1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
|
"""Iterative methods for solving linear systems"""
from __future__ import division, print_function, absolute_import
__all__ = ['bicg','bicgstab','cg','cgs','gmres','qmr']
from . import _iterative
from scipy.sparse.linalg.interface import LinearOperator
from scipy._lib.decorator import decorator
from .utils import make_system
from scipy._lib._util import _aligned_zeros
from scipy._lib._threadsafety import non_reentrant
_type_conv = {'f':'s', 'd':'d', 'F':'c', 'D':'z'}
# Part of the docstring common to all iterative solvers
common_doc1 = \
"""
Parameters
----------
A : {sparse matrix, dense matrix, LinearOperator}"""
common_doc2 = \
"""b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).
Returns
-------
x : {array, matrix}
The converged solution.
info : integer
Provides convergence information:
0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
<0 : illegal input or breakdown
Other Parameters
----------------
x0 : {array, matrix}
Starting guess for the solution.
tol : float
Tolerance to achieve. The algorithm terminates when either the relative
or the absolute residual is below `tol`.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter
steps even if the specified tolerance has not been achieved.
M : {sparse matrix, dense matrix, LinearOperator}
Preconditioner for A. The preconditioner should approximate the
inverse of A. Effective preconditioning dramatically improves the
rate of convergence, which implies that fewer iterations are needed
to reach a given error tolerance.
callback : function
User-supplied function to call after each iteration. It is called
as callback(xk), where xk is the current solution vector.
xtype : {'f','d','F','D'}
This parameter is deprecated -- avoid using it.
The type of the result. If None, then it will be determined from
A.dtype.char and b. If A does not have a typecode method then it
will compute A.matvec(x0) to get a typecode. To save the extra
computation when A does not have a typecode attribute use xtype=0
for the same type as b or use xtype='f','d','F',or 'D'.
This parameter has been superseded by LinearOperator.
"""
def set_docstring(header, Ainfo, footer=''):
def combine(fn):
fn.__doc__ = '\n'.join((header, common_doc1,
' ' + Ainfo.replace('\n', '\n '),
common_doc2, footer))
return fn
return combine
@set_docstring('Use BIConjugate Gradient iteration to solve A x = b',
'The real or complex N-by-N matrix of the linear system\n'
'It is required that the linear operator can produce\n'
'``Ax`` and ``A^T x``.')
@non_reentrant()
def bicg(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None, callback=None):
A,M,x,b,postprocess = make_system(A,M,x0,b,xtype)
n = len(b)
if maxiter is None:
maxiter = n*10
matvec, rmatvec = A.matvec, A.rmatvec
psolve, rpsolve = M.matvec, M.rmatvec
ltr = _type_conv[x.dtype.char]
revcom = getattr(_iterative, ltr + 'bicgrevcom')
stoptest = getattr(_iterative, ltr + 'stoptest2')
resid = tol
ndx1 = 1
ndx2 = -1
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
work = _aligned_zeros(6*n,dtype=x.dtype)
ijob = 1
info = 0
ftflag = True
bnrm2 = -1.0
iter_ = maxiter
while True:
olditer = iter_
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
if callback is not None and iter_ > olditer:
callback(x)
slice1 = slice(ndx1-1, ndx1-1+n)
slice2 = slice(ndx2-1, ndx2-1+n)
if (ijob == -1):
if callback is not None:
callback(x)
break
elif (ijob == 1):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(work[slice1])
elif (ijob == 2):
work[slice2] *= sclr2
work[slice2] += sclr1*rmatvec(work[slice1])
elif (ijob == 3):
work[slice1] = psolve(work[slice2])
elif (ijob == 4):
work[slice1] = rpsolve(work[slice2])
elif (ijob == 5):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(x)
elif (ijob == 6):
if ftflag:
info = -1
ftflag = False
bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
ijob = 2
if info > 0 and iter_ == maxiter and resid > tol:
# info isn't set appropriately otherwise
info = iter_
return postprocess(x), info
@set_docstring('Use BIConjugate Gradient STABilized iteration to solve A x = b',
'The real or complex N-by-N matrix of the linear system\n'
'``A`` must represent a hermitian, positive definite matrix')
@non_reentrant()
def bicgstab(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None, callback=None):
