File: CGREVCOM.f.src

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (318 lines) | stat: -rw-r--r-- 8,316 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
*  -*- fortran -*-
      SUBROUTINE <_c>CGREVCOM( N, B, X, WORK, LDW, ITER, RESID, INFO,
     $                     NDX1, NDX2, SCLR1, SCLR2, IJOB)
*
*  -- Iterative template routine --
*     Univ. of Tennessee and Oak Ridge National Laboratory
*     October 1, 1993
*     Details of this algorithm are described in "Templates for the 
*     Solution of Linear Systems: Building Blocks for Iterative 
*     Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra, 
*     Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,
*     1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).
*
*     .. Scalar Arguments ..
      INTEGER            N, LDW, ITER, INFO
      <rt=real,double precision,real,double precision>  RESID
*      INTEGER            NDX1, NDX2
      <_t>   SCLR1, SCLR2
      INTEGER            IJOB
*     ..
*     .. Array Arguments ..
      <_t>   X( * ), B( * ),  WORK( LDW,* )
*
*     (output) for matvec and solve. These index into WORK[]
      INTEGER NDX1, NDX2
*     ..
*
*  Purpose
*  =======
*
*  CG solves the linear system Ax = b using the
*  Conjugate Gradient iterative method with preconditioning.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER.
*          On entry, the dimension of the matrix.
*          Unchanged on exit.
*
*  B       (input) DOUBLE PRECISION array, dimension N.
*          On entry, right hand side vector B.
*          Unchanged on exit.
*
*  X       (input/output) DOUBLE PRECISION array, dimension N.
*          On input, the initial guess. This is commonly set to
*          the zero vector.
*          On exit, if INFO = 0, the iterated approximate solution.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (LDW,4).
*          Workspace for residual, direction vector, etc.
*
*  LDW     (input) INTEGER
*          The leading dimension of the array WORK. LDW .gt. = max(1,N).
*
*  ITER    (input/output) INTEGER
*          On input, the maximum iterations to be performed.
*          On output, actual number of iterations performed.
*
*  RESID   (input/output) DOUBLE PRECISION
*          On input, the allowable convergence measure for
*          norm( b - A*x ) / norm( b ).
*          On output, the final value of this measure.
*
*  INFO    (output) INTEGER
*
*          =  0: Successful exit. Iterated approximate solution returned.
*
*          .gt.   0: Convergence to tolerance not achieved. This will be
*                set to the number of iterations performed.
*
*          .ls.   0: Illegal input parameter.
*
*                   -1: matrix dimension N .ls.  0
*                   -2: LDW .ls.  N
*                   -3: Maximum number of iterations ITER .ls. = 0.
*                   -5: Erroneous NDX1/NDX2 in INIT call.
*                   -6: Erroneous RLBL.
*
*  NDX1    (input/output) INTEGER. 
*  NDX2    On entry in INIT call contain indices required by interface
*          level for stopping test.
*          All other times, used as output, to indicate indices into
*          WORK[] for the MATVEC, PSOLVE done by the interface level.
*
*  SCLR1   (output) DOUBLE PRECISION.
*  SCLR2   Used to pass the scalars used in MATVEC. Scalars are reqd because
*          original routines use dgemv.
*
*  IJOB    (input/output) INTEGER. 
*          Used to communicate job code between the two levels.
*
*  BLAS CALLS:   DAXPY, DCOPY, DDOT, DNRM2
*  ============================================================
*
*     .. Parameters ..
      <rt>             ZERO, ONE
      PARAMETER        ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER          MAXIT, R, Z, P, Q, NEED1, NEED2
      <_t>             ALPHA, BETA, RHO, RHO1,
     $     <xdot=wsdot,ddot,wcdotc,wzdotc>
      <rt>             <rc=ws,d,wsc,dz>NRM2, TOL
*
*     indicates where to resume from. Only valid when IJOB = 2!
      INTEGER RLBL
*
*     saving all.
      SAVE
*     ..
*     .. External Routines ..
      EXTERNAL         <_c>AXPY, <_c>COPY, <xdot>, <rc>NRM2
*     ..
*     .. Executable Statements ..
*
*     Entry point, so test IJOB
      IF (IJOB .eq. 1) THEN
         GOTO 1
      ELSEIF (IJOB .eq. 2) THEN
*        here we do resumption handling
         IF (RLBL .eq. 2) GOTO 2
         IF (RLBL .eq. 3) GOTO 3
         IF (RLBL .eq. 4) GOTO 4
         IF (RLBL .eq. 5) GOTO 5
*        if neither of these, then error
         INFO = -6
         GOTO 20
      ENDIF
*
* init.
*****************
 1    CONTINUE
*****************
*
      INFO = 0
      MAXIT = ITER
      TOL = RESID
*
*     Alias workspace columns.
*
      R = 1
      Z = 2
      P = 3
      Q = 4
*
*     Check if caller will need indexing info.
