1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
|
c\BeginDoc
c
c\Name: zneupd
c
c\Description:
c This subroutine returns the converged approximations to eigenvalues
c of A*z = lambda*B*z and (optionally):
c
c (1) The corresponding approximate eigenvectors;
c
c (2) An orthonormal basis for the associated approximate
c invariant subspace;
c
c (3) Both.
c
c There is negligible additional cost to obtain eigenvectors. An orthonormal
c basis is always computed. There is an additional storage cost of n*nev
c if both are requested (in this case a separate array Z must be supplied).
c
c The approximate eigenvalues and eigenvectors of A*z = lambda*B*z
c are derived from approximate eigenvalues and eigenvectors of
c of the linear operator OP prescribed by the MODE selection in the
c call to ZNAUPD. ZNAUPD must be called before this routine is called.
c These approximate eigenvalues and vectors are commonly called Ritz
c values and Ritz vectors respectively. They are referred to as such
c in the comments that follow. The computed orthonormal basis for the
c invariant subspace corresponding to these Ritz values is referred to as a
c Schur basis.
c
c The definition of OP as well as other terms and the relation of computed
c Ritz values and vectors of OP with respect to the given problem
c A*z = lambda*B*z may be found in the header of ZNAUPD. For a brief
c description, see definitions of IPARAM(7), MODE and WHICH in the
c documentation of ZNAUPD.
c
c\Usage:
c call zneupd
c ( RVEC, HOWMNY, SELECT, D, Z, LDZ, SIGMA, WORKEV, BMAT,
c N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD,
c WORKL, LWORKL, RWORK, INFO )
c
c\Arguments:
c RVEC LOGICAL (INPUT)
c Specifies whether a basis for the invariant subspace corresponding
c to the converged Ritz value approximations for the eigenproblem
c A*z = lambda*B*z is computed.
c
c RVEC = .FALSE. Compute Ritz values only.
c
c RVEC = .TRUE. Compute Ritz vectors or Schur vectors.
c See Remarks below.
c
c HOWMNY Character*1 (INPUT)
c Specifies the form of the basis for the invariant subspace
c corresponding to the converged Ritz values that is to be computed.
c
c = 'A': Compute NEV Ritz vectors;
c = 'P': Compute NEV Schur vectors;
c = 'S': compute some of the Ritz vectors, specified
c by the logical array SELECT.
c
c SELECT Logical array of dimension NCV. (INPUT)
c If HOWMNY = 'S', SELECT specifies the Ritz vectors to be
c computed. To select the Ritz vector corresponding to a
c Ritz value D(j), SELECT(j) must be set to .TRUE..
c If HOWMNY = 'A' or 'P', SELECT need not be initialized
c but it is used as internal workspace.
c
c D Complex*16 array of dimension NEV+1. (OUTPUT)
c On exit, D contains the Ritz approximations
c to the eigenvalues lambda for A*z = lambda*B*z.
c
c Z Complex*16 N by NEV array (OUTPUT)
c On exit, if RVEC = .TRUE. and HOWMNY = 'A', then the columns of
c Z represents approximate eigenvectors (Ritz vectors) corresponding
c to the NCONV=IPARAM(5) Ritz values for eigensystem
c A*z = lambda*B*z.
c
c If RVEC = .FALSE. or HOWMNY = 'P', then Z is NOT REFERENCED.
c
c NOTE: If if RVEC = .TRUE. and a Schur basis is not required,
c the array Z may be set equal to first NEV+1 columns of the Arnoldi
c basis array V computed by ZNAUPD. In this case the Arnoldi basis
c will be destroyed and overwritten with the eigenvector basis.
c
c LDZ Integer. (INPUT)
c The leading dimension of the array Z. If Ritz vectors are
c desired, then LDZ .ge. max( 1, N ) is required.
c In any case, LDZ .ge. 1 is required.
c
c SIGMA Complex*16 (INPUT)
c If IPARAM(7) = 3 then SIGMA represents the shift.
c Not referenced if IPARAM(7) = 1 or 2.
