1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
c\BeginDoc
c
c\Name: znapps
c
c\Description:
c Given the Arnoldi factorization
c
c A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T,
c
c apply NP implicit shifts resulting in
c
c A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q
c
c where Q is an orthogonal matrix which is the product of rotations
c and reflections resulting from the NP bulge change sweeps.
c The updated Arnoldi factorization becomes:
c
c A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T.
c
c\Usage:
c call znapps
c ( N, KEV, NP, SHIFT, V, LDV, H, LDH, RESID, Q, LDQ,
c WORKL, WORKD )
c
c\Arguments
c N Integer. (INPUT)
c Problem size, i.e. size of matrix A.
c
c KEV Integer. (INPUT/OUTPUT)
c KEV+NP is the size of the input matrix H.
c KEV is the size of the updated matrix HNEW.
c
c NP Integer. (INPUT)
c Number of implicit shifts to be applied.
c
c SHIFT Complex*16 array of length NP. (INPUT)
c The shifts to be applied.
c
c V Complex*16 N by (KEV+NP) array. (INPUT/OUTPUT)
c On INPUT, V contains the current KEV+NP Arnoldi vectors.
c On OUTPUT, V contains the updated KEV Arnoldi vectors
c in the first KEV columns of V.
c
c LDV Integer. (INPUT)
c Leading dimension of V exactly as declared in the calling
c program.
c
c H Complex*16 (KEV+NP) by (KEV+NP) array. (INPUT/OUTPUT)
c On INPUT, H contains the current KEV+NP by KEV+NP upper
c Hessenberg matrix of the Arnoldi factorization.
c On OUTPUT, H contains the updated KEV by KEV upper Hessenberg
c matrix in the KEV leading submatrix.
c
c LDH Integer. (INPUT)
c Leading dimension of H exactly as declared in the calling
c program.
c
c RESID Complex*16 array of length N. (INPUT/OUTPUT)
c On INPUT, RESID contains the the residual vector r_{k+p}.
c On OUTPUT, RESID is the update residual vector rnew_{k}
c in the first KEV locations.
c
c Q Complex*16 KEV+NP by KEV+NP work array. (WORKSPACE)
c Work array used to accumulate the rotations and reflections
c during the bulge chase sweep.
c
c LDQ Integer. (INPUT)
c Leading dimension of Q exactly as declared in the calling
c program.
c
c WORKL Complex*16 work array of length (KEV+NP). (WORKSPACE)
c Private (replicated) array on each PE or array allocated on
c the front end.
c
c WORKD Complex*16 work array of length 2*N. (WORKSPACE)
c Distributed array used in the application of the accumulated
c orthogonal matrix Q.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx Complex*16
c
c\References:
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c pp 357-385.
c
c\Routines called:
c ivout ARPACK utility routine that prints integers.
c arscnd ARPACK utility routine for timing.
c zmout ARPACK utility routine that prints matrices
c zvout ARPACK utility routine that prints vectors.
c zlacpy LAPACK matrix copy routine.
c zlanhs LAPACK routine that computes various norms of a matrix.
c zlartg LAPACK Givens rotation construction routine.
c zlaset LAPACK matrix initialization routine.
c dlabad LAPACK routine for defining the underflow and overflow
c limits.
c dlamch LAPACK routine that determines machine constants.
c dlapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c zgemv Level 2 BLAS routine for matrix vector multiplication.
c zaxpy Level 1 BLAS that computes a vector triad.
c zcopy Level 1 BLAS that copies one vector to another.
c zscal Level 1 BLAS that scales a vector.
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: napps.F SID: 2.3 DATE OF SID: 3/28/97 RELEASE: 2
c
c\Remarks
c 1. In this version, each shift is applied to all the sublocks of
c the Hessenberg matrix H and not just to the submatrix that it
c comes from. Deflation as in LAPACK routine zlahqr (QR algorithm
c for upper Hessenberg matrices ) is used.
c Upon output, the subdiagonals of H are enforced to be non-negative
c real numbers.
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine znapps
& ( n, kev, np, shift, v, ldv, h, ldh, resid, q, ldq,
& workl, workd )
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
integer kev, ldh, ldq, ldv, n, np
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
Complex*16
& h(ldh,kev+np), resid(n), shift(np),
& v(ldv,kev+np), q(ldq,kev+np), workd(2*n), workl(kev+np)
c
c %------------%
c | Parameters |
c %------------%
c
Complex*16
& one, zero
Double precision
& rzero
parameter (one = (1.0D+0, 0.0D+0), zero = (0.0D+0, 0.0D+0),
& rzero = 0.0D+0)
c
c %------------------------%
c | Local Scalars & Arrays |
c %------------------------%
c
integer i, iend, istart, j, jj, kplusp, msglvl
logical first
Complex*16
& cdum, f, g, h11, h21, r, s, sigma, t
Double precision
& c, ovfl, smlnum, ulp, unfl, tst1
save first, ovfl, smlnum, ulp, unfl
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external zaxpy, zcopy, zgemv, zscal, zlacpy, zlartg,
& zvout, zlaset, dlabad, zmout, arscnd, ivout
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Double precision
& zlanhs, dlamch, dlapy2
external zlanhs, dlamch, dlapy2
c
c %----------------------%
c | Intrinsics Functions |
c %----------------------%
c
intrinsic abs, dimag, conjg, dcmplx, max, min, dble
c
c %---------------------%
c | Statement Functions |
c %---------------------%
c
Double precision
& zabs1
zabs1( cdum ) = abs( dble( cdum ) ) + abs( dimag( cdum ) )
c
c %----------------%
c | Data statments |
c %----------------%
c
data first / .true. /
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
if (first) then
c
c %-----------------------------------------------%
c | Set machine-dependent constants for the |
c | stopping criterion. If norm(H) <= sqrt(OVFL), |
c | overflow should not occur. |
c | REFERENCE: LAPACK subroutine zlahqr |
c %-----------------------------------------------%
c
unfl = dlamch( 'safe minimum' )
ovfl = dble(one / unfl)
call dlabad( unfl, ovfl )
ulp = dlamch( 'precision' )
smlnum = unfl*( n / ulp )
first = .false.
