1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
"""
Pure SciPy implementation of Locally Optimal Block Preconditioned Conjugate
Gradient Method (LOBPCG), see
http://www-math.cudenver.edu/~aknyazev/software/BLOPEX/
License: BSD
Authors: Robert Cimrman, Andrew Knyazev
Examples in tests directory contributed by Nils Wagner.
"""
from __future__ import division, print_function, absolute_import
import sys
import numpy as np
from numpy.testing import assert_allclose
from scipy._lib.six import xrange
from scipy.linalg import inv, eigh, cho_factor, cho_solve, cholesky
from scipy.sparse.linalg import aslinearoperator, LinearOperator
__all__ = ['lobpcg']
@np.deprecate(new_name='eigh')
def symeig(mtxA, mtxB=None, select=None):
return eigh(mtxA, b=mtxB, eigvals=select)
def pause():
# Used only when verbosity level > 10.
input()
def save(ar, fileName):
# Used only when verbosity level > 10.
from numpy import savetxt
savetxt(fileName, ar, precision=8)
def _assert_symmetric(M, rtol=1e-5, atol=1e-8):
assert_allclose(M.T, M, rtol=rtol, atol=atol)
##
# 21.05.2007, c
def as2d(ar):
"""
If the input array is 2D return it, if it is 1D, append a dimension,
making it a column vector.
"""
if ar.ndim == 2:
return ar
else: # Assume 1!
aux = np.array(ar, copy=False)
aux.shape = (ar.shape[0], 1)
return aux
def _makeOperator(operatorInput, expectedShape):
"""Takes a dense numpy array or a sparse matrix or
a function and makes an operator performing matrix * blockvector
products.
Examples
--------
>>> A = _makeOperator( arrayA, (n, n) )
>>> vectorB = A( vectorX )
"""
if operatorInput is None:
def ident(x):
return x
operator = LinearOperator(expectedShape, ident, matmat=ident)
else:
operator = aslinearoperator(operatorInput)
if operator.shape != expectedShape:
raise ValueError('operator has invalid shape')
return operator
def _applyConstraints(blockVectorV, factYBY, blockVectorBY, blockVectorY):
"""Changes blockVectorV in place."""
gramYBV = np.dot(blockVectorBY.T, blockVectorV)
tmp = cho_solve(factYBY, gramYBV)
blockVectorV -= np.dot(blockVectorY, tmp)
def _b_orthonormalize(B, blockVectorV, blockVectorBV=None, retInvR=False):
if blockVectorBV is None:
if B is not None:
blockVectorBV = B(blockVectorV)
else:
blockVectorBV = blockVectorV # Shared data!!!
gramVBV = np.dot(blockVectorV.T, blockVectorBV)
gramVBV = cholesky(gramVBV)
gramVBV = inv(gramVBV, overwrite_a=True)
# gramVBV is now R^{-1}.
blockVectorV = np.dot(blockVectorV, gramVBV)
if B is not None:
blockVectorBV = np.dot(blockVectorBV, gramVBV)
if retInvR:
return blockVectorV, blockVectorBV, gramVBV
else:
return blockVectorV, blockVectorBV
def lobpcg(A, X,
B=None, M=None, Y=None,
tol=None, maxiter=20,
largest=True, verbosityLevel=0,
retLambdaHistory=False, retResidualNormsHistory=False):
"""Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)
LOBPCG is a preconditioned eigensolver for large symmetric positive
definite (SPD) generalized eigenproblems.
Parameters
----------
A : {sparse matrix, dense matrix, LinearOperator}
The symmetric linear operator of the problem, usually a
sparse matrix. Often called the "stiffness matrix".
X : array_like
Initial approximation to the k eigenvectors. If A has
shape=(n,n) then X should have shape shape=(n,k).
B : {dense matrix, sparse matrix, LinearOperator}, optional
the right hand side operator in a generalized eigenproblem.
by default, B = Identity
often called the "mass matrix"
M : {dense matrix, sparse matrix, LinearOperator}, optional
preconditioner to A; by default M = Identity
M should approximate the inverse of A
Y : array_like, optional
n-by-sizeY matrix of constraints, sizeY < n
The iterations will be performed in the B-orthogonal complement
of the column-space of Y. Y must be full rank.
Returns
-------
w : array
Array of k eigenvalues
v : array
An array of k eigenvectors. V has the same shape as X.
Other Parameters
----------------
tol : scalar, optional
Solver tolerance (stopping criterion)
by default: tol=n*sqrt(eps)
maxiter : integer, optional
maximum number of iterations
by default: maxiter=min(n,20)
largest : bool, optional
when True, solve for the largest eigenvalues, otherwise the smallest
verbosityLevel : integer, optional
controls solver output. default: verbosityLevel = 0.
retLambdaHistory : boolean, optional
whether to return eigenvalue history
retResidualNormsHistory : boolean, optional
whether to return history of residual norms
Examples
--------
Solve A x = lambda B x with constraints and preconditioning.
