File: lobpcg.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (573 lines) | stat: -rw-r--r-- 19,348 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
"""
Pure SciPy implementation of Locally Optimal Block Preconditioned Conjugate
Gradient Method (LOBPCG), see
http://www-math.cudenver.edu/~aknyazev/software/BLOPEX/

License: BSD

Authors: Robert Cimrman, Andrew Knyazev

Examples in tests directory contributed by Nils Wagner.
"""

from __future__ import division, print_function, absolute_import

import sys

import numpy as np
from numpy.testing import assert_allclose
from scipy._lib.six import xrange
from scipy.linalg import inv, eigh, cho_factor, cho_solve, cholesky
from scipy.sparse.linalg import aslinearoperator, LinearOperator

__all__ = ['lobpcg']


@np.deprecate(new_name='eigh')
def symeig(mtxA, mtxB=None, select=None):
    return eigh(mtxA, b=mtxB, eigvals=select)


def pause():
    # Used only when verbosity level > 10.
    input()


def save(ar, fileName):
    # Used only when verbosity level > 10.
    from numpy import savetxt
    savetxt(fileName, ar, precision=8)


def _assert_symmetric(M, rtol=1e-5, atol=1e-8):
    assert_allclose(M.T, M, rtol=rtol, atol=atol)


##
# 21.05.2007, c


def as2d(ar):
    """
    If the input array is 2D return it, if it is 1D, append a dimension,
    making it a column vector.
    """
    if ar.ndim == 2:
        return ar
    else:  # Assume 1!
        aux = np.array(ar, copy=False)
        aux.shape = (ar.shape[0], 1)
        return aux


def _makeOperator(operatorInput, expectedShape):
    """Takes a dense numpy array or a sparse matrix or
    a function and makes an operator performing matrix * blockvector
    products.

    Examples
    --------
    >>> A = _makeOperator( arrayA, (n, n) )
    >>> vectorB = A( vectorX )

    """
    if operatorInput is None:
        def ident(x):
            return x
        operator = LinearOperator(expectedShape, ident, matmat=ident)
    else:
        operator = aslinearoperator(operatorInput)

    if operator.shape != expectedShape:
        raise ValueError('operator has invalid shape')

    return operator


def _applyConstraints(blockVectorV, factYBY, blockVectorBY, blockVectorY):
    """Changes blockVectorV in place."""
    gramYBV = np.dot(blockVectorBY.T, blockVectorV)
    tmp = cho_solve(factYBY, gramYBV)
    blockVectorV -= np.dot(blockVectorY, tmp)


def _b_orthonormalize(B, blockVectorV, blockVectorBV=None, retInvR=False):
    if blockVectorBV is None:
        if B is not None:
            blockVectorBV = B(blockVectorV)
        else:
            blockVectorBV = blockVectorV  # Shared data!!!
    gramVBV = np.dot(blockVectorV.T, blockVectorBV)
    gramVBV = cholesky(gramVBV)
    gramVBV = inv(gramVBV, overwrite_a=True)
    # gramVBV is now R^{-1}.
    blockVectorV = np.dot(blockVectorV, gramVBV)
    if B is not None:
        blockVectorBV = np.dot(blockVectorBV, gramVBV)

    if retInvR:
        return blockVectorV, blockVectorBV, gramVBV
    else:
        return blockVectorV, blockVectorBV


def lobpcg(A, X,
            B=None, M=None, Y=None,
            tol=None, maxiter=20,
            largest=True, verbosityLevel=0,
            retLambdaHistory=False, retResidualNormsHistory=False):
    """Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)

    LOBPCG is a preconditioned eigensolver for large symmetric positive
    definite (SPD) generalized eigenproblems.