c
c WORKEV Complex*16 work array of dimension 2*NCV. (WORKSPACE)
c
c **** The remaining arguments MUST be the same as for the ****
c **** call to ZNAUPD that was just completed. ****
c
c NOTE: The remaining arguments
c
c BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR,
c WORKD, WORKL, LWORKL, RWORK, INFO
c
c must be passed directly to ZNEUPD following the last call
c to ZNAUPD. These arguments MUST NOT BE MODIFIED between
c the the last call to ZNAUPD and the call to ZNEUPD.
c
c Three of these parameters (V, WORKL and INFO) are also output parameters:
c
c V Complex*16 N by NCV array. (INPUT/OUTPUT)
c
c Upon INPUT: the NCV columns of V contain the Arnoldi basis
c vectors for OP as constructed by ZNAUPD .
c
c Upon OUTPUT: If RVEC = .TRUE. the first NCONV=IPARAM(5) columns
c contain approximate Schur vectors that span the
c desired invariant subspace.
c
c NOTE: If the array Z has been set equal to first NEV+1 columns
c of the array V and RVEC=.TRUE. and HOWMNY= 'A', then the
c Arnoldi basis held by V has been overwritten by the desired
c Ritz vectors. If a separate array Z has been passed then
c the first NCONV=IPARAM(5) columns of V will contain approximate
c Schur vectors that span the desired invariant subspace.
c
c WORKL Double precision work array of length LWORKL. (OUTPUT/WORKSPACE)
c WORKL(1:ncv*ncv+2*ncv) contains information obtained in
c znaupd. They are not changed by zneupd.
c WORKL(ncv*ncv+2*ncv+1:3*ncv*ncv+4*ncv) holds the
c untransformed Ritz values, the untransformed error estimates of
c the Ritz values, the upper triangular matrix for H, and the
c associated matrix representation of the invariant subspace for H.
c
c Note: IPNTR(9:13) contains the pointer into WORKL for addresses
c of the above information computed by zneupd.
c -------------------------------------------------------------
c IPNTR(9): pointer to the NCV RITZ values of the
c original system.
c IPNTR(10): Not used
c IPNTR(11): pointer to the NCV corresponding error estimates.
c IPNTR(12): pointer to the NCV by NCV upper triangular
c Schur matrix for H.
c IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors
c of the upper Hessenberg matrix H. Only referenced by
c zneupd if RVEC = .TRUE. See Remark 2 below.
c -------------------------------------------------------------
c
c INFO Integer. (OUTPUT)
c Error flag on output.
c = 0: Normal exit.
c
c = 1: The Schur form computed by LAPACK routine csheqr
c could not be reordered by LAPACK routine ztrsen.
c Re-enter subroutine zneupd with IPARAM(5)=NCV and
c increase the size of the array D to have
c dimension at least dimension NCV and allocate at least NCV
c columns for Z. NOTE: Not necessary if Z and V share
c the same space. Please notify the authors if this error
c occurs.
c
c = -1: N must be positive.
c = -2: NEV must be positive.
c = -3: NCV-NEV >= 1 and less than or equal to N.
c = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
c = -6: BMAT must be one of 'I' or 'G'.
c = -7: Length of private work WORKL array is not sufficient.
c = -8: Error return from LAPACK eigenvalue calculation.
c This should never happened.
c = -9: Error return from calculation of eigenvectors.
c Informational error from LAPACK routine ztrevc.
c = -10: IPARAM(7) must be 1,2,3
c = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
c = -12: HOWMNY = 'S' not yet implemented
c = -13: HOWMNY must be one of 'A' or 'P' if RVEC = .true.
c = -14: ZNAUPD did not find any eigenvalues to sufficient
c accuracy.
c = -15: ZNEUPD got a different count of the number of converged
c Ritz values than ZNAUPD got. This indicates the user
c probably made an error in passing data from ZNAUPD to
c ZNEUPD or that the data was modified before entering
c ZNEUPD
c
c\BeginLib
c
c\References:
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c pp 357-385.
c 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
c Restarted Arnoldi Iteration", Rice University Technical Report
c TR95-13, Department of Computational and Applied Mathematics.
c 3. B. Nour-Omid, B. N. Parlett, T. Ericsson and P. S. Jensen,
c "How to Implement the Spectral Transformation", Math Comp.,
c Vol. 48, No. 178, April, 1987 pp. 664-673.
c
c\Routines called:
c ivout ARPACK utility routine that prints integers.