>>> from scipy.sparse import spdiags, issparse
>>> from scipy.sparse.linalg import lobpcg, LinearOperator
>>> n = 100
>>> vals = [np.arange(n, dtype=np.float64) + 1]
>>> A = spdiags(vals, 0, n, n)
>>> A.toarray()
array([[ 1., 0., 0., ..., 0., 0., 0.],
[ 0., 2., 0., ..., 0., 0., 0.],
[ 0., 0., 3., ..., 0., 0., 0.],
...,
[ 0., 0., 0., ..., 98., 0., 0.],
[ 0., 0., 0., ..., 0., 99., 0.],
[ 0., 0., 0., ..., 0., 0., 100.]])
Constraints.
>>> Y = np.eye(n, 3)
Initial guess for eigenvectors, should have linearly independent
columns. Column dimension = number of requested eigenvalues.
>>> X = np.random.rand(n, 3)
Preconditioner -- inverse of A (as an abstract linear operator).
>>> invA = spdiags([1./vals[0]], 0, n, n)
>>> def precond( x ):
... return invA * x
>>> M = LinearOperator(matvec=precond, shape=(n, n), dtype=float)
Here, ``invA`` could of course have been used directly as a preconditioner.
Let us then solve the problem:
>>> eigs, vecs = lobpcg(A, X, Y=Y, M=M, tol=1e-4, maxiter=40, largest=False)
>>> eigs
array([ 4., 5., 6.])
Note that the vectors passed in Y are the eigenvectors of the 3 smallest
eigenvalues. The results returned are orthogonal to those.
Notes
-----
If both retLambdaHistory and retResidualNormsHistory are True,
the return tuple has the following format
(lambda, V, lambda history, residual norms history).
In the following ``n`` denotes the matrix size and ``m`` the number
of required eigenvalues (smallest or largest).
The LOBPCG code internally solves eigenproblems of the size 3``m`` on every
iteration by calling the "standard" dense eigensolver, so if ``m`` is not
small enough compared to ``n``, it does not make sense to call the LOBPCG
code, but rather one should use the "standard" eigensolver,
e.g. numpy or scipy function in this case.
If one calls the LOBPCG algorithm for 5``m``>``n``,
it will most likely break internally, so the code tries to call the standard
function instead.
It is not that n should be large for the LOBPCG to work, but rather the
ratio ``n``/``m`` should be large. It you call the LOBPCG code with ``m``=1
and ``n``=10, it should work, though ``n`` is small. The method is intended
for extremely large ``n``/``m``, see e.g., reference [28] in
http://arxiv.org/abs/0705.2626
The convergence speed depends basically on two factors:
1. How well relatively separated the seeking eigenvalues are
from the rest of the eigenvalues.
One can try to vary ``m`` to make this better.
2. How well conditioned the problem is. This can be changed by using proper
preconditioning. For example, a rod vibration test problem (under tests
directory) is ill-conditioned for large ``n``, so convergence will be
slow, unless efficient preconditioning is used.
For this specific problem, a good simple preconditioner function would
be a linear solve for A, which is easy to code since A is tridiagonal.
*Acknowledgements*
lobpcg.py code was written by Robert Cimrman.
Many thanks belong to Andrew Knyazev, the author of the algorithm,
for lots of advice and support.
References
----------
.. [1] A. V. Knyazev (2001),
Toward the Optimal Preconditioned Eigensolver: Locally Optimal
Block Preconditioned Conjugate Gradient Method.
SIAM Journal on Scientific Computing 23, no. 2,
pp. 517-541. http://dx.doi.org/10.1137/S1064827500366124
.. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007),
Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX)
in hypre and PETSc. http://arxiv.org/abs/0705.2626
.. [3] A. V. Knyazev's C and MATLAB implementations:
http://www-math.cudenver.edu/~aknyazev/software/BLOPEX/
"""
blockVectorX = X
blockVectorY = Y
residualTolerance = tol
maxIterations = maxiter
if blockVectorY is not None:
sizeY = blockVectorY.shape[1]
else:
sizeY = 0
# Block size.
if len(blockVectorX.shape) != 2:
raise ValueError('expected rank-2 array for argument X')
n, sizeX = blockVectorX.shape
if sizeX > n:
raise ValueError('X column dimension exceeds the row dimension')
A = _makeOperator(A, (n,n))
B = _makeOperator(B, (n,n))
M = _makeOperator(M, (n,n))
if (n - sizeY) < (5 * sizeX):
# warn('The problem size is small compared to the block size.' \
# ' Using dense eigensolver instead of LOBPCG.')
if blockVectorY is not None:
raise NotImplementedError('The dense eigensolver '
'does not support constraints.')