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The symmetric linear operator of the problem, usually a
        sparse matrix.  Often called the "stiffness matrix".
    X : array_like
        Initial approximation to the k eigenvectors. If A has
        shape=(n,n) then X should have shape shape=(n,k).
    B : {dense matrix, sparse matrix, LinearOperator}, optional
        the right hand side operator in a generalized eigenproblem.
        by default, B = Identity
        often called the "mass matrix"
    M : {dense matrix, sparse matrix, LinearOperator}, optional
        preconditioner to A; by default M = Identity
        M should approximate the inverse of A
    Y : array_like, optional
        n-by-sizeY matrix of constraints, sizeY < n
        The iterations will be performed in the B-orthogonal complement
        of the column-space of Y. Y must be full rank.

    Returns
    -------
    w : array
        Array of k eigenvalues
    v : array
        An array of k eigenvectors.  V has the same shape as X.

    Other Parameters
    ----------------
    tol : scalar, optional
        Solver tolerance (stopping criterion)
        by default: tol=n*sqrt(eps)
    maxiter : integer, optional
        maximum number of iterations
        by default: maxiter=min(n,20)
    largest : bool, optional
        when True, solve for the largest eigenvalues, otherwise the smallest
    verbosityLevel : integer, optional
        controls solver output.  default: verbosityLevel = 0.
    retLambdaHistory : boolean, optional
        whether to return eigenvalue history
    retResidualNormsHistory : boolean, optional
        whether to return history of residual norms

    Examples
    --------

    Solve A x = lambda B x with constraints and preconditioning.

    >>> from scipy.sparse import spdiags, issparse
    >>> from scipy.sparse.linalg import lobpcg, LinearOperator
    >>> n = 100
    >>> vals = [np.arange(n, dtype=np.float64) + 1]
    >>> A = spdiags(vals, 0, n, n)
    >>> A.toarray()
    array([[   1.,    0.,    0., ...,    0.,    0.,    0.],
           [   0.,    2.,    0., ...,    0.,    0.,    0.],
           [   0.,    0.,    3., ...,    0.,    0.,    0.],
           ..., 
           [   0.,    0.,    0., ...,   98.,    0.,    0.],
           [   0.,    0.,    0., ...,    0.,   99.,    0.],
           [   0.,    0.,    0., ...,    0.,    0.,  100.]])

    Constraints.

    >>> Y = np.eye(n, 3)

    Initial guess for eigenvectors, should have linearly independent
    columns. Column dimension = number of requested eigenvalues.

    >>> X = np.random.rand(n, 3)

    Preconditioner -- inverse of A (as an abstract linear operator).

    >>> invA = spdiags([1./vals[0]], 0, n, n)
    >>> def precond( x ):
    ...     return invA  * x
    >>> M = LinearOperator(matvec=precond, shape=(n, n), dtype=float)

    Here, ``invA`` could of course have been used directly as a preconditioner.
    Let us then solve the problem:

    >>> eigs, vecs = lobpcg(A, X, Y=Y, M=M, tol=1e-4, maxiter=40, largest=False)
    >>> eigs
    array([ 4.,  5.,  6.])

    Note that the vectors passed in Y are the eigenvectors of the 3 smallest
    eigenvalues. The results returned are orthogonal to those.

    Notes
    -----
    If both retLambdaHistory and retResidualNormsHistory are True,
    the return tuple has the following format
    (lambda, V, lambda history, residual norms history).

    In the following ``n`` denotes the matrix size and ``m`` the number
    of required eigenvalues (smallest or largest).

    The LOBPCG code internally solves eigenproblems of the size 3``m`` on every
    iteration by calling the "standard" dense eigensolver, so if ``m`` is not
    small enough compared to ``n``, it does not make sense to call the LOBPCG
    code, but rather one should use the "standard" eigensolver,
    e.g. numpy or scipy function in this case.
    If one calls the LOBPCG algorithm for 5``m``>``n``,
    it will most likely break internally, so the code tries to call the standard
    function instead.

    It is not that n should be large for the LOBPCG to work, but rather the
    ratio ``n``/``m`` should be large. It you call the LOBPCG code with ``m``=1
    and ``n``=10, it should work, though ``n`` is small. The method is intended
    for extremely large ``n``/``m``, see e.g., reference [28] in
    http://arxiv.org/abs/0705.2626

    The convergence speed depends basically on two factors:

    1.  How well relatively separated the seeking eigenvalues are
        from the rest of the eigenvalues.
        One can try to vary ``m`` to make this better.