c zmout ARPACK utility routine that prints matrices
c zvout ARPACK utility routine that prints vectors.
c zgeqr2 LAPACK routine that computes the QR factorization of
c a matrix.
c zlacpy LAPACK matrix copy routine.
c zlahqr LAPACK routine that computes the Schur form of a
c upper Hessenberg matrix.
c zlaset LAPACK matrix initialization routine.
c ztrevc LAPACK routine to compute the eigenvectors of a matrix
c in upper triangular form.
c ztrsen LAPACK routine that re-orders the Schur form.
c zunm2r LAPACK routine that applies an orthogonal matrix in
c factored form.
c dlamch LAPACK routine that determines machine constants.
c ztrmm Level 3 BLAS matrix times an upper triangular matrix.
c zgeru Level 2 BLAS rank one update to a matrix.
c zcopy Level 1 BLAS that copies one vector to another .
c zscal Level 1 BLAS that scales a vector.
c zdscal Level 1 BLAS that scales a complex vector by a real number.
c dznrm2 Level 1 BLAS that computes the norm of a complex vector.
c
c\Remarks
c
c 1. Currently only HOWMNY = 'A' and 'P' are implemented.
c
c 2. Schur vectors are an orthogonal representation for the basis of
c Ritz vectors. Thus, their numerical properties are often superior.
c If RVEC = .true. then the relationship
c A * V(:,1:IPARAM(5)) = V(:,1:IPARAM(5)) * T, and
c transpose( V(:,1:IPARAM(5)) ) * V(:,1:IPARAM(5)) = I
c are approximately satisfied.
c Here T is the leading submatrix of order IPARAM(5) of the
c upper triangular matrix stored workl(ipntr(12)).
c
c\Authors
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Chao Yang Houston, Texas
c Dept. of Computational &
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: neupd.F SID: 2.8 DATE OF SID: 07/21/02 RELEASE: 2
c
c\EndLib
c
c-----------------------------------------------------------------------
subroutine zneupd(rvec , howmny, select, d ,
& z , ldz , sigma , workev,
& bmat , n , which , nev ,
& tol , resid , ncv , v ,
& ldv , iparam, ipntr , workd ,
& workl, lworkl, rwork , info )
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
character bmat, howmny, which*2
logical rvec
integer info, ldz, ldv, lworkl, n, ncv, nev
Complex*16
& sigma
Double precision
& tol
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
integer iparam(11), ipntr(14)
logical select(ncv)
Double precision
& rwork(ncv)
Complex*16
& d(nev) , resid(n) , v(ldv,ncv),
& z(ldz, nev),
& workd(3*n) , workl(lworkl), workev(2*ncv)
c
c %------------%
c | Parameters |
c %------------%
c
Complex*16
& one, zero
parameter (one = (1.0D+0, 0.0D+0), zero = (0.0D+0, 0.0D+0))
c
c %---------------%
c | Local Scalars |
c %---------------%
c
character type*6
integer bounds, ierr , ih , ihbds, iheig , nconv ,
& invsub, iuptri, iwev , j , ldh , ldq ,
& mode , msglvl, ritz , wr , k , irz ,
& ibd , outncv, iq , np , numcnv, jj ,
& ishift, nconv2
Complex*16
& rnorm, temp, vl(1)
Double precision
& conds, sep, rtemp, eps23
logical reord
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external zcopy , zgeru, zgeqr2, zlacpy, zmout,
& zunm2r, ztrmm, zvout, ivout,
& zlahqr
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Double precision
& dznrm2, dlamch, dlapy2
external dznrm2, dlamch, dlapy2
c
Complex*16
& wzdotc
external wzdotc
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
c %------------------------%
c | Set default parameters |
c %------------------------%
c
msglvl = mceupd
mode = iparam(7)
nconv = iparam(5)
info = 0
c
c
c %---------------------------------%
c | Get machine dependent constant. |
c %---------------------------------%
c
eps23 = dlamch('Epsilon-Machine')
eps23 = eps23**(2.0D+0 / 3.0D+0)
c
c %-------------------------------%
c | Quick return |
c | Check for incompatible input |
c %-------------------------------%
c
ierr = 0
c
if (nconv .le. 0) then
ierr = -14
else if (n .le. 0) then
ierr = -1
else if (nev .le. 0) then
ierr = -2
else if (ncv .le. nev+1 .or. ncv .gt. n) then
ierr = -3
else if (which .ne. 'LM' .and.
