1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
c\BeginDoc
c
c\Name: zsortc
c
c\Description:
c Sorts the Complex*16 array in X into the order
c specified by WHICH and optionally applies the permutation to the
c Double precision array Y.
c
c\Usage:
c call zsortc
c ( WHICH, APPLY, N, X, Y )
c
c\Arguments
c WHICH Character*2. (Input)
c 'LM' -> sort X into increasing order of magnitude.
c 'SM' -> sort X into decreasing order of magnitude.
c 'LR' -> sort X with real(X) in increasing algebraic order
c 'SR' -> sort X with real(X) in decreasing algebraic order
c 'LI' -> sort X with imag(X) in increasing algebraic order
c 'SI' -> sort X with imag(X) in decreasing algebraic order
c
c APPLY Logical. (Input)
c APPLY = .TRUE. -> apply the sorted order to array Y.
c APPLY = .FALSE. -> do not apply the sorted order to array Y.
c
c N Integer. (INPUT)
c Size of the arrays.
c
c X Complex*16 array of length N. (INPUT/OUTPUT)
c This is the array to be sorted.
c
c Y Complex*16 array of length N. (INPUT/OUTPUT)
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Routines called:
c dlapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c Adapted from the sort routine in LANSO.
c
c\SCCS Information: @(#)
c FILE: sortc.F SID: 2.2 DATE OF SID: 4/20/96 RELEASE: 2
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine zsortc (which, apply, n, x, y)
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
character*2 which
logical apply
integer n
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
Complex*16
& x(0:n-1), y(0:n-1)
c
c %---------------%
c | Local Scalars |
c %---------------%
c
integer i, igap, j
Complex*16
& temp
Double precision
& temp1, temp2
c
c %--------------------%
c | External functions |
c %--------------------%
c
Double precision
& dlapy2
c
c %--------------------%
c | Intrinsic Functions |
c %--------------------%
Intrinsic
& dble, dimag
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
igap = n / 2
c
if (which .eq. 'LM') then
c
c %--------------------------------------------%
c | Sort X into increasing order of magnitude. |
c %--------------------------------------------%
c
10 continue
if (igap .eq. 0) go to 9000
c
do 30 i = igap, n-1
j = i-igap
20 continue
c
if (j.lt.0) go to 30
c
temp1 = dlapy2(dble(x(j)),dimag(x(j)))
temp2 = dlapy2(dble(x(j+igap)),dimag(x(j+igap)))
c
if (temp1.gt.temp2) then
temp = x(j)
x(j) = x(j+igap)
x(j+igap) = temp
c
if (apply) then
temp = y(j)
y(j) = y(j+igap)
y(j+igap) = temp
end if
else
go to 30
end if
j = j-igap
go to 20
30 continue
igap = igap / 2
go to 10
c
else if (which .eq. 'SM') then
c
c %--------------------------------------------%
c | Sort X into decreasing order of magnitude. |
c %--------------------------------------------%
c
40 continue
if (igap .eq. 0) go to 9000
c
do 60 i = igap, n-1
j = i-igap
50 continue
c
if (j .lt. 0) go to 60
c
temp1 = dlapy2(dble(x(j)),dimag(x(j)))
temp2 = dlapy2(dble(x(j+igap)),dimag(x(j+igap)))
c
if (temp1.lt.temp2) then
temp = x(j)
x(j) = x(j+igap)
x(j+igap) = temp
c
if (apply) then
temp = y(j)
y(j) = y(j+igap)
y(j+igap) = temp
end if
else
go to 60
endif
j = j-igap
go to 50
60 continue
igap = igap / 2
go to 40
c
else if (which .eq. 'LR') then
c
c %------------------------------------------------%
c | Sort XREAL into increasing order of algebraic. |
c %------------------------------------------------%
c
70 continue
if (igap .eq. 0) go to 9000
c
do 90 i = igap, n-1
j = i-igap
80 continue
c
if (j.lt.0) go to 90
c
if (dble(x(j)).gt.dble(x(j+igap))) then
temp = x(j)
x(j) = x(j+igap)
x(j+igap) = temp
c
if (apply) then
temp = y(j)
y(j) = y(j+igap)
y(j+igap) = temp
end if
else
go to 90
endif
j = j-igap
go to 80
90 continue
igap = igap / 2
go to 70
c
else if (which .eq. 'SR') then
c
c %------------------------------------------------%
c | Sort XREAL into decreasing order of algebraic. |
c %------------------------------------------------%
c
100 continue
if (igap .eq. 0) go to 9000
do 120 i = igap, n-1
j = i-igap
110 continue
c
if (j.lt.0) go to 120
c
if (dble(x(j)).lt.dble(x(j+igap))) then
temp = x(j)
x(j) = x(j+igap)
x(j+igap) = temp
c
if (apply) then
temp = y(j)
y(j) = y(j+igap)
y(j+igap) = temp
end if
else
go to 120
endif
j = j-igap
go to 110
120 continue
igap = igap / 2
go to 100
c
else if (which .eq. 'LI') then
c
c %--------------------------------------------%
c | Sort XIMAG into increasing algebraic order |
c %--------------------------------------------%
c
130 continue
if (igap .eq. 0) go to 9000
do 150 i = igap, n-1
j = i-igap
140 continue
c
if (j.lt.0) go to 150
c
if (dimag(x(j)).gt.dimag(x(j+igap))) then
temp = x(j)
x(j) = x(j+igap)
x(j+igap) = temp
c
if (apply) then
temp = y(j)
y(j) = y(j+igap)
y(j+igap) = temp
end if
else
go to 150
endif
j = j-igap
go to 140
150 continue
igap = igap / 2
go to 130
c
else if (which .eq. 'SI') then
c
c %---------------------------------------------%
c | Sort XIMAG into decreasing algebraic order |
c %---------------------------------------------%
c
160 continue
if (igap .eq. 0) go to 9000
do 180 i = igap, n-1
j = i-igap
170 continue
c
if (j.lt.0) go to 180
c
if (dimag(x(j)).lt.dimag(x(j+igap))) then
temp = x(j)
x(j) = x(j+igap)
x(j+igap) = temp
c
if (apply) then
temp = y(j)
y(j) = y(j+igap)
y(j+igap) = temp
end if
else
go to 180
endif
j = j-igap
go to 170
180 continue
igap = igap / 2
go to 160
end if
c
9000 continue
return
c
c %---------------%
c | End of zsortc |
c %---------------%
c
end
|