1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
* -*- fortran -*-
SUBROUTINE <_c>CGREVCOM( N, B, X, WORK, LDW, ITER, RESID, INFO,
$ NDX1, NDX2, SCLR1, SCLR2, IJOB)
*
* -- Iterative template routine --
* Univ. of Tennessee and Oak Ridge National Laboratory
* October 1, 1993
* Details of this algorithm are described in "Templates for the
* Solution of Linear Systems: Building Blocks for Iterative
* Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,
* Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,
* 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).
*
* .. Scalar Arguments ..
INTEGER N, LDW, ITER, INFO
<rt=real,double precision,real,double precision> RESID
* INTEGER NDX1, NDX2
<_t> SCLR1, SCLR2
INTEGER IJOB
* ..
* .. Array Arguments ..
<_t> X( * ), B( * ), WORK( LDW,* )
*
* (output) for matvec and solve. These index into WORK[]
INTEGER NDX1, NDX2
* ..
*
* Purpose
* =======
*
* CG solves the linear system Ax = b using the
* Conjugate Gradient iterative method with preconditioning.
*
* Arguments
* =========
*
* N (input) INTEGER.
* On entry, the dimension of the matrix.
* Unchanged on exit.
*
* B (input) DOUBLE PRECISION array, dimension N.
* On entry, right hand side vector B.
* Unchanged on exit.
*
* X (input/output) DOUBLE PRECISION array, dimension N.
* On input, the initial guess. This is commonly set to
* the zero vector.
* On exit, if INFO = 0, the iterated approximate solution.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LDW,4).
* Workspace for residual, direction vector, etc.
*
* LDW (input) INTEGER
* The leading dimension of the array WORK. LDW .gt. = max(1,N).
*
* ITER (input/output) INTEGER
* On input, the maximum iterations to be performed.
* On output, actual number of iterations performed.
*
* RESID (input/output) DOUBLE PRECISION
* On input, the allowable convergence measure for
* norm( b - A*x ) / norm( b ).
* On output, the final value of this measure.
*
* INFO (output) INTEGER
*
* = 0: Successful exit. Iterated approximate solution returned.
*
* .gt. 0: Convergence to tolerance not achieved. This will be
* set to the number of iterations performed.
*
* .ls. 0: Illegal input parameter.
*
* -1: matrix dimension N .ls. 0
* -2: LDW .ls. N
* -3: Maximum number of iterations ITER .ls. = 0.
* -5: Erroneous NDX1/NDX2 in INIT call.
* -6: Erroneous RLBL.
*
* NDX1 (input/output) INTEGER.
* NDX2 On entry in INIT call contain indices required by interface
* level for stopping test.
* All other times, used as output, to indicate indices into
* WORK[] for the MATVEC, PSOLVE done by the interface level.
*
* SCLR1 (output) DOUBLE PRECISION.
* SCLR2 Used to pass the scalars used in MATVEC. Scalars are reqd because
* original routines use dgemv.
*
* IJOB (input/output) INTEGER.
* Used to communicate job code between the two levels.
*
* BLAS CALLS: DAXPY, DCOPY, DDOT, DNRM2
* ============================================================
*
* .. Parameters ..
<rt> ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER MAXIT, R, Z, P, Q, NEED1, NEED2
<_t> ALPHA, BETA, RHO, RHO1,
$ <xdot=wsdot,ddot,wcdotc,wzdotc>
<rt> <rc=ws,d,wsc,dz>NRM2, TOL
*
* indicates where to resume from. Only valid when IJOB = 2!
INTEGER RLBL
*
* saving all.
SAVE
* ..
* .. External Routines ..
EXTERNAL <_c>AXPY, <_c>COPY, <xdot>, <rc>NRM2
* ..
* .. Executable Statements ..
*
* Entry point, so test IJOB
IF (IJOB .eq. 1) THEN
GOTO 1
ELSEIF (IJOB .eq. 2) THEN
* here we do resumption handling
IF (RLBL .eq. 2) GOTO 2
IF (RLBL .eq. 3) GOTO 3
IF (RLBL .eq. 4) GOTO 4
IF (RLBL .eq. 5) GOTO 5
* if neither of these, then error
INFO = -6
GOTO 20
ENDIF
*
* init.
*****************
1 CONTINUE
*****************
*
INFO = 0
MAXIT = ITER
TOL = RESID
*
* Alias workspace columns.
*
R = 1
Z = 2
P = 3
Q = 4
*
* Check if caller will need indexing info.
