. See snaupd.
c B = 'I' -> standard eigenvalue problem A*x = lambda*x
c B = 'G' -> generalized eigenvalue problem A*x = lambda*M**x
c
c N Integer. (INPUT)
c Dimension of the eigenproblem.
c
c K Integer. (INPUT)
c Current size of V and H.
c
c NP Integer. (INPUT)
c Number of additional Arnoldi steps to take.
c
c NB Integer. (INPUT)
c Blocksize to be used in the recurrence.
c Only work for NB = 1 right now. The goal is to have a
c program that implement both the block and non-block method.
c
c RESID Real array of length N. (INPUT/OUTPUT)
c On INPUT: RESID contains the residual vector r_{k}.
c On OUTPUT: RESID contains the residual vector r_{k+p}.
c
c RNORM Real scalar. (INPUT/OUTPUT)
c B-norm of the starting residual on input.
c B-norm of the updated residual r_{k+p} on output.
c
c V Real N by K+NP array. (INPUT/OUTPUT)
c On INPUT: V contains the Arnoldi vectors in the first K
c columns.
c On OUTPUT: V contains the new NP Arnoldi vectors in the next
c NP columns. The first K columns are unchanged.
c
c LDV Integer. (INPUT)
c Leading dimension of V exactly as declared in the calling
c program.
c
c H Real (K+NP) by (K+NP) array. (INPUT/OUTPUT)
c H is used to store the generated upper Hessenberg matrix.
c
c LDH Integer. (INPUT)
c Leading dimension of H exactly as declared in the calling
c program.
c
c IPNTR Integer array of length 3. (OUTPUT)
c Pointer to mark the starting locations in the WORK for
c vectors used by the Arnoldi iteration.
c -------------------------------------------------------------
c IPNTR(1): pointer to the current operand vector X.
c IPNTR(2): pointer to the current result vector Y.
c IPNTR(3): pointer to the vector B * X when used in the
c shift-and-invert mode. X is the current operand.
c -------------------------------------------------------------
c
c WORKD Real work array of length 3*N. (REVERSE COMMUNICATION)
c Distributed array to be used in the basic Arnoldi iteration
c for reverse communication. The calling program should not
c use WORKD as temporary workspace during the iteration !!!!!!
c On input, WORKD(1:N) = B*RESID and is used to save some
c computation at the first step.
c
c INFO Integer. (OUTPUT)
c = 0: Normal exit.
c > 0: Size of the spanning invariant subspace of OP found.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx real
c
c\References:
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c pp 357-385.
c 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
c Restarted Arnoldi Iteration", Rice University Technical Report
c TR95-13, Department of Computational and Applied Mathematics.
c
c\Routines called:
c sgetv0 ARPACK routine to generate the initial vector.
c ivout ARPACK utility routine that prints integers.
c arscnd ARPACK utility routine for timing.
c smout ARPACK utility routine that prints matrices
c svout ARPACK utility routine that prints vectors.
c slabad LAPACK routine that computes machine constants.
c wslamch LAPACK routine that determines machine constants.
c slascl LAPACK routine for careful scaling of a matrix.
c wslanhs LAPACK routine that computes various norms of a matrix.
c sgemv Level 2 BLAS routine for matrix vector multiplication.
c saxpy Level 1 BLAS that computes a vector triad.
c sscal Level 1 BLAS that scales a vector.
c scopy Level 1 BLAS that copies one vector to another .
c wsdot Level 1 BLAS that computes the scalar product of two vectors.
c wsnrm2 Level 1 BLAS that computes the norm of a vector.
