File: lsmr.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (409 lines) | stat: -rw-r--r-- 13,048 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
"""
Copyright (C) 2010 David Fong and Michael Saunders

LSMR uses an iterative method.

07 Jun 2010: Documentation updated
03 Jun 2010: First release version in Python

David Chin-lung Fong            clfong@stanford.edu
Institute for Computational and Mathematical Engineering
Stanford University

Michael Saunders                saunders@stanford.edu
Systems Optimization Laboratory
Dept of MS&E, Stanford University.

"""

from __future__ import division, print_function, absolute_import

__all__ = ['lsmr']

from numpy import zeros, infty, atleast_1d
from numpy.linalg import norm
from math import sqrt
from scipy.sparse.linalg.interface import aslinearoperator

from .lsqr import _sym_ortho


def lsmr(A, b, damp=0.0, atol=1e-6, btol=1e-6, conlim=1e8,
         maxiter=None, show=False):
    """Iterative solver for least-squares problems.

    lsmr solves the system of linear equations ``Ax = b``. If the system
    is inconsistent, it solves the least-squares problem ``min ||b - Ax||_2``.
    A is a rectangular matrix of dimension m-by-n, where all cases are
    allowed: m = n, m > n, or m < n. B is a vector of length m.
    The matrix A may be dense or sparse (usually sparse).

    Parameters
    ----------
    A : {matrix, sparse matrix, ndarray, LinearOperator}
        Matrix A in the linear system.
    b : array_like, shape (m,)
        Vector b in the linear system.
    damp : float
        Damping factor for regularized least-squares. `lsmr` solves
        the regularized least-squares problem::

         min ||(b) - (  A   )x||
             ||(0)   (damp*I) ||_2

        where damp is a scalar.  If damp is None or 0, the system
        is solved without regularization.
    atol, btol : float, optional
        Stopping tolerances. `lsmr` continues iterations until a
        certain backward error estimate is smaller than some quantity
        depending on atol and btol.  Let ``r = b - Ax`` be the
        residual vector for the current approximate solution ``x``.
        If ``Ax = b`` seems to be consistent, ``lsmr`` terminates
        when ``norm(r) <= atol * norm(A) * norm(x) + btol * norm(b)``.
        Otherwise, lsmr terminates when ``norm(A^{T} r) <=
        atol * norm(A) * norm(r)``.  If both tolerances are 1.0e-6 (say),
        the final ``norm(r)`` should be accurate to about 6
        digits. (The final x will usually have fewer correct digits,
        depending on ``cond(A)`` and the size of LAMBDA.)  If `atol`
        or `btol` is None, a default value of 1.0e-6 will be used.
        Ideally, they should be estimates of the relative error in the
        entries of A and B respectively.  For example, if the entries
        of `A` have 7 correct digits, set atol = 1e-7. This prevents
        the algorithm from doing unnecessary work beyond the
        uncertainty of the input data.
    conlim : float, optional
        `lsmr` terminates if an estimate of ``cond(A)`` exceeds
        `conlim`.  For compatible systems ``Ax = b``, conlim could be
        as large as 1.0e+12 (say).  For least-squares problems,
        `conlim` should be less than 1.0e+8. If `conlim` is None, the
        default value is 1e+8.  Maximum precision can be obtained by
        setting ``atol = btol = conlim = 0``, but the number of
        iterations may then be excessive.
    maxiter : int, optional
        `lsmr` terminates if the number of iterations reaches
        `maxiter`.  The default is ``maxiter = min(m, n)``.  For
        ill-conditioned systems, a larger value of `maxiter` may be
        needed.
    show : bool, optional
        Print iterations logs if ``show=True``.

    Returns
    -------
    x : ndarray of float
        Least-square solution returned.
    istop : int
        istop gives the reason for stopping::

          istop   = 0 means x=0 is a solution.
                  = 1 means x is an approximate solution to A*x = B,
                      according to atol and btol.
                  = 2 means x approximately solves the least-squares problem
                      according to atol.
                  = 3 means COND(A) seems to be greater than CONLIM.
                  = 4 is the same as 1 with atol = btol = eps (machine
                      precision)
                  = 5 is the same as 2 with atol = eps.
                  = 6 is the same as 3 with CONLIM = 1/eps.
                  = 7 means ITN reached maxiter before the other stopping
                      conditions were satisfied.