*
IF( NDX1.NE.-1 ) THEN
IF( NDX1.EQ.1 ) THEN
NEED1 = ((R - 1) * LDW) + 1
ELSEIF( NDX1.EQ.2 ) THEN
NEED1 = ((Z - 1) * LDW) + 1
ELSEIF( NDX1.EQ.3 ) THEN
NEED1 = ((P - 1) * LDW) + 1
ELSEIF( NDX1.EQ.4 ) THEN
NEED1 = ((Q - 1) * LDW) + 1
ELSE
* report error
INFO = -5
GO TO 20
ENDIF
ELSE
NEED1 = NDX1
ENDIF
*
IF( NDX2.NE.-1 ) THEN
IF( NDX2.EQ.1 ) THEN
NEED2 = ((R - 1) * LDW) + 1
ELSEIF( NDX2.EQ.2 ) THEN
NEED2 = ((Z - 1) * LDW) + 1
ELSEIF( NDX2.EQ.3 ) THEN
NEED2 = ((P - 1) * LDW) + 1
ELSEIF( NDX2.EQ.4 ) THEN
NEED2 = ((Q - 1) * LDW) + 1
ELSE
* report error
INFO = -5
GO TO 20
ENDIF
ELSE
NEED2 = NDX2
ENDIF
*
* Set initial residual.
*
CALL <_c>COPY( N, B, 1, WORK(1,R), 1 )
IF ( <rc>NRM2( N, X, 1 ).NE.ZERO ) THEN
*********CALL MATVEC( -ONE, X, ONE, WORK(1,R) )
*
* Set args for revcom return
SCLR1 = -ONE
SCLR2 = ONE
NDX1 = -1
NDX2 = ((R - 1) * LDW) + 1
*
* Prepare for resumption & return
RLBL = 2
IJOB = 3
RETURN
ENDIF
*
*****************
2 CONTINUE
*****************
*
IF ( <rc>NRM2( N, WORK(1,R), 1 ).LT.TOL ) GO TO 30
*
ITER = 0
*
10 CONTINUE
*
* Perform Preconditioned Conjugate Gradient iteration.
*
ITER = ITER + 1
*
* Preconditioner Solve.
*
*********CALL PSOLVE( WORK(1,Z), WORK(1,R) )
*
NDX1 = ((Z - 1) * LDW) + 1
NDX2 = ((R - 1) * LDW) + 1
* Prepare for return & return
RLBL = 3
IJOB = 2
RETURN
*
*****************
3 CONTINUE
*****************
*
RHO = <xdot>( N, WORK(1,R), 1, WORK(1,Z), 1 )
*
* Compute direction vector P.
*
IF ( ITER.GT.1 ) THEN
BETA = RHO / RHO1
CALL <_c>AXPY( N, BETA, WORK(1,P), 1, WORK(1,Z), 1 )
*
CALL <_c>COPY( N, WORK(1,Z), 1, WORK(1,P), 1 )
ELSE
CALL <_c>COPY( N, WORK(1,Z), 1, WORK(1,P), 1 )
ENDIF
*
* Compute scalar ALPHA (save A*P to Q).
*
*********CALL MATVEC( ONE, WORK(1,P), ZERO, WORK(1,Q) )
*
NDX1 = ((P - 1) * LDW) + 1
NDX2 = ((Q - 1) * LDW) + 1
* Prepare for return & return
SCLR1 = ONE
SCLR2 = ZERO
RLBL = 4
IJOB = 1
RETURN
*
*****************
4 CONTINUE
*****************
*
ALPHA = RHO / <xdot>( N, WORK(1,P), 1, WORK(1,Q), 1 )
*
* Compute current solution vector X.
*
CALL <_c>AXPY( N, ALPHA, WORK(1,P), 1, X, 1 )
*
* Compute residual vector R, find norm,
* then check for tolerance.
*
CALL <_c>AXPY( N, -ALPHA, WORK(1,Q), 1, WORK(1,R), 1 )
*
*********RESID = <rc>NRM2( N, WORK(1,R), 1 ) / BNRM2
*********IF ( RESID.LE.TOL ) GO TO 30
*
NDX1 = NEED1
NDX2 = NEED2
* Prepare for resumption & return
RLBL = 5
IJOB = 4
RETURN
*
*****************
5 CONTINUE
*****************
IF( INFO.EQ.1 ) GO TO 30
*
IF ( ITER.EQ.MAXIT ) THEN
INFO = 1
GO TO 20
ENDIF
*
RHO1 = RHO
*
GO TO 10
*
20 CONTINUE
*
* Iteration fails.
*
RLBL = -1
IJOB = -1
RETURN
*
30 CONTINUE
*
* Iteration successful; return.
*
INFO = 0
RLBL = -1
IJOB = -1
RETURN
*
* End of CGREVCOM
*
END
* END SUBROUTINE <_c>CGREVCOM
|