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\Revision history:
c xx/xx/92: Version ' 2.4'
c
c\SCCS Information: @(#)
c FILE: naitr.F SID: 2.4 DATE OF SID: 8/27/96 RELEASE: 2
c
c\Remarks
c The algorithm implemented is:
c
c restart = .false.
c Given V_{k} = [v_{1}, ..., v_{k}], r_{k};
c r_{k} contains the initial residual vector even for k = 0;
c Also assume that rnorm = || B*r_{k} || and B*r_{k} are already
c computed by the calling program.
c
c betaj = rnorm ; p_{k+1} = B*r_{k} ;
c For j = k+1, ..., k+np Do
c 1) if ( betaj < tol ) stop or restart depending on j.
c ( At present tol is zero )
c if ( restart ) generate a new starting vector.
c 2) v_{j} = r(j-1)/betaj; V_{j} = [V_{j-1}, v_{j}];
c p_{j} = p_{j}/betaj
c 3) r_{j} = OP*v_{j} where OP is defined as in snaupd
c For shift-invert mode p_{j} = B*v_{j} is already available.
c wnorm = || OP*v_{j} ||
c 4) Compute the j-th step residual vector.
c w_{j} = V_{j}^T * B * OP * v_{j}
c r_{j} = OP*v_{j} - V_{j} * w_{j}
c H(:,j) = w_{j};
c H(j,j-1) = rnorm
c rnorm = || r_(j) ||
c If (rnorm > 0.717*wnorm) accept step and go back to 1)
c 5) Re-orthogonalization step:
c s = V_{j}'*B*r_{j}
c r_{j} = r_{j} - V_{j}*s; rnorm1 = || r_{j} ||
c alphaj = alphaj + s_{j};
c 6) Iterative refinement step:
c If (rnorm1 > 0.717*rnorm) then
c rnorm = rnorm1
c accept step and go back to 1)
c Else
c rnorm = rnorm1
c If this is the first time in step 6), go to 5)
c Else r_{j} lies in the span of V_{j} numerically.
c Set r_{j} = 0 and rnorm = 0; go to 1)
c EndIf
c End Do
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine snaitr
& (ido, bmat, n, k, np, nb, resid, rnorm, v, ldv, h, ldh,
& ipntr, workd, info)
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
character bmat*1
integer ido, info, k, ldh, ldv, n, nb, np
Real
& rnorm
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
integer ipntr(3)
Real
& h(ldh,k+np), resid(n), v(ldv,k+np), workd(3*n)
c
c %------------%
c | Parameters |
c %------------%
c
Real
& one, zero
parameter (one = 1.0E+0, zero = 0.0E+0)
c
c %---------------%
c | Local Scalars |
c %---------------%
c
logical first, orth1, orth2, rstart, step3, step4
integer ierr, i, infol, ipj, irj, ivj, iter, itry, j, msglvl,
& jj
Real
& betaj, ovfl, temp1, rnorm1, smlnum, tst1, ulp, unfl,
& wnorm
save first, orth1, orth2, rstart, step3, step4,
& ierr, ipj, irj, ivj, iter, itry, j, msglvl, ovfl,
& betaj, rnorm1, smlnum, ulp, unfl, wnorm
c
c %-----------------------%
c | Local Array Arguments |
c %-----------------------%
c
Real
& xtemp(2)
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external saxpy, scopy, sscal, sgemv, sgetv0, slabad,
& svout, smout, ivout, arscnd
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Real
& wsdot, wsnrm2, wslanhs, wslamch
external wsdot, wsnrm2, wslanhs, wslamch
c
c %---------------------%
c | Intrinsic Functions |
c %---------------------%
c
intrinsic abs, sqrt
c
c %-----------------%
c | Data statements |
c %-----------------%
c
data first / .true. /
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
if (first) then
c
c %-----------------------------------------%
c | Set machine-dependent constants for the |
c | the splitting and deflation criterion. |
c | If norm(H) <= sqrt(OVFL), |
c | overflow should not occur. |
c | REFERENCE: LAPACK subroutine slahqr |
c %-----------------------------------------%
c
unfl = wslamch( 'safe minimum' )
ovfl = one / unfl
call slabad( unfl, ovfl )
ulp = wslamch( 'precision' )
smlnum = unfl*( n / ulp )
first = .false.
end if
c
if (ido .eq. 0) then
c
c %-------------------------------%
c | Initialize timing statistics |
c | & message level for debugging |
c %-------------------------------%
c
call arscnd (t0)
msglvl = mnaitr
c
c %------------------------------%
c | Initial call to this routine |
c %------------------------------%
c
info = 0
step3 = .false.