& which .ne. 'SM' .and.
& which .ne. 'LR' .and.
& which .ne. 'SR' .and.
& which .ne. 'LI' .and.
& which .ne. 'SI') then
ierr = -5
else if (bmat .ne. 'I' .and. bmat .ne. 'G') then
ierr = -6
else if (lworkl .lt. 3*ncv**2 + 4*ncv) then
ierr = -7
else if ( (howmny .ne. 'A' .and.
& howmny .ne. 'P' .and.
& howmny .ne. 'S') .and. rvec ) then
ierr = -13
else if (howmny .eq. 'S' ) then
ierr = -12
end if
c
if (mode .eq. 1 .or. mode .eq. 2) then
type = 'REGULR'
else if (mode .eq. 3 ) then
type = 'SHIFTI'
else
ierr = -10
end if
if (mode .eq. 1 .and. bmat .eq. 'G') ierr = -11
c
c %------------%
c | Error Exit |
c %------------%
c
if (ierr .ne. 0) then
info = ierr
go to 9000
end if
c
c %--------------------------------------------------------%
c | Pointer into WORKL for address of H, RITZ, WORKEV, Q |
c | etc... and the remaining workspace. |
c | Also update pointer to be used on output. |
c | Memory is laid out as follows: |
c | workl(1:ncv*ncv) := generated Hessenberg matrix |
c | workl(ncv*ncv+1:ncv*ncv+ncv) := ritz values |
c | workl(ncv*ncv+ncv+1:ncv*ncv+2*ncv) := error bounds |
c %--------------------------------------------------------%
c
c %-----------------------------------------------------------%
c | The following is used and set by ZNEUPD. |
c | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := The untransformed |
c | Ritz values. |
c | workl(ncv*ncv+3*ncv+1:ncv*ncv+4*ncv) := The untransformed |
c | error bounds of |
c | the Ritz values |
c | workl(ncv*ncv+4*ncv+1:2*ncv*ncv+4*ncv) := Holds the upper |
c | triangular matrix |
c | for H. |
c | workl(2*ncv*ncv+4*ncv+1: 3*ncv*ncv+4*ncv) := Holds the |
c | associated matrix |
c | representation of |
c | the invariant |
c | subspace for H. |
c | GRAND total of NCV * ( 3 * NCV + 4 ) locations. |
c %-----------------------------------------------------------%
c
ih = ipntr(5)
ritz = ipntr(6)
iq = ipntr(7)
bounds = ipntr(8)
ldh = ncv
ldq = ncv
iheig = bounds + ldh
ihbds = iheig + ldh
iuptri = ihbds + ldh
invsub = iuptri + ldh*ncv
ipntr(9) = iheig
ipntr(11) = ihbds
ipntr(12) = iuptri
ipntr(13) = invsub
wr = 1
iwev = wr + ncv
c
c %-----------------------------------------%
c | irz points to the Ritz values computed |
c | by _neigh before exiting _naup2. |
c | ibd points to the Ritz estimates |
c | computed by _neigh before exiting |
c | _naup2. |
c %-----------------------------------------%
c
irz = ipntr(14) + ncv*ncv
ibd = irz + ncv
c
c %------------------------------------%
c | RNORM is B-norm of the RESID(1:N). |
c %------------------------------------%
c
rnorm = workl(ih+2)
workl(ih+2) = zero
c
if (msglvl .gt. 2) then
call zvout(logfil, ncv, workl(irz), ndigit,
& '_neupd: Ritz values passed in from _NAUPD.')
call zvout(logfil, ncv, workl(ibd), ndigit,
& '_neupd: Ritz estimates passed in from _NAUPD.')
end if
c
if (rvec) then
c
reord = .false.
c
c %---------------------------------------------------%
c | Use the temporary bounds array to store indices |
c | These will be used to mark the select array later |
c %---------------------------------------------------%
c
do 10 j = 1,ncv
workl(bounds+j-1) = j
select(j) = .false.