A,M,x,b,postprocess = make_system(A,M,x0,b,xtype)
n = len(b)
if maxiter is None:
maxiter = n*10
matvec = A.matvec
psolve = M.matvec
ltr = _type_conv[x.dtype.char]
revcom = getattr(_iterative, ltr + 'bicgstabrevcom')
stoptest = getattr(_iterative, ltr + 'stoptest2')
resid = tol
ndx1 = 1
ndx2 = -1
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
work = _aligned_zeros(7*n,dtype=x.dtype)
ijob = 1
info = 0
ftflag = True
bnrm2 = -1.0
iter_ = maxiter
while True:
olditer = iter_
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
if callback is not None and iter_ > olditer:
callback(x)
slice1 = slice(ndx1-1, ndx1-1+n)
slice2 = slice(ndx2-1, ndx2-1+n)
if (ijob == -1):
if callback is not None:
callback(x)
break
elif (ijob == 1):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(work[slice1])
elif (ijob == 2):
work[slice1] = psolve(work[slice2])
elif (ijob == 3):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(x)
elif (ijob == 4):
if ftflag:
info = -1
ftflag = False
bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
ijob = 2
if info > 0 and iter_ == maxiter and resid > tol:
# info isn't set appropriately otherwise
info = iter_
return postprocess(x), info
@set_docstring('Use Conjugate Gradient iteration to solve A x = b',
'The real or complex N-by-N matrix of the linear system\n'
'``A`` must represent a hermitian, positive definite matrix')
@non_reentrant()
def cg(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None, callback=None):
A,M,x,b,postprocess = make_system(A,M,x0,b,xtype)
n = len(b)
if maxiter is None:
maxiter = n*10
matvec = A.matvec
psolve = M.matvec
ltr = _type_conv[x.dtype.char]
revcom = getattr(_iterative, ltr + 'cgrevcom')
stoptest = getattr(_iterative, ltr + 'stoptest2')
resid = tol
ndx1 = 1
ndx2 = -1
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
work = _aligned_zeros(4*n,dtype=x.dtype)
ijob = 1
info = 0
ftflag = True
bnrm2 = -1.0
iter_ = maxiter
while True:
olditer = iter_
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
if callback is not None and iter_ > olditer:
callback(x)
slice1 = slice(ndx1-1, ndx1-1+n)
slice2 = slice(ndx2-1, ndx2-1+n)
if (ijob == -1):
if callback is not None:
callback(x)
break
elif (ijob == 1):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(work[slice1])
elif (ijob == 2):
work[slice1] = psolve(work[slice2])
elif (ijob == 3):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(x)
elif (ijob == 4):
if ftflag:
info = -1
ftflag = False
bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
ijob = 2
if info > 0 and iter_ == maxiter and resid > tol:
# info isn't set appropriately otherwise
info = iter_
return postprocess(x), info
@set_docstring('Use Conjugate Gradient Squared iteration to solve A x = b',
'The real-valued N-by-N matrix of the linear system')
@non_reentrant()
def cgs(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None, callback=None):
A,M,x,b,postprocess = make_system(A,M,x0,b,xtype)
n = len(b)
if maxiter is None:
maxiter = n*10
matvec = A.matvec
psolve = M.matvec
ltr = _type_conv[x.dtype.char]
revcom = getattr(_iterative, ltr + 'cgsrevcom')
stoptest = getattr(_iterative, ltr + 'stoptest2')
resid = tol
ndx1 = 1
ndx2 = -1
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
work = _aligned_zeros(7*n,dtype=x.dtype)
ijob = 1
info = 0
ftflag = True
bnrm2 = -1.0
iter_ = maxiter
while True:
olditer = iter_
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
if callback is not None and iter_ > olditer:
callback(x)
slice1 = slice(ndx1-1, ndx1-1+n)
slice2 = slice(ndx2-1, ndx2-1+n)
if (ijob == -1):
if callback is not None:
callback(x)
break
elif (ijob == 1):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(work[slice1])
elif (ijob == 2):
work[slice1] = psolve(work[slice2])
elif (ijob == 3):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(x)
elif (ijob == 4):
if ftflag:
info = -1
ftflag = False
bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
ijob = 2
if info > 0 and iter_ == maxiter and resid > tol:
# info isn't set appropriately otherwise
info = iter_
return postprocess(x), info
@non_reentrant()
def gmres(A, b, x0=None, tol=1e-5, restart=None, maxiter=None, xtype=None, M=None, callback=None, restrt=None):
"""
Use Generalized Minimal RESidual iteration to solve A x = b.