step4 = .false.
rstart = .false.
orth1 = .false.
orth2 = .false.
j = k + 1
ipj = 1
irj = ipj + n
ivj = irj + n
end if
c
c %-------------------------------------------------%
c | When in reverse communication mode one of: |
c | STEP3, STEP4, ORTH1, ORTH2, RSTART |
c | will be .true. when .... |
c | STEP3: return from computing OP*v_{j}. |
c | STEP4: return from computing B-norm of OP*v_{j} |
c | ORTH1: return from computing B-norm of r_{j+1} |
c | ORTH2: return from computing B-norm of |
c | correction to the residual vector. |
c | RSTART: return from OP computations needed by |
c | sgetv0. |
c %-------------------------------------------------%
c
if (step3) go to 50
if (step4) go to 60
if (orth1) go to 70
if (orth2) go to 90
if (rstart) go to 30
c
c %-----------------------------%
c | Else this is the first step |
c %-----------------------------%
c
c %--------------------------------------------------------------%
c | |
c | A R N O L D I I T E R A T I O N L O O P |
c | |
c | Note: B*r_{j-1} is already in WORKD(1:N)=WORKD(IPJ:IPJ+N-1) |
c %--------------------------------------------------------------%
1000 continue
c
if (msglvl .gt. 1) then
call ivout (logfil, 1, j, ndigit,
& '_naitr: generating Arnoldi vector number')
call svout (logfil, 1, rnorm, ndigit,
& '_naitr: B-norm of the current residual is')
end if
c
c %---------------------------------------------------%
c | STEP 1: Check if the B norm of j-th residual |
c | vector is zero. Equivalent to determing whether |
c | an exact j-step Arnoldi factorization is present. |
c %---------------------------------------------------%
c
betaj = rnorm
if (rnorm .gt. zero) go to 40
c
c %---------------------------------------------------%
c | Invariant subspace found, generate a new starting |
c | vector which is orthogonal to the current Arnoldi |
c | basis and continue the iteration. |
c %---------------------------------------------------%
c
if (msglvl .gt. 0) then
call ivout (logfil, 1, j, ndigit,
& '_naitr: ****** RESTART AT STEP ******')
end if
c
c %---------------------------------------------%
c | ITRY is the loop variable that controls the |
c | maximum amount of times that a restart is |
c | attempted. NRSTRT is used by stat.h |
c %---------------------------------------------%
c
betaj = zero
nrstrt = nrstrt + 1
itry = 1
20 continue
rstart = .true.
ido = 0
30 continue
c
c %--------------------------------------%
c | If in reverse communication mode and |
c | RSTART = .true. flow returns here. |
c %--------------------------------------%
c
call sgetv0 (ido, bmat, itry, .false., n, j, v, ldv,
& resid, rnorm, ipntr, workd, ierr)
if (ido .ne. 99) go to 9000
if (ierr .lt. 0) then
itry = itry + 1
if (itry .le. 3) go to 20
c
c %------------------------------------------------%
c | Give up after several restart attempts. |
c | Set INFO to the size of the invariant subspace |
c | which spans OP and exit. |
c %------------------------------------------------%
c
info = j - 1
call arscnd (t1)
tnaitr = tnaitr + (t1 - t0)
ido = 99
go to 9000
end if
c
40 continue
c
c %---------------------------------------------------------%
c | STEP 2: v_{j} = r_{j-1}/rnorm and p_{j} = p_{j}/rnorm |
c | Note that p_{j} = B*r_{j-1}. In order to avoid overflow |
c | when reciprocating a small RNORM, test against lower |
c | machine bound. |
c %---------------------------------------------------------%
c
call scopy (n, resid, 1, v(1,j), 1)
if (rnorm .ge. unfl) then
temp1 = one / rnorm
call sscal (n, temp1, v(1,j), 1)
call sscal (n, temp1, workd(ipj), 1)
else
c
c %-----------------------------------------%
c | To scale both v_{j} and p_{j} carefully |
c | use LAPACK routine SLASCL |
c %-----------------------------------------%
c
call slascl ('General', i, i, rnorm, one, n, 1,
& v(1,j), n, infol)
call slascl ('General', i, i, rnorm, one, n, 1,
& workd(ipj), n, infol)
end if
c
c %------------------------------------------------------%
c | STEP 3: r_{j} = OP*v_{j}; Note that p_{j} = B*v_{j} |
c | Note that this is not quite yet r_{j}. See STEP 4 |
c %------------------------------------------------------%
c
step3 = .true.