end if
c
c %-------------------------------%
c | Initialize timing statistics |
c | & message level for debugging |
c %-------------------------------%
c
call arscnd (t0)
msglvl = mcapps
c
kplusp = kev + np
c
c %--------------------------------------------%
c | Initialize Q to the identity to accumulate |
c | the rotations and reflections |
c %--------------------------------------------%
c
call zlaset ('All', kplusp, kplusp, zero, one, q, ldq)
c
c %----------------------------------------------%
c | Quick return if there are no shifts to apply |
c %----------------------------------------------%
c
if (np .eq. 0) go to 9000
c
c %----------------------------------------------%
c | Chase the bulge with the application of each |
c | implicit shift. Each shift is applied to the |
c | whole matrix including each block. |
c %----------------------------------------------%
c
do 110 jj = 1, np
sigma = shift(jj)
c
if (msglvl .gt. 2 ) then
call ivout (logfil, 1, jj, ndigit,
& '_napps: shift number.')
call zvout (logfil, 1, sigma, ndigit,
& '_napps: Value of the shift ')
end if
c
istart = 1
20 continue
c
do 30 i = istart, kplusp-1
c
c %----------------------------------------%
c | Check for splitting and deflation. Use |
c | a standard test as in the QR algorithm |
c | REFERENCE: LAPACK subroutine zlahqr |
c %----------------------------------------%
c
tst1 = zabs1( h( i, i ) ) + zabs1( h( i+1, i+1 ) )
if( tst1.eq.rzero )
& tst1 = zlanhs( '1', kplusp-jj+1, h, ldh, workl )
if ( abs(dble(h(i+1,i)))
& .le. max(ulp*tst1, smlnum) ) then
if (msglvl .gt. 0) then
call ivout (logfil, 1, i, ndigit,
& '_napps: matrix splitting at row/column no.')
call ivout (logfil, 1, jj, ndigit,
& '_napps: matrix splitting with shift number.')
call zvout (logfil, 1, h(i+1,i), ndigit,
& '_napps: off diagonal element.')
end if
iend = i
h(i+1,i) = zero
go to 40
end if
30 continue
iend = kplusp
40 continue
c
if (msglvl .gt. 2) then
call ivout (logfil, 1, istart, ndigit,
& '_napps: Start of current block ')
call ivout (logfil, 1, iend, ndigit,
& '_napps: End of current block ')
end if
c
c %------------------------------------------------%
c | No reason to apply a shift to block of order 1 |
c | or if the current block starts after the point |
c | of compression since we'll discard this stuff |
c %------------------------------------------------%
c
if ( istart .eq. iend .or. istart .gt. kev) go to 100
c
h11 = h(istart,istart)
h21 = h(istart+1,istart)
f = h11 - sigma
g = h21
c
do 80 i = istart, iend-1
c
c %------------------------------------------------------%
c | Construct the plane rotation G to zero out the bulge |
c %------------------------------------------------------%
c
call zlartg (f, g, c, s, r)
if (i .gt. istart) then
h(i,i-1) = r
h(i+1,i-1) = zero
end if
c
c %---------------------------------------------%
c | Apply rotation to the left of H; H <- G'*H |
c %---------------------------------------------%
c
do 50 j = i, kplusp
t = c*h(i,j) + s*h(i+1,j)
h(i+1,j) = -conjg(s)*h(i,j) + c*h(i+1,j)
h(i,j) = t
50 continue
c
c %---------------------------------------------%
c | Apply rotation to the right of H; H <- H*G |
c %---------------------------------------------%
c
do 60 j = 1, min(i+2,iend)
t = c*h(j,i) + conjg(s)*h(j,i+1)
h(j,i+1) = -s*h(j,i) + c*h(j,i+1)
h(j,i) = t
60 continue
c
c %-----------------------------------------------------%
c | Accumulate the rotation in the matrix Q; Q <- Q*G' |
c %-----------------------------------------------------%
c
do 70 j = 1, min(i+jj, kplusp)
t = c*q(j,i) + conjg(s)*q(j,i+1)
q(j,i+1) = - s*q(j,i) + c*q(j,i+1)
q(j,i) = t
70 continue
c
c %---------------------------%
c | Prepare for next rotation |
c %---------------------------%
c
if (i .lt. iend-1) then
f = h(i+1,i)
g = h(i+2,i)
end if
80 continue
c
c %-------------------------------%
c | Finished applying the shift. |
c %-------------------------------%
c
100 continue
c
c %---------------------------------------------------------%
c | Apply the same shift to the next block if there is any. |
c %---------------------------------------------------------%
c
istart = iend + 1
if (iend .lt. kplusp) go to 20
c
c %---------------------------------------------%
c | Loop back to the top to get the next shift. |
c %---------------------------------------------%
c
110 continue
c
c %---------------------------------------------------%
c | Perform a similarity transformation that makes |
c | sure that the compressed H will have non-negative |
c | real subdiagonal elements. |
c %---------------------------------------------------%
c
do 120 j=1,kev
if ( dble( h(j+1,j) ) .lt. rzero .or.