Parameters
----------
A : {sparse matrix, dense matrix, LinearOperator}
The real or complex N-by-N matrix of the linear system.
b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).
Returns
-------
x : {array, matrix}
The converged solution.
info : int
Provides convergence information:
* 0 : successful exit
* >0 : convergence to tolerance not achieved, number of iterations
* <0 : illegal input or breakdown
Other parameters
----------------
x0 : {array, matrix}
Starting guess for the solution (a vector of zeros by default).
tol : float
Tolerance to achieve. The algorithm terminates when either the relative
or the absolute residual is below `tol`.
restart : int, optional
Number of iterations between restarts. Larger values increase
iteration cost, but may be necessary for convergence.
Default is 20.
maxiter : int, optional
Maximum number of iterations (restart cycles). Iteration will stop
after maxiter steps even if the specified tolerance has not been
achieved.
xtype : {'f','d','F','D'}
This parameter is DEPRECATED --- avoid using it.
The type of the result. If None, then it will be determined from
A.dtype.char and b. If A does not have a typecode method then it
will compute A.matvec(x0) to get a typecode. To save the extra
computation when A does not have a typecode attribute use xtype=0
for the same type as b or use xtype='f','d','F',or 'D'.
This parameter has been superseded by LinearOperator.
M : {sparse matrix, dense matrix, LinearOperator}
Inverse of the preconditioner of A. M should approximate the
inverse of A and be easy to solve for (see Notes). Effective
preconditioning dramatically improves the rate of convergence,
which implies that fewer iterations are needed to reach a given
error tolerance. By default, no preconditioner is used.
callback : function
User-supplied function to call after each iteration. It is called
as callback(rk), where rk is the current residual vector.
restrt : int, optional
DEPRECATED - use `restart` instead.
See Also
--------
LinearOperator
Notes
-----
A preconditioner, P, is chosen such that P is close to A but easy to solve
for. The preconditioner parameter required by this routine is
``M = P^-1``. The inverse should preferably not be calculated
explicitly. Rather, use the following template to produce M::
# Construct a linear operator that computes P^-1 * x.
import scipy.sparse.linalg as spla
M_x = lambda x: spla.spsolve(P, x)
M = spla.LinearOperator((n, n), M_x)
"""
# Change 'restrt' keyword to 'restart'
if restrt is None:
restrt = restart
elif restart is not None:
raise ValueError("Cannot specify both restart and restrt keywords. "
"Preferably use 'restart' only.")
A,M,x,b,postprocess = make_system(A,M,x0,b,xtype)
n = len(b)
if maxiter is None:
maxiter = n*10
if restrt is None:
restrt = 20
restrt = min(restrt, n)
matvec = A.matvec
psolve = M.matvec
ltr = _type_conv[x.dtype.char]
revcom = getattr(_iterative, ltr + 'gmresrevcom')
stoptest = getattr(_iterative, ltr + 'stoptest2')
resid = tol
ndx1 = 1
ndx2 = -1
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
work = _aligned_zeros((6+restrt)*n,dtype=x.dtype)
work2 = _aligned_zeros((restrt+1)*(2*restrt+2),dtype=x.dtype)
ijob = 1
info = 0
ftflag = True
bnrm2 = -1.0
iter_ = maxiter
old_ijob = ijob
first_pass = True
resid_ready = False
iter_num = 1
while True:
olditer = iter_
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
revcom(b, x, restrt, work, work2, iter_, resid, info, ndx1, ndx2, ijob)
# if callback is not None and iter_ > olditer:
# callback(x)
slice1 = slice(ndx1-1, ndx1-1+n)
slice2 = slice(ndx2-1, ndx2-1+n)
if (ijob == -1): # gmres success, update last residual
if resid_ready and callback is not None:
callback(resid)
resid_ready = False
break
elif (ijob == 1):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(x)
elif (ijob == 2):
work[slice1] = psolve(work[slice2])
if not first_pass and old_ijob == 3:
resid_ready = True
first_pass = False
elif (ijob == 3):
work[slice2] *= sclr2
work[slice2] += sclr1*matvec(work[slice1])
if resid_ready and callback is not None:
callback(resid)
resid_ready = False
iter_num = iter_num+1
elif (ijob == 4):
if ftflag:
info = -1
ftflag = False
bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
old_ijob = ijob
ijob = 2
if iter_num > maxiter:
break
if info >= 0 and resid > tol:
# info isn't set appropriately otherwise
info = maxiter
return postprocess(x), info
@non_reentrant()
def qmr(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M1=None, M2=None, callback=None):
"""Use Quasi-Minimal Residual iteration to solve A x = b
Parameters
----------
A : {sparse matrix, dense matrix, LinearOperator}
The real-valued N-by-N matrix of the linear system.