    2.  How well conditioned the problem is. This can be changed by using proper
        preconditioning. For example, a rod vibration test problem (under tests
        directory) is ill-conditioned for large ``n``, so convergence will be
        slow, unless efficient preconditioning is used.
        For this specific problem, a good simple preconditioner function would
        be a linear solve for A, which is easy to code since A is tridiagonal.

    *Acknowledgements*

    lobpcg.py code was written by Robert Cimrman.
    Many thanks belong to Andrew Knyazev, the author of the algorithm,
    for lots of advice and support.

    References
    ----------
    .. [1] A. V. Knyazev (2001),
           Toward the Optimal Preconditioned Eigensolver: Locally Optimal
           Block Preconditioned Conjugate Gradient Method.
           SIAM Journal on Scientific Computing 23, no. 2,
           pp. 517-541. http://dx.doi.org/10.1137/S1064827500366124

    .. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007),
           Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX)
           in hypre and PETSc.  http://arxiv.org/abs/0705.2626

    .. [3] A. V. Knyazev's C and MATLAB implementations:
           http://www-math.cudenver.edu/~aknyazev/software/BLOPEX/

    """
    blockVectorX = X
    blockVectorY = Y
    residualTolerance = tol
    maxIterations = maxiter

    if blockVectorY is not None:
        sizeY = blockVectorY.shape[1]
    else:
        sizeY = 0

    # Block size.
    if len(blockVectorX.shape) != 2:
        raise ValueError('expected rank-2 array for argument X')

    n, sizeX = blockVectorX.shape
    if sizeX > n:
        raise ValueError('X column dimension exceeds the row dimension')

    A = _makeOperator(A, (n,n))
    B = _makeOperator(B, (n,n))
    M = _makeOperator(M, (n,n))

    if (n - sizeY) < (5 * sizeX):
        # warn('The problem size is small compared to the block size.' \
        #        ' Using dense eigensolver instead of LOBPCG.')

        if blockVectorY is not None:
            raise NotImplementedError('The dense eigensolver '
                    'does not support constraints.')

        # Define the closed range of indices of eigenvalues to return.
        if largest:
            eigvals = (n - sizeX, n-1)
        else:
            eigvals = (0, sizeX-1)

        A_dense = A(np.eye(n))
        B_dense = None if B is None else B(np.eye(n))
        return eigh(A_dense, B_dense, eigvals=eigvals, check_finite=False)

    if residualTolerance is None:
        residualTolerance = np.sqrt(1e-15) * n

    maxIterations = min(n, maxIterations)

    if verbosityLevel:
        aux = "Solving "
        if B is None:
            aux += "standard"
        else:
            aux += "generalized"
        aux += " eigenvalue problem with"
        if M is None:
            aux += "out"
        aux += " preconditioning\n\n"
        aux += "matrix size %d\n" % n
        aux += "block size %d\n\n" % sizeX
        if blockVectorY is None:
            aux += "No constraints\n\n"
        else:
            if sizeY > 1:
                aux += "%d constraints\n\n" % sizeY
            else:
                aux += "%d constraint\n\n" % sizeY
        print(aux)

    ##
    # Apply constraints to X.
    if blockVectorY is not None:

        if B is not None:
            blockVectorBY = B(blockVectorY)
        else:
            blockVectorBY = blockVectorY

        # gramYBY is a dense array.
        gramYBY = np.dot(blockVectorY.T, blockVectorBY)
        try:
            # gramYBY is a Cholesky factor from now on...
            gramYBY = cho_factor(gramYBY)
        except:
            raise ValueError('cannot handle linearly dependent constraints')

        _applyConstraints(blockVectorX, gramYBY, blockVectorBY, blockVectorY)