10 continue
c
c %-------------------------------------%
c | Select the wanted Ritz values. |
c | Sort the Ritz values so that the |
c | wanted ones appear at the tailing |
c | NEV positions of workl(irr) and |
c | workl(iri). Move the corresponding |
c | error estimates in workl(ibd) |
c | accordingly. |
c %-------------------------------------%
c
np = ncv - nev
ishift = 0
call zngets(ishift, which , nev ,
& np , workl(irz), workl(bounds))
c
if (msglvl .gt. 2) then
call zvout (logfil, ncv, workl(irz), ndigit,
& '_neupd: Ritz values after calling _NGETS.')
call zvout (logfil, ncv, workl(bounds), ndigit,
& '_neupd: Ritz value indices after calling _NGETS.')
end if
c
c %-----------------------------------------------------%
c | Record indices of the converged wanted Ritz values |
c | Mark the select array for possible reordering |
c %-----------------------------------------------------%
c
numcnv = 0
do 11 j = 1,ncv
rtemp = max(eps23,
& dlapy2 ( dble(workl(irz+ncv-j)),
& dimag(workl(irz+ncv-j)) ))
jj = workl(bounds + ncv - j)
if (numcnv .lt. nconv .and.
& dlapy2( dble(workl(ibd+jj-1)),
& dimag(workl(ibd+jj-1)) )
& .le. tol*rtemp) then
select(jj) = .true.
numcnv = numcnv + 1
if (jj .gt. nconv) reord = .true.
endif
11 continue
c
c %-----------------------------------------------------------%
c | Check the count (numcnv) of converged Ritz values with |
c | the number (nconv) reported by dnaupd. If these two |
c | are different then there has probably been an error |
c | caused by incorrect passing of the dnaupd data. |
c %-----------------------------------------------------------%
c
if (msglvl .gt. 2) then
call ivout(logfil, 1, numcnv, ndigit,
& '_neupd: Number of specified eigenvalues')
call ivout(logfil, 1, nconv, ndigit,
& '_neupd: Number of "converged" eigenvalues')
end if
c
if (numcnv .ne. nconv) then
info = -15
go to 9000
end if
c
c %-------------------------------------------------------%
c | Call LAPACK routine zlahqr to compute the Schur form |
c | of the upper Hessenberg matrix returned by ZNAUPD. |
c | Make a copy of the upper Hessenberg matrix. |
c | Initialize the Schur vector matrix Q to the identity. |
c %-------------------------------------------------------%
c
call zcopy(ldh*ncv, workl(ih), 1, workl(iuptri), 1)
call zlaset('All', ncv, ncv ,
& zero , one, workl(invsub),
& ldq)
call zlahqr(.true., .true. , ncv ,
& 1 , ncv , workl(iuptri),
& ldh , workl(iheig) , 1 ,
& ncv , workl(invsub), ldq ,
& ierr)
call zcopy(ncv , workl(invsub+ncv-1), ldq,
& workl(ihbds), 1)
c
if (ierr .ne. 0) then
info = -8
go to 9000
end if
c
if (msglvl .gt. 1) then
call zvout (logfil, ncv, workl(iheig), ndigit,
& '_neupd: Eigenvalues of H')
call zvout (logfil, ncv, workl(ihbds), ndigit,
& '_neupd: Last row of the Schur vector matrix')
if (msglvl .gt. 3) then
call zmout (logfil , ncv, ncv ,
& workl(iuptri), ldh, ndigit,
& '_neupd: The upper triangular matrix ')
end if
end if
c
if (reord) then
c
c %-----------------------------------------------%
c | Reorder the computed upper triangular matrix. |
c %-----------------------------------------------%
c
call ztrsen('None' , 'V' , select ,
& ncv , workl(iuptri), ldh ,
& workl(invsub), ldq , workl(iheig),
& nconv2 , conds , sep ,
& workev , ncv , ierr)
c
if (nconv2 .lt. nconv) then
nconv = nconv2
end if
if (ierr .eq. 1) then
info = 1
go to 9000
end if
c
if (msglvl .gt. 2) then
call zvout (logfil, ncv, workl(iheig), ndigit,
& '_neupd: Eigenvalues of H--reordered')
if (msglvl .gt. 3) then
call zmout(logfil , ncv, ncv ,
& workl(iuptri), ldq, ndigit,
& '_neupd: Triangular matrix after re-ordering')
end if
end if
c
end if
c
c %---------------------------------------------%
c | Copy the last row of the Schur basis matrix |
c | to workl(ihbds). This vector will be used |