    itn : int
        Number of iterations used.
    normr : float
        ``norm(b-Ax)``
    normar : float
        ``norm(A^T (b - Ax))``
    norma : float
        ``norm(A)``
    conda : float
        Condition number of A.
    normx : float
        ``norm(x)``

    Notes
    -----

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] D. C.-L. Fong and M. A. Saunders,
           "LSMR: An iterative algorithm for sparse least-squares problems",
           SIAM J. Sci. Comput., vol. 33, pp. 2950-2971, 2011.
           http://arxiv.org/abs/1006.0758
    .. [2] LSMR Software, http://web.stanford.edu/group/SOL/software/lsmr/

    """

    A = aslinearoperator(A)
    b = atleast_1d(b)
    if b.ndim > 1:
        b = b.squeeze()

    msg = ('The exact solution is  x = 0                              ',
         'Ax - b is small enough, given atol, btol                  ',
         'The least-squares solution is good enough, given atol     ',
         'The estimate of cond(Abar) has exceeded conlim            ',
         'Ax - b is small enough for this machine                   ',
         'The least-squares solution is good enough for this machine',
         'Cond(Abar) seems to be too large for this machine         ',
         'The iteration limit has been reached                      ')

    hdg1 = '   itn      x(1)       norm r    norm A''r'
    hdg2 = ' compatible   LS      norm A   cond A'
    pfreq = 20   # print frequency (for repeating the heading)
    pcount = 0   # print counter

    m, n = A.shape

    # stores the num of singular values
    minDim = min([m, n])

    if maxiter is None:
        maxiter = minDim

    if show:
        print(' ')
        print('LSMR            Least-squares solution of  Ax = b\n')
        print('The matrix A has %8g rows  and %8g cols' % (m, n))
        print('damp = %20.14e\n' % (damp))
        print('atol = %8.2e                 conlim = %8.2e\n' % (atol, conlim))
        print('btol = %8.2e             maxiter = %8g\n' % (btol, maxiter))

    u = b
    beta = norm(u)

    v = zeros(n)
    alpha = 0

    if beta > 0:
        u = (1 / beta) * u
        v = A.rmatvec(u)
        alpha = norm(v)

    if alpha > 0:
        v = (1 / alpha) * v

    # Initialize variables for 1st iteration.

    itn = 0
    zetabar = alpha * beta
    alphabar = alpha
    rho = 1
    rhobar = 1
    cbar = 1
    sbar = 0

    h = v.copy()
    hbar = zeros(n)
    x = zeros(n)

    # Initialize variables for estimation of ||r||.

    betadd = beta
    betad = 0
    rhodold = 1
    tautildeold = 0
    thetatilde = 0
    zeta = 0
    d = 0

    # Initialize variables for estimation of ||A|| and cond(A)

    normA2 = alpha * alpha
    maxrbar = 0
    minrbar = 1e+100
    normA = sqrt(normA2)
    condA = 1
    normx = 0

    # Items for use in stopping rules.
    normb = beta
    istop = 0
    ctol = 0
    if conlim > 0:
        ctol = 1 / conlim
    normr = beta

    # Reverse the order here from the original matlab code because
    # there was an error on return when arnorm==0
    normar = alpha * beta
    if normar == 0:
        if show:
            print(msg[0])
        return x, istop, itn, normr, normar, normA, condA, normx

    if show:
        print(' ')
        print(hdg1, hdg2)
        test1 = 1
        test2 = alpha / beta
        str1 = '%6g %12.5e' % (itn, x[0])
        str2 = ' %10.3e %10.3e' % (normr, normar)
        str3 = '  %8.1e %8.1e' % (test1, test2)
        print(''.join([str1, str2, str3]))

    # Main iteration loop.
    while itn < maxiter:
        itn = itn + 1

        # Perform the next step of the bidiagonalization to obtain the
        # next  beta, u, alpha, v.  These satisfy the relations
        #         beta*u  =  a*v   -  alpha*u,
        #        alpha*v  =  A'*u  -  beta*v.

        u = A.matvec(v) - alpha * u
        beta = norm(u)

        if beta > 0:
            u = (1 / beta) * u
            v = A.rmatvec(u) - beta * v
            alpha = norm(v)
            if alpha > 0:
                v = (1 / alpha) * v

        # At this point, beta = beta_{k+1}, alpha = alpha_{k+1}.

        # Construct rotation Qhat_{k,2k+1}.

        chat, shat, alphahat = _sym_ortho(alphabar, damp)