nopx = nopx + 1
call arscnd (t2)
call scopy (n, v(1,j), 1, workd(ivj), 1)
ipntr(1) = ivj
ipntr(2) = irj
ipntr(3) = ipj
ido = 1
c
c %-----------------------------------%
c | Exit in order to compute OP*v_{j} |
c %-----------------------------------%
c
go to 9000
50 continue
c
c %----------------------------------%
c | Back from reverse communication; |
c | WORKD(IRJ:IRJ+N-1) := OP*v_{j} |
c | if step3 = .true. |
c %----------------------------------%
c
call arscnd (t3)
tmvopx = tmvopx + (t3 - t2)
step3 = .false.
c
c %------------------------------------------%
c | Put another copy of OP*v_{j} into RESID. |
c %------------------------------------------%
c
call scopy (n, workd(irj), 1, resid, 1)
c
c %---------------------------------------%
c | STEP 4: Finish extending the Arnoldi |
c | factorization to length j. |
c %---------------------------------------%
c
call arscnd (t2)
if (bmat .eq. 'G') then
nbx = nbx + 1
step4 = .true.
ipntr(1) = irj
ipntr(2) = ipj
ido = 2
c
c %-------------------------------------%
c | Exit in order to compute B*OP*v_{j} |
c %-------------------------------------%
c
go to 9000
else if (bmat .eq. 'I') then
call scopy (n, resid, 1, workd(ipj), 1)
end if
60 continue
c
c %----------------------------------%
c | Back from reverse communication; |
c | WORKD(IPJ:IPJ+N-1) := B*OP*v_{j} |
c | if step4 = .true. |
c %----------------------------------%
c
if (bmat .eq. 'G') then
call arscnd (t3)
tmvbx = tmvbx + (t3 - t2)
end if
c
step4 = .false.
c
c %-------------------------------------%
c | The following is needed for STEP 5. |
c | Compute the B-norm of OP*v_{j}. |
c %-------------------------------------%
c
if (bmat .eq. 'G') then
wnorm = wsdot (n, resid, 1, workd(ipj), 1)
wnorm = sqrt(abs(wnorm))
else if (bmat .eq. 'I') then
wnorm = wsnrm2(n, resid, 1)
end if
c
c %-----------------------------------------%
c | Compute the j-th residual corresponding |
c | to the j step factorization. |
c | Use Classical Gram Schmidt and compute: |
c | w_{j} <- V_{j}^T * B * OP * v_{j} |
c | r_{j} <- OP*v_{j} - V_{j} * w_{j} |
c %-----------------------------------------%
c
c
c %------------------------------------------%
c | Compute the j Fourier coefficients w_{j} |
c | WORKD(IPJ:IPJ+N-1) contains B*OP*v_{j}. |
c %------------------------------------------%
c
call sgemv ('T', n, j, one, v, ldv, workd(ipj), 1,
& zero, h(1,j), 1)
c
c %--------------------------------------%
c | Orthogonalize r_{j} against V_{j}. |
c | RESID contains OP*v_{j}. See STEP 3. |
c %--------------------------------------%
c
call sgemv ('N', n, j, -one, v, ldv, h(1,j), 1,
& one, resid, 1)
c
if (j .gt. 1) h(j,j-1) = betaj
c
call arscnd (t4)
c
orth1 = .true.