# Define the closed range of indices of eigenvalues to return.
if largest:
eigvals = (n - sizeX, n-1)
else:
eigvals = (0, sizeX-1)
A_dense = A(np.eye(n))
B_dense = None if B is None else B(np.eye(n))
return eigh(A_dense, B_dense, eigvals=eigvals, check_finite=False)
if residualTolerance is None:
residualTolerance = np.sqrt(1e-15) * n
maxIterations = min(n, maxIterations)
if verbosityLevel:
aux = "Solving "
if B is None:
aux += "standard"
else:
aux += "generalized"
aux += " eigenvalue problem with"
if M is None:
aux += "out"
aux += " preconditioning\n\n"
aux += "matrix size %d\n" % n
aux += "block size %d\n\n" % sizeX
if blockVectorY is None:
aux += "No constraints\n\n"
else:
if sizeY > 1:
aux += "%d constraints\n\n" % sizeY
else:
aux += "%d constraint\n\n" % sizeY
print(aux)
##
# Apply constraints to X.
if blockVectorY is not None:
if B is not None:
blockVectorBY = B(blockVectorY)
else:
blockVectorBY = blockVectorY
# gramYBY is a dense array.
gramYBY = np.dot(blockVectorY.T, blockVectorBY)
try:
# gramYBY is a Cholesky factor from now on...
gramYBY = cho_factor(gramYBY)
except:
raise ValueError('cannot handle linearly dependent constraints')
_applyConstraints(blockVectorX, gramYBY, blockVectorBY, blockVectorY)
##
# B-orthonormalize X.
blockVectorX, blockVectorBX = _b_orthonormalize(B, blockVectorX)
##
# Compute the initial Ritz vectors: solve the eigenproblem.
blockVectorAX = A(blockVectorX)
gramXAX = np.dot(blockVectorX.T, blockVectorAX)
_lambda, eigBlockVector = eigh(gramXAX, check_finite=False)
ii = np.argsort(_lambda)[:sizeX]
if largest:
ii = ii[::-1]
_lambda = _lambda[ii]
eigBlockVector = np.asarray(eigBlockVector[:,ii])
blockVectorX = np.dot(blockVectorX, eigBlockVector)
blockVectorAX = np.dot(blockVectorAX, eigBlockVector)
if B is not None:
blockVectorBX = np.dot(blockVectorBX, eigBlockVector)
##
# Active index set.
activeMask = np.ones((sizeX,), dtype=bool)
lambdaHistory = [_lambda]
residualNormsHistory = []
previousBlockSize = sizeX
ident = np.eye(sizeX, dtype=A.dtype)
ident0 = np.eye(sizeX, dtype=A.dtype)
##
# Main iteration loop.
blockVectorP = None # set during iteration
blockVectorAP = None
blockVectorBP = None
for iterationNumber in xrange(maxIterations):
if verbosityLevel > 0:
print('iteration %d' % iterationNumber)
aux = blockVectorBX * _lambda[np.newaxis,:]
blockVectorR = blockVectorAX - aux
aux = np.sum(blockVectorR.conjugate() * blockVectorR, 0)
residualNorms = np.sqrt(aux)
residualNormsHistory.append(residualNorms)
ii = np.where(residualNorms > residualTolerance, True, False)
activeMask = activeMask & ii
if verbosityLevel > 2:
print(activeMask)
currentBlockSize = activeMask.sum()
if currentBlockSize != previousBlockSize:
previousBlockSize = currentBlockSize
ident = np.eye(currentBlockSize, dtype=A.dtype)
if currentBlockSize == 0:
break
if verbosityLevel > 0:
print('current block size:', currentBlockSize)
print('eigenvalue:', _lambda)
print('residual norms:', residualNorms)
if verbosityLevel > 10:
print(eigBlockVector)
activeBlockVectorR = as2d(blockVectorR[:,activeMask])
if iterationNumber > 0:
activeBlockVectorP = as2d(blockVectorP[:,activeMask])
activeBlockVectorAP = as2d(blockVectorAP[:,activeMask])
activeBlockVectorBP = as2d(blockVectorBP[:,activeMask])
if M is not None:
# Apply preconditioner T to the active residuals.
activeBlockVectorR = M(activeBlockVectorR)