It is required that the linear operator can produce
``Ax`` and ``A^T x``.
b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).
Returns
-------
x : {array, matrix}
The converged solution.
info : integer
Provides convergence information:
0 : successful exit
>0 : convergence to tolerance not achieved, number of iterations
<0 : illegal input or breakdown
Other Parameters
----------------
x0 : {array, matrix}
Starting guess for the solution.
tol : float
Tolerance to achieve. The algorithm terminates when either the relative
or the absolute residual is below `tol`.
maxiter : integer
Maximum number of iterations. Iteration will stop after maxiter
steps even if the specified tolerance has not been achieved.
M1 : {sparse matrix, dense matrix, LinearOperator}
Left preconditioner for A.
M2 : {sparse matrix, dense matrix, LinearOperator}
Right preconditioner for A. Used together with the left
preconditioner M1. The matrix M1*A*M2 should have better
conditioned than A alone.
callback : function
User-supplied function to call after each iteration. It is called
as callback(xk), where xk is the current solution vector.
xtype : {'f','d','F','D'}
This parameter is DEPRECATED -- avoid using it.
The type of the result. If None, then it will be determined from
A.dtype.char and b. If A does not have a typecode method then it
will compute A.matvec(x0) to get a typecode. To save the extra
computation when A does not have a typecode attribute use xtype=0
for the same type as b or use xtype='f','d','F',or 'D'.
This parameter has been superseded by LinearOperator.
See Also
--------
LinearOperator
"""
A_ = A
A,M,x,b,postprocess = make_system(A,None,x0,b,xtype)
if M1 is None and M2 is None:
if hasattr(A_,'psolve'):
def left_psolve(b):
return A_.psolve(b,'left')
def right_psolve(b):
return A_.psolve(b,'right')
def left_rpsolve(b):
return A_.rpsolve(b,'left')
def right_rpsolve(b):
return A_.rpsolve(b,'right')
M1 = LinearOperator(A.shape, matvec=left_psolve, rmatvec=left_rpsolve)
M2 = LinearOperator(A.shape, matvec=right_psolve, rmatvec=right_rpsolve)
else:
def id(b):
return b
M1 = LinearOperator(A.shape, matvec=id, rmatvec=id)
M2 = LinearOperator(A.shape, matvec=id, rmatvec=id)
n = len(b)
if maxiter is None:
maxiter = n*10
ltr = _type_conv[x.dtype.char]
revcom = getattr(_iterative, ltr + 'qmrrevcom')
stoptest = getattr(_iterative, ltr + 'stoptest2')
resid = tol
ndx1 = 1
ndx2 = -1
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
work = _aligned_zeros(11*n,x.dtype)
ijob = 1
info = 0
ftflag = True
bnrm2 = -1.0
iter_ = maxiter
while True:
olditer = iter_
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
if callback is not None and iter_ > olditer:
callback(x)
slice1 = slice(ndx1-1, ndx1-1+n)
slice2 = slice(ndx2-1, ndx2-1+n)
if (ijob == -1):
if callback is not None:
callback(x)
break
elif (ijob == 1):
work[slice2] *= sclr2
work[slice2] += sclr1*A.matvec(work[slice1])
elif (ijob == 2):
work[slice2] *= sclr2
work[slice2] += sclr1*A.rmatvec(work[slice1])
elif (ijob == 3):
work[slice1] = M1.matvec(work[slice2])
elif (ijob == 4):
work[slice1] = M2.matvec(work[slice2])
elif (ijob == 5):
work[slice1] = M1.rmatvec(work[slice2])
elif (ijob == 6):
work[slice1] = M2.rmatvec(work[slice2])
elif (ijob == 7):
work[slice2] *= sclr2
work[slice2] += sclr1*A.matvec(x)
elif (ijob == 8):
if ftflag:
info = -1
ftflag = False
bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
ijob = 2
if info > 0 and iter_ == maxiter and resid > tol:
# info isn't set appropriately otherwise
info = iter_
return postprocess(x), info
|