c
call arscnd (t2)
if (bmat .eq. 'G') then
nbx = nbx + 1
call scopy (n, resid, 1, workd(irj), 1)
ipntr(1) = irj
ipntr(2) = ipj
ido = 2
c
c %----------------------------------%
c | Exit in order to compute B*r_{j} |
c %----------------------------------%
c
go to 9000
else if (bmat .eq. 'I') then
call scopy (n, resid, 1, workd(ipj), 1)
end if
70 continue
c
c %---------------------------------------------------%
c | Back from reverse communication if ORTH1 = .true. |
c | WORKD(IPJ:IPJ+N-1) := B*r_{j}. |
c %---------------------------------------------------%
c
if (bmat .eq. 'G') then
call arscnd (t3)
tmvbx = tmvbx + (t3 - t2)
end if
c
orth1 = .false.
c
c %------------------------------%
c | Compute the B-norm of r_{j}. |
c %------------------------------%
c
if (bmat .eq. 'G') then
rnorm = wsdot (n, resid, 1, workd(ipj), 1)
rnorm = sqrt(abs(rnorm))
else if (bmat .eq. 'I') then
rnorm = wsnrm2(n, resid, 1)
end if
c
c %-----------------------------------------------------------%
c | STEP 5: Re-orthogonalization / Iterative refinement phase |
c | Maximum NITER_ITREF tries. |
c | |
c | s = V_{j}^T * B * r_{j} |
c | r_{j} = r_{j} - V_{j}*s |
c | alphaj = alphaj + s_{j} |
c | |
c | The stopping criteria used for iterative refinement is |
c | discussed in Parlett's book SEP, page 107 and in Gragg & |
c | Reichel ACM TOMS paper; Algorithm 686, Dec. 1990. |
c | Determine if we need to correct the residual. The goal is |
c | to enforce ||v(:,1:j)^T * r_{j}|| .le. eps * || r_{j} || |
c | The following test determines whether the sine of the |
c | angle between OP*x and the computed residual is less |
c | than or equal to 0.717. |
c %-----------------------------------------------------------%
c
if (rnorm .gt. 0.717*wnorm) go to 100
iter = 0
nrorth = nrorth + 1
c
c %---------------------------------------------------%
c | Enter the Iterative refinement phase. If further |
c | refinement is necessary, loop back here. The loop |
c | variable is ITER. Perform a step of Classical |
c | Gram-Schmidt using all the Arnoldi vectors V_{j} |
c %---------------------------------------------------%
c
80 continue
c
if (msglvl .gt. 2) then
xtemp(1) = wnorm
xtemp(2) = rnorm
call svout (logfil, 2, xtemp, ndigit,
& '_naitr: re-orthonalization; wnorm and rnorm are')
call svout (logfil, j, h(1,j), ndigit,
& '_naitr: j-th column of H')
end if
c
c %----------------------------------------------------%
c | Compute V_{j}^T * B * r_{j}. |
c | WORKD(IRJ:IRJ+J-1) = v(:,1:J)'*WORKD(IPJ:IPJ+N-1). |
c %----------------------------------------------------%
c
call sgemv ('T', n, j, one, v, ldv, workd(ipj), 1,
& zero, workd(irj), 1)
c
c %---------------------------------------------%
c | Compute the correction to the residual: |
c | r_{j} = r_{j} - V_{j} * WORKD(IRJ:IRJ+J-1). |
c | The correction to H is v(:,1:J)*H(1:J,1:J) |
c | + v(:,1:J)*WORKD(IRJ:IRJ+J-1)*e'_j. |
c %---------------------------------------------%
c
call sgemv ('N', n, j, -one, v, ldv, workd(irj), 1,
& one, resid, 1)
call saxpy (j, one, workd(irj), 1, h(1,j), 1)
c
orth2 = .true.