*
      IF( NDX1.NE.-1 ) THEN
         IF( NDX1.EQ.1 ) THEN
            NEED1 = ((R - 1) * LDW) + 1
         ELSEIF( NDX1.EQ.2 ) THEN
            NEED1 = ((Z - 1) * LDW) + 1
         ELSEIF( NDX1.EQ.3 ) THEN
            NEED1 = ((P - 1) * LDW) + 1
         ELSEIF( NDX1.EQ.4 ) THEN
            NEED1 = ((Q - 1) * LDW) + 1
         ELSE
*           report error
            INFO = -5
            GO TO 20
         ENDIF
      ELSE
         NEED1 = NDX1
      ENDIF
*
      IF( NDX2.NE.-1 ) THEN
         IF( NDX2.EQ.1 ) THEN
            NEED2 = ((R - 1) * LDW) + 1
         ELSEIF( NDX2.EQ.2 ) THEN
            NEED2 = ((Z - 1) * LDW) + 1
         ELSEIF( NDX2.EQ.3 ) THEN
            NEED2 = ((P - 1) * LDW) + 1
         ELSEIF( NDX2.EQ.4 ) THEN
            NEED2 = ((Q - 1) * LDW) + 1
         ELSE
*           report error
            INFO = -5
            GO TO 20
         ENDIF
      ELSE
         NEED2 = NDX2
      ENDIF
*
*     Set initial residual.
*
      CALL <_c>COPY( N, B, 1, WORK(1,R), 1 )
      IF ( <rc>NRM2( N, X, 1 ).NE.ZERO ) THEN

*********CALL MATVEC( -ONE, X, ONE, WORK(1,R) )
*
*        Set args for revcom return
         SCLR1 = -ONE
         SCLR2 = ONE
         NDX1 = -1
         NDX2 = ((R - 1) * LDW) + 1
*
*        Prepare for resumption & return
         RLBL = 2
         IJOB = 3
         RETURN
      ENDIF
*
*****************
 2    CONTINUE
*****************
*
      IF ( <rc>NRM2( N, WORK(1,R), 1 ).LT.TOL ) GO TO 30
*
      ITER = 0
*
   10 CONTINUE
*
*        Perform Preconditioned Conjugate Gradient iteration.
*
         ITER = ITER + 1
*
*        Preconditioner Solve.
*
*********CALL PSOLVE( WORK(1,Z), WORK(1,R) )
*
         NDX1 = ((Z - 1) * LDW) + 1
         NDX2 = ((R - 1) * LDW) + 1
*        Prepare for return & return
         RLBL = 3
         IJOB = 2
         RETURN
*
*****************
 3       CONTINUE
*****************
*
         RHO = <xdot>( N, WORK(1,R), 1, WORK(1,Z), 1 )
*
*        Compute direction vector P.
*
         IF ( ITER.GT.1 ) THEN
            BETA = RHO / RHO1
            CALL <_c>AXPY( N, BETA, WORK(1,P), 1, WORK(1,Z), 1 )
*
            CALL <_c>COPY( N, WORK(1,Z), 1, WORK(1,P), 1 )
         ELSE
            CALL <_c>COPY( N, WORK(1,Z), 1, WORK(1,P), 1 )
         ENDIF
*
*        Compute scalar ALPHA (save A*P to Q).
*
*********CALL MATVEC( ONE, WORK(1,P), ZERO, WORK(1,Q) )
*
         NDX1 = ((P - 1) * LDW) + 1
         NDX2 = ((Q - 1) * LDW) + 1
*        Prepare for return & return
         SCLR1 = ONE
         SCLR2 = ZERO
         RLBL = 4
         IJOB = 1
         RETURN
*
*****************
 4       CONTINUE
*****************
*
         ALPHA =  RHO / <xdot>( N, WORK(1,P), 1, WORK(1,Q), 1 )
*
*        Compute current solution vector X.
*
         CALL <_c>AXPY( N, ALPHA, WORK(1,P), 1, X, 1 )
*
*        Compute residual vector R, find norm,
*        then check for tolerance.
*
         CALL <_c>AXPY( N, -ALPHA,  WORK(1,Q), 1, WORK(1,R), 1 )
*
*********RESID = <rc>NRM2( N, WORK(1,R), 1 ) / BNRM2
*********IF ( RESID.LE.TOL ) GO TO 30
*
         NDX1 = NEED1
         NDX2 = NEED2
*        Prepare for resumption & return
         RLBL = 5
         IJOB = 4
         RETURN
*
*****************
 5       CONTINUE
*****************
         IF( INFO.EQ.1 ) GO TO 30
*
         IF ( ITER.EQ.MAXIT ) THEN
            INFO = 1
            GO TO 20
         ENDIF
*
         RHO1 = RHO
*
         GO TO 10
*
   20 CONTINUE
*
*     Iteration fails.
*
      RLBL = -1
      IJOB = -1
      RETURN
*
   30 CONTINUE
*
*     Iteration successful; return.
*
      INFO = 0
      RLBL = -1
      IJOB = -1
      RETURN
*
*     End of CGREVCOM
*
      END
*     END SUBROUTINE <_c>CGREVCOM