c | to compute the Ritz estimates of converged |
c | Ritz values. |
c %---------------------------------------------%
c
call zcopy(ncv , workl(invsub+ncv-1), ldq,
& workl(ihbds), 1)
c
c %--------------------------------------------%
c | Place the computed eigenvalues of H into D |
c | if a spectral transformation was not used. |
c %--------------------------------------------%
c
if (type .eq. 'REGULR') then
call zcopy(nconv, workl(iheig), 1, d, 1)
end if
c
c %----------------------------------------------------------%
c | Compute the QR factorization of the matrix representing |
c | the wanted invariant subspace located in the first NCONV |
c | columns of workl(invsub,ldq). |
c %----------------------------------------------------------%
c
call zgeqr2(ncv , nconv , workl(invsub),
& ldq , workev, workev(ncv+1),
& ierr)
c
c %--------------------------------------------------------%
c | * Postmultiply V by Q using zunm2r. |
c | * Copy the first NCONV columns of VQ into Z. |
c | * Postmultiply Z by R. |
c | The N by NCONV matrix Z is now a matrix representation |
c | of the approximate invariant subspace associated with |
c | the Ritz values in workl(iheig). The first NCONV |
c | columns of V are now approximate Schur vectors |
c | associated with the upper triangular matrix of order |
c | NCONV in workl(iuptri). |
c %--------------------------------------------------------%
c
call zunm2r('Right', 'Notranspose', n ,
& ncv , nconv , workl(invsub),
& ldq , workev , v ,
& ldv , workd(n+1) , ierr)
call zlacpy('All', n, nconv, v, ldv, z, ldz)
c
do 20 j=1, nconv
c
c %---------------------------------------------------%
c | Perform both a column and row scaling if the |
c | diagonal element of workl(invsub,ldq) is negative |
c | I'm lazy and don't take advantage of the upper |
c | triangular form of workl(iuptri,ldq). |
c | Note that since Q is orthogonal, R is a diagonal |
c | matrix consisting of plus or minus ones. |
c %---------------------------------------------------%
c
if ( dble( workl(invsub+(j-1)*ldq+j-1) ) .lt.
& dble(zero) ) then
call zscal(nconv, -one, workl(iuptri+j-1), ldq)
call zscal(nconv, -one, workl(iuptri+(j-1)*ldq), 1)
end if
c
20 continue
c
if (howmny .eq. 'A') then
c
c %--------------------------------------------%
c | Compute the NCONV wanted eigenvectors of T |
c | located in workl(iuptri,ldq). |
c %--------------------------------------------%
c
do 30 j=1, ncv
if (j .le. nconv) then
select(j) = .true.
else
select(j) = .false.
end if
30 continue
c
call ztrevc('Right', 'Select' , select ,
& ncv , workl(iuptri), ldq ,
& vl , 1 , workl(invsub),
& ldq , ncv , outncv ,
& workev , rwork , ierr)
c
if (ierr .ne. 0) then
info = -9
go to 9000
end if
c
c %------------------------------------------------%
c | Scale the returning eigenvectors so that their |
c | Euclidean norms are all one. LAPACK subroutine |
c | ztrevc returns each eigenvector normalized so |
c | that the element of largest magnitude has |
c | magnitude 1. |
c %------------------------------------------------%
c
do 40 j=1, nconv
rtemp = dznrm2(ncv, workl(invsub+(j-1)*ldq), 1)
rtemp = dble(one) / rtemp
call zdscal ( ncv, rtemp,
& workl(invsub+(j-1)*ldq), 1 )
c
c %------------------------------------------%
c | Ritz estimates can be obtained by taking |
c | the inner product of the last row of the |
c | Schur basis of H with eigenvectors of T. |
c | Note that the eigenvector matrix of T is |
c | upper triangular, thus the length of the |
c | inner product can be set to j. |
c %------------------------------------------%
c
workev(j) = wzdotc(j, workl(ihbds), 1,
& workl(invsub+(j-1)*ldq), 1)
40 continue
c
if (msglvl .gt. 2) then
call zcopy(nconv, workl(invsub+ncv-1), ldq,
& workl(ihbds), 1)