call arscnd (t2)
if (bmat .eq. 'G') then
nbx = nbx + 1
call scopy (n, resid, 1, workd(irj), 1)
ipntr(1) = irj
ipntr(2) = ipj
ido = 2
c
c %-----------------------------------%
c | Exit in order to compute B*r_{j}. |
c | r_{j} is the corrected residual. |
c %-----------------------------------%
c
go to 9000
else if (bmat .eq. 'I') then
call scopy (n, resid, 1, workd(ipj), 1)
end if
90 continue
c
c %---------------------------------------------------%
c | Back from reverse communication if ORTH2 = .true. |
c %---------------------------------------------------%
c
if (bmat .eq. 'G') then
call arscnd (t3)
tmvbx = tmvbx + (t3 - t2)
end if
c
c %-----------------------------------------------------%
c | Compute the B-norm of the corrected residual r_{j}. |
c %-----------------------------------------------------%
c
if (bmat .eq. 'G') then
rnorm1 = wsdot (n, resid, 1, workd(ipj), 1)
rnorm1 = sqrt(abs(rnorm1))
else if (bmat .eq. 'I') then
rnorm1 = wsnrm2(n, resid, 1)
end if
c
if (msglvl .gt. 0 .and. iter .gt. 0) then
call ivout (logfil, 1, j, ndigit,
& '_naitr: Iterative refinement for Arnoldi residual')
if (msglvl .gt. 2) then
xtemp(1) = rnorm
xtemp(2) = rnorm1
call svout (logfil, 2, xtemp, ndigit,
& '_naitr: iterative refinement ; rnorm and rnorm1 are')
end if
end if
c
c %-----------------------------------------%
c | Determine if we need to perform another |
c | step of re-orthogonalization. |
c %-----------------------------------------%
c
if (rnorm1 .gt. 0.717*rnorm) then
c
c %---------------------------------------%
c | No need for further refinement. |
c | The cosine of the angle between the |
c | corrected residual vector and the old |
c | residual vector is greater than 0.717 |
c | In other words the corrected residual |
c | and the old residual vector share an |
c | angle of less than arcCOS(0.717) |
c %---------------------------------------%
c
rnorm = rnorm1
c
else
c
c %-------------------------------------------%
c | Another step of iterative refinement step |
c | is required. NITREF is used by stat.h |
c %-------------------------------------------%
c
nitref = nitref + 1
rnorm = rnorm1
iter = iter + 1
if (iter .le. 1) go to 80
c
c %-------------------------------------------------%
c | Otherwise RESID is numerically in the span of V |
c %-------------------------------------------------%
c
do 95 jj = 1, n
resid(jj) = zero
95 continue
rnorm = zero
end if
c
c %----------------------------------------------%
c | Branch here directly if iterative refinement |
c | wasn't necessary or after at most NITER_REF |
c | steps of iterative refinement. |
c %----------------------------------------------%
c
100 continue
c
rstart = .false.
orth2 = .false.
c
call arscnd (t5)
titref = titref + (t5 - t4)
c
c %------------------------------------%
c | STEP 6: Update j = j+1; Continue |
c %------------------------------------%
c
j = j + 1
if (j .gt. k+np) then
call arscnd (t1)
tnaitr = tnaitr + (t1 - t0)
ido = 99
do 110 i = max(1,k), k+np-1
c
c %--------------------------------------------%
c | Check for splitting and deflation. |
c | Use a standard test as in the QR algorithm |
c | REFERENCE: LAPACK subroutine slahqr |
c %--------------------------------------------%
c
tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) )
if( tst1.eq.zero )
& tst1 = wslanhs( '1', k+np, h, ldh, workd(n+1) )
if( abs( h( i+1,i ) ).le.max( ulp*tst1, smlnum ) )
& h(i+1,i) = zero
110 continue
c
if (msglvl .gt. 2) then
call smout (logfil, k+np, k+np, h, ldh, ndigit,
& '_naitr: Final upper Hessenberg matrix H of order K+NP')
end if
c
go to 9000
end if
c
c %--------------------------------------------------------%
c | Loop back to extend the factorization by another step. |
c %--------------------------------------------------------%
c
go to 1000
c
c %---------------------------------------------------------------%
c | |
c | E N D O F M A I N I T E R A T I O N L O O P |
c | |
c %---------------------------------------------------------------%
c
9000 continue
return
c
c %---------------%
c | End of snaitr |
c %---------------%
c
end
|