    ##
    # B-orthonormalize X.
    blockVectorX, blockVectorBX = _b_orthonormalize(B, blockVectorX)

    ##
    # Compute the initial Ritz vectors: solve the eigenproblem.
    blockVectorAX = A(blockVectorX)
    gramXAX = np.dot(blockVectorX.T, blockVectorAX)

    _lambda, eigBlockVector = eigh(gramXAX, check_finite=False)
    ii = np.argsort(_lambda)[:sizeX]
    if largest:
        ii = ii[::-1]
    _lambda = _lambda[ii]

    eigBlockVector = np.asarray(eigBlockVector[:,ii])
    blockVectorX = np.dot(blockVectorX, eigBlockVector)
    blockVectorAX = np.dot(blockVectorAX, eigBlockVector)
    if B is not None:
        blockVectorBX = np.dot(blockVectorBX, eigBlockVector)

    ##
    # Active index set.
    activeMask = np.ones((sizeX,), dtype=bool)

    lambdaHistory = [_lambda]
    residualNormsHistory = []

    previousBlockSize = sizeX
    ident = np.eye(sizeX, dtype=A.dtype)
    ident0 = np.eye(sizeX, dtype=A.dtype)

    ##
    # Main iteration loop.

    blockVectorP = None  # set during iteration
    blockVectorAP = None
    blockVectorBP = None

    for iterationNumber in xrange(maxIterations):
        if verbosityLevel > 0:
            print('iteration %d' % iterationNumber)

        aux = blockVectorBX * _lambda[np.newaxis,:]
        blockVectorR = blockVectorAX - aux

        aux = np.sum(blockVectorR.conjugate() * blockVectorR, 0)
        residualNorms = np.sqrt(aux)

        residualNormsHistory.append(residualNorms)

        ii = np.where(residualNorms > residualTolerance, True, False)
        activeMask = activeMask & ii
        if verbosityLevel > 2:
            print(activeMask)

        currentBlockSize = activeMask.sum()
        if currentBlockSize != previousBlockSize:
            previousBlockSize = currentBlockSize
            ident = np.eye(currentBlockSize, dtype=A.dtype)

        if currentBlockSize == 0:
            break

        if verbosityLevel > 0:
            print('current block size:', currentBlockSize)
            print('eigenvalue:', _lambda)
            print('residual norms:', residualNorms)
        if verbosityLevel > 10:
            print(eigBlockVector)

        activeBlockVectorR = as2d(blockVectorR[:,activeMask])

        if iterationNumber > 0:
            activeBlockVectorP = as2d(blockVectorP[:,activeMask])
            activeBlockVectorAP = as2d(blockVectorAP[:,activeMask])
            activeBlockVectorBP = as2d(blockVectorBP[:,activeMask])

        if M is not None:
            # Apply preconditioner T to the active residuals.
            activeBlockVectorR = M(activeBlockVectorR)

        ##
        # Apply constraints to the preconditioned residuals.
        if blockVectorY is not None:
            _applyConstraints(activeBlockVectorR,
                              gramYBY, blockVectorBY, blockVectorY)

        ##
        # B-orthonormalize the preconditioned residuals.

        aux = _b_orthonormalize(B, activeBlockVectorR)
        activeBlockVectorR, activeBlockVectorBR = aux

        activeBlockVectorAR = A(activeBlockVectorR)

        if iterationNumber > 0:
            aux = _b_orthonormalize(B, activeBlockVectorP,
                                    activeBlockVectorBP, retInvR=True)
            activeBlockVectorP, activeBlockVectorBP, invR = aux
            activeBlockVectorAP = np.dot(activeBlockVectorAP, invR)