call zvout (logfil, nconv, workl(ihbds), ndigit,
& '_neupd: Last row of the eigenvector matrix for T')
if (msglvl .gt. 3) then
call zmout(logfil , ncv, ncv ,
& workl(invsub), ldq, ndigit,
& '_neupd: The eigenvector matrix for T')
end if
end if
c
c %---------------------------------------%
c | Copy Ritz estimates into workl(ihbds) |
c %---------------------------------------%
c
call zcopy(nconv, workev, 1, workl(ihbds), 1)
c
c %----------------------------------------------%
c | The eigenvector matrix Q of T is triangular. |
c | Form Z*Q. |
c %----------------------------------------------%
c
call ztrmm('Right' , 'Upper' , 'No transpose',
& 'Non-unit', n , nconv ,
& one , workl(invsub), ldq ,
& z , ldz)
end if
c
else
c
c %--------------------------------------------------%
c | An approximate invariant subspace is not needed. |
c | Place the Ritz values computed ZNAUPD into D. |
c %--------------------------------------------------%
c
call zcopy(nconv, workl(ritz), 1, d, 1)
call zcopy(nconv, workl(ritz), 1, workl(iheig), 1)
call zcopy(nconv, workl(bounds), 1, workl(ihbds), 1)
c
end if
c
c %------------------------------------------------%
c | Transform the Ritz values and possibly vectors |
c | and corresponding error bounds of OP to those |
c | of A*x = lambda*B*x. |
c %------------------------------------------------%
c
if (type .eq. 'REGULR') then
c
if (rvec)
& call zscal(ncv, rnorm, workl(ihbds), 1)
c
else
c
c %---------------------------------------%
c | A spectral transformation was used. |
c | * Determine the Ritz estimates of the |
c | Ritz values in the original system. |
c %---------------------------------------%
c
if (rvec)
& call zscal(ncv, rnorm, workl(ihbds), 1)
c
do 50 k=1, ncv
temp = workl(iheig+k-1)
workl(ihbds+k-1) = workl(ihbds+k-1) / temp / temp
50 continue
c
end if
c
c %-----------------------------------------------------------%
c | * Transform the Ritz values back to the original system. |
c | For TYPE = 'SHIFTI' the transformation is |
c | lambda = 1/theta + sigma |
c | NOTES: |
c | *The Ritz vectors are not affected by the transformation. |
c %-----------------------------------------------------------%
c
if (type .eq. 'SHIFTI') then
do 60 k=1, nconv
d(k) = one / workl(iheig+k-1) + sigma
60 continue
end if
c
if (type .ne. 'REGULR' .and. msglvl .gt. 1) then
call zvout (logfil, nconv, d, ndigit,
& '_neupd: Untransformed Ritz values.')
call zvout (logfil, nconv, workl(ihbds), ndigit,
& '_neupd: Ritz estimates of the untransformed Ritz values.')
else if ( msglvl .gt. 1) then
call zvout (logfil, nconv, d, ndigit,
& '_neupd: Converged Ritz values.')
call zvout (logfil, nconv, workl(ihbds), ndigit,
& '_neupd: Associated Ritz estimates.')
end if
c
c %-------------------------------------------------%
c | Eigenvector Purification step. Formally perform |
c | one of inverse subspace iteration. Only used |
c | for MODE = 3. See reference 3. |
c %-------------------------------------------------%
c
if (rvec .and. howmny .eq. 'A' .and. type .eq. 'SHIFTI') then
c
c %------------------------------------------------%
c | Purify the computed Ritz vectors by adding a |
c | little bit of the residual vector: |
c | T |
c | resid(:)*( e s ) / theta |
c | NCV |
c | where H s = s theta. |
c %------------------------------------------------%
c
do 100 j=1, nconv
if (workl(iheig+j-1) .ne. zero) then
workev(j) = workl(invsub+(j-1)*ldq+ncv-1) /
& workl(iheig+j-1)
endif
100 continue
c %---------------------------------------%
c | Perform a rank one update to Z and |
c | purify all the Ritz vectors together. |
c %---------------------------------------%
c
call zgeru (n, nconv, one, resid, 1, workev, 1, z, ldz)
c
end if
c
9000 continue
c
return
c
c %---------------%
c | End of zneupd|
c %---------------%
c
end
|