##
# Apply constraints to the preconditioned residuals.
if blockVectorY is not None:
_applyConstraints(activeBlockVectorR,
gramYBY, blockVectorBY, blockVectorY)
##
# B-orthonormalize the preconditioned residuals.
aux = _b_orthonormalize(B, activeBlockVectorR)
activeBlockVectorR, activeBlockVectorBR = aux
activeBlockVectorAR = A(activeBlockVectorR)
if iterationNumber > 0:
aux = _b_orthonormalize(B, activeBlockVectorP,
activeBlockVectorBP, retInvR=True)
activeBlockVectorP, activeBlockVectorBP, invR = aux
activeBlockVectorAP = np.dot(activeBlockVectorAP, invR)
##
# Perform the Rayleigh Ritz Procedure:
# Compute symmetric Gram matrices:
xaw = np.dot(blockVectorX.T, activeBlockVectorAR)
waw = np.dot(activeBlockVectorR.T, activeBlockVectorAR)
xbw = np.dot(blockVectorX.T, activeBlockVectorBR)
if iterationNumber > 0:
xap = np.dot(blockVectorX.T, activeBlockVectorAP)
wap = np.dot(activeBlockVectorR.T, activeBlockVectorAP)
pap = np.dot(activeBlockVectorP.T, activeBlockVectorAP)
xbp = np.dot(blockVectorX.T, activeBlockVectorBP)
wbp = np.dot(activeBlockVectorR.T, activeBlockVectorBP)
gramA = np.bmat([[np.diag(_lambda), xaw, xap],
[xaw.T, waw, wap],
[xap.T, wap.T, pap]])
gramB = np.bmat([[ident0, xbw, xbp],
[xbw.T, ident, wbp],
[xbp.T, wbp.T, ident]])
else:
gramA = np.bmat([[np.diag(_lambda), xaw],
[xaw.T, waw]])
gramB = np.bmat([[ident0, xbw],
[xbw.T, ident]])
_assert_symmetric(gramA)
_assert_symmetric(gramB)
if verbosityLevel > 10:
save(gramA, 'gramA')
save(gramB, 'gramB')
# Solve the generalized eigenvalue problem.
_lambda, eigBlockVector = eigh(gramA, gramB, check_finite=False)
ii = np.argsort(_lambda)[:sizeX]
if largest:
ii = ii[::-1]
if verbosityLevel > 10:
print(ii)
_lambda = _lambda[ii].astype(np.float64)
eigBlockVector = np.asarray(eigBlockVector[:,ii].astype(np.float64))
lambdaHistory.append(_lambda)
if verbosityLevel > 10:
print('lambda:', _lambda)
## # Normalize eigenvectors!
## aux = np.sum( eigBlockVector.conjugate() * eigBlockVector, 0 )
## eigVecNorms = np.sqrt( aux )
## eigBlockVector = eigBlockVector / eigVecNorms[np.newaxis,:]
# eigBlockVector, aux = _b_orthonormalize( B, eigBlockVector )
if verbosityLevel > 10:
print(eigBlockVector)
pause()
##
# Compute Ritz vectors.
if iterationNumber > 0:
eigBlockVectorX = eigBlockVector[:sizeX]
eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize]
eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:]
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
pp += np.dot(activeBlockVectorP, eigBlockVectorP)
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
app += np.dot(activeBlockVectorAP, eigBlockVectorP)
bpp = np.dot(activeBlockVectorBR, eigBlockVectorR)
bpp += np.dot(activeBlockVectorBP, eigBlockVectorP)
else:
eigBlockVectorX = eigBlockVector[:sizeX]
eigBlockVectorR = eigBlockVector[sizeX:]
pp = np.dot(activeBlockVectorR, eigBlockVectorR)
app = np.dot(activeBlockVectorAR, eigBlockVectorR)
bpp = np.dot(activeBlockVectorBR, eigBlockVectorR)
if verbosityLevel > 10:
print(pp)
print(app)
print(bpp)
pause()
blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp
blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app
blockVectorBX = np.dot(blockVectorBX, eigBlockVectorX) + bpp
blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp
aux = blockVectorBX * _lambda[np.newaxis,:]
blockVectorR = blockVectorAX - aux
aux = np.sum(blockVectorR.conjugate() * blockVectorR, 0)
residualNorms = np.sqrt(aux)
if verbosityLevel > 0:
print('final eigenvalue:', _lambda)
print('final residual norms:', residualNorms)
if retLambdaHistory:
if retResidualNormsHistory:
return _lambda, blockVectorX, lambdaHistory, residualNormsHistory
else:
return _lambda, blockVectorX, lambdaHistory
else:
if retResidualNormsHistory:
return _lambda, blockVectorX, residualNormsHistory
else:
return _lambda, blockVectorX
|