& dimag( h(j+1,j) ) .ne. rzero ) then
t = h(j+1,j) / dlapy2(dble(h(j+1,j)),dimag(h(j+1,j)))
call zscal( kplusp-j+1, conjg(t), h(j+1,j), ldh )
call zscal( min(j+2, kplusp), t, h(1,j+1), 1 )
call zscal( min(j+np+1,kplusp), t, q(1,j+1), 1 )
h(j+1,j) = dcmplx( dble( h(j+1,j) ), rzero )
end if
120 continue
c
do 130 i = 1, kev
c
c %--------------------------------------------%
c | Final check for splitting and deflation. |
c | Use a standard test as in the QR algorithm |
c | REFERENCE: LAPACK subroutine zlahqr. |
c | Note: Since the subdiagonals of the |
c | compressed H are nonnegative real numbers, |
c | we take advantage of this. |
c %--------------------------------------------%
c
tst1 = zabs1( h( i, i ) ) + zabs1( h( i+1, i+1 ) )
if( tst1 .eq. rzero )
& tst1 = zlanhs( '1', kev, h, ldh, workl )
if( dble( h( i+1,i ) ) .le. max( ulp*tst1, smlnum ) )
& h(i+1,i) = zero
130 continue
c
c %-------------------------------------------------%
c | Compute the (kev+1)-st column of (V*Q) and |
c | temporarily store the result in WORKD(N+1:2*N). |
c | This is needed in the residual update since we |
c | cannot GUARANTEE that the corresponding entry |
c | of H would be zero as in exact arithmetic. |
c %-------------------------------------------------%
c
if ( dble( h(kev+1,kev) ) .gt. rzero )
& call zgemv ('N', n, kplusp, one, v, ldv, q(1,kev+1), 1, zero,
& workd(n+1), 1)
c
c %----------------------------------------------------------%
c | Compute column 1 to kev of (V*Q) in backward order |
c | taking advantage of the upper Hessenberg structure of Q. |
c %----------------------------------------------------------%
c
do 140 i = 1, kev
call zgemv ('N', n, kplusp-i+1, one, v, ldv,
& q(1,kev-i+1), 1, zero, workd, 1)
call zcopy (n, workd, 1, v(1,kplusp-i+1), 1)
140 continue
c
c %-------------------------------------------------%
c | Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). |
c %-------------------------------------------------%
c
call zlacpy ('A', n, kev, v(1,kplusp-kev+1), ldv, v, ldv)
c
c %--------------------------------------------------------------%
c | Copy the (kev+1)-st column of (V*Q) in the appropriate place |
c %--------------------------------------------------------------%
c
if ( dble( h(kev+1,kev) ) .gt. rzero )
& call zcopy (n, workd(n+1), 1, v(1,kev+1), 1)
c
c %-------------------------------------%
c | Update the residual vector: |
c | r <- sigmak*r + betak*v(:,kev+1) |
c | where |
c | sigmak = (e_{kev+p}'*Q)*e_{kev} |
c | betak = e_{kev+1}'*H*e_{kev} |
c %-------------------------------------%
c
call zscal (n, q(kplusp,kev), resid, 1)
if ( dble( h(kev+1,kev) ) .gt. rzero )
& call zaxpy (n, h(kev+1,kev), v(1,kev+1), 1, resid, 1)
c
if (msglvl .gt. 1) then
call zvout (logfil, 1, q(kplusp,kev), ndigit,
& '_napps: sigmak = (e_{kev+p}^T*Q)*e_{kev}')
call zvout (logfil, 1, h(kev+1,kev), ndigit,
& '_napps: betak = e_{kev+1}^T*H*e_{kev}')
call ivout (logfil, 1, kev, ndigit,
& '_napps: Order of the final Hessenberg matrix ')
if (msglvl .gt. 2) then
call zmout (logfil, kev, kev, h, ldh, ndigit,
& '_napps: updated Hessenberg matrix H for next iteration')
end if
c
end if
c
9000 continue
call arscnd (t1)
tcapps = tcapps + (t1 - t0)
c
return
c
c %---------------%
c | End of znapps |
c %---------------%
c
end
|