        ##
        # Perform the Rayleigh Ritz Procedure:
        # Compute symmetric Gram matrices:

        xaw = np.dot(blockVectorX.T, activeBlockVectorAR)
        waw = np.dot(activeBlockVectorR.T, activeBlockVectorAR)
        xbw = np.dot(blockVectorX.T, activeBlockVectorBR)

        if iterationNumber > 0:
            xap = np.dot(blockVectorX.T, activeBlockVectorAP)
            wap = np.dot(activeBlockVectorR.T, activeBlockVectorAP)
            pap = np.dot(activeBlockVectorP.T, activeBlockVectorAP)
            xbp = np.dot(blockVectorX.T, activeBlockVectorBP)
            wbp = np.dot(activeBlockVectorR.T, activeBlockVectorBP)

            gramA = np.bmat([[np.diag(_lambda), xaw, xap],
                              [xaw.T, waw, wap],
                              [xap.T, wap.T, pap]])

            gramB = np.bmat([[ident0, xbw, xbp],
                              [xbw.T, ident, wbp],
                              [xbp.T, wbp.T, ident]])
        else:
            gramA = np.bmat([[np.diag(_lambda), xaw],
                              [xaw.T, waw]])
            gramB = np.bmat([[ident0, xbw],
                              [xbw.T, ident]])

        _assert_symmetric(gramA)
        _assert_symmetric(gramB)

        if verbosityLevel > 10:
            save(gramA, 'gramA')
            save(gramB, 'gramB')

        # Solve the generalized eigenvalue problem.
        _lambda, eigBlockVector = eigh(gramA, gramB, check_finite=False)
        ii = np.argsort(_lambda)[:sizeX]
        if largest:
            ii = ii[::-1]
        if verbosityLevel > 10:
            print(ii)

        _lambda = _lambda[ii].astype(np.float64)
        eigBlockVector = np.asarray(eigBlockVector[:,ii].astype(np.float64))

        lambdaHistory.append(_lambda)

        if verbosityLevel > 10:
            print('lambda:', _lambda)
##         # Normalize eigenvectors!
##         aux = np.sum( eigBlockVector.conjugate() * eigBlockVector, 0 )
##         eigVecNorms = np.sqrt( aux )
##         eigBlockVector = eigBlockVector / eigVecNorms[np.newaxis,:]
#        eigBlockVector, aux = _b_orthonormalize( B, eigBlockVector )

        if verbosityLevel > 10:
            print(eigBlockVector)
            pause()

        ##
        # Compute Ritz vectors.
        if iterationNumber > 0:
            eigBlockVectorX = eigBlockVector[:sizeX]
            eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize]
            eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:]

            pp = np.dot(activeBlockVectorR, eigBlockVectorR)
            pp += np.dot(activeBlockVectorP, eigBlockVectorP)

            app = np.dot(activeBlockVectorAR, eigBlockVectorR)
            app += np.dot(activeBlockVectorAP, eigBlockVectorP)

            bpp = np.dot(activeBlockVectorBR, eigBlockVectorR)
            bpp += np.dot(activeBlockVectorBP, eigBlockVectorP)
        else:
            eigBlockVectorX = eigBlockVector[:sizeX]
            eigBlockVectorR = eigBlockVector[sizeX:]

            pp = np.dot(activeBlockVectorR, eigBlockVectorR)
            app = np.dot(activeBlockVectorAR, eigBlockVectorR)
            bpp = np.dot(activeBlockVectorBR, eigBlockVectorR)

        if verbosityLevel > 10:
            print(pp)
            print(app)
            print(bpp)
            pause()

        blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp
        blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app
        blockVectorBX = np.dot(blockVectorBX, eigBlockVectorX) + bpp

        blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp

    aux = blockVectorBX * _lambda[np.newaxis,:]
    blockVectorR = blockVectorAX - aux

    aux = np.sum(blockVectorR.conjugate() * blockVectorR, 0)
    residualNorms = np.sqrt(aux)

    if verbosityLevel > 0:
        print('final eigenvalue:', _lambda)
        print('final residual norms:', residualNorms)

    if retLambdaHistory:
        if retResidualNormsHistory:
            return _lambda, blockVectorX, lambdaHistory, residualNormsHistory
        else:
            return _lambda, blockVectorX, lambdaHistory
    else:
        if retResidualNormsHistory:
            return _lambda, blockVectorX, residualNormsHistory
        else:
            return _lambda, blockVectorX