        # Use a plane rotation (Q_i) to turn B_i to R_i

        rhoold = rho
        c, s, rho = _sym_ortho(alphahat, beta)
        thetanew = s*alpha
        alphabar = c*alpha

        # Use a plane rotation (Qbar_i) to turn R_i^T to R_i^bar

        rhobarold = rhobar
        zetaold = zeta
        thetabar = sbar * rho
        rhotemp = cbar * rho
        cbar, sbar, rhobar = _sym_ortho(cbar * rho, thetanew)
        zeta = cbar * zetabar
        zetabar = - sbar * zetabar

        # Update h, h_hat, x.

        hbar = h - (thetabar * rho / (rhoold * rhobarold)) * hbar
        x = x + (zeta / (rho * rhobar)) * hbar
        h = v - (thetanew / rho) * h

        # Estimate of ||r||.

        # Apply rotation Qhat_{k,2k+1}.
        betaacute = chat * betadd
        betacheck = -shat * betadd

        # Apply rotation Q_{k,k+1}.
        betahat = c * betaacute
        betadd = -s * betaacute

        # Apply rotation Qtilde_{k-1}.
        # betad = betad_{k-1} here.

        thetatildeold = thetatilde
        ctildeold, stildeold, rhotildeold = _sym_ortho(rhodold, thetabar)
        thetatilde = stildeold * rhobar
        rhodold = ctildeold * rhobar
        betad = - stildeold * betad + ctildeold * betahat

        # betad   = betad_k here.
        # rhodold = rhod_k  here.

        tautildeold = (zetaold - thetatildeold * tautildeold) / rhotildeold
        taud = (zeta - thetatilde * tautildeold) / rhodold
        d = d + betacheck * betacheck
        normr = sqrt(d + (betad - taud)**2 + betadd * betadd)

        # Estimate ||A||.
        normA2 = normA2 + beta * beta
        normA = sqrt(normA2)
        normA2 = normA2 + alpha * alpha

        # Estimate cond(A).
        maxrbar = max(maxrbar, rhobarold)
        if itn > 1:
            minrbar = min(minrbar, rhobarold)
        condA = max(maxrbar, rhotemp) / min(minrbar, rhotemp)

        # Test for convergence.

        # Compute norms for convergence testing.
        normar = abs(zetabar)
        normx = norm(x)

        # Now use these norms to estimate certain other quantities,
        # some of which will be small near a solution.

        test1 = normr / normb
        if (normA * normr) != 0:
            test2 = normar / (normA * normr)
        else:
            test2 = infty
        test3 = 1 / condA
        t1 = test1 / (1 + normA * normx / normb)
        rtol = btol + atol * normA * normx / normb

        # The following tests guard against extremely small values of
        # atol, btol or ctol.  (The user may have set any or all of
        # the parameters atol, btol, conlim  to 0.)
        # The effect is equivalent to the normAl tests using
        # atol = eps,  btol = eps,  conlim = 1/eps.

        if itn >= maxiter:
            istop = 7
        if 1 + test3 <= 1:
            istop = 6
        if 1 + test2 <= 1:
            istop = 5
        if 1 + t1 <= 1:
            istop = 4

        # Allow for tolerances set by the user.

        if test3 <= ctol:
            istop = 3
        if test2 <= atol:
            istop = 2
        if test1 <= rtol:
            istop = 1

        # See if it is time to print something.

        if show:
            if (n <= 40) or (itn <= 10) or (itn >= maxiter - 10) or \
               (itn % 10 == 0) or (test3 <= 1.1 * ctol) or \
               (test2 <= 1.1 * atol) or (test1 <= 1.1 * rtol) or \
               (istop != 0):

                if pcount >= pfreq:
                    pcount = 0
                    print(' ')
                    print(hdg1, hdg2)
                pcount = pcount + 1
                str1 = '%6g %12.5e' % (itn, x[0])
                str2 = ' %10.3e %10.3e' % (normr, normar)
                str3 = '  %8.1e %8.1e' % (test1, test2)
                str4 = ' %8.1e %8.1e' % (normA, condA)
                print(''.join([str1, str2, str3, str4]))

        if istop > 0:
            break

    # Print the stopping condition.

    if show:
        print(' ')
        print('LSMR finished')
        print(msg[istop])
        print('istop =%8g    normr =%8.1e' % (istop, normr))
        print('    normA =%8.1e    normAr =%8.1e' % (normA, normar))
        print('itn   =%8g    condA =%8.1e' % (itn, condA))
        print('    normx =%8.1e' % (normx))
        print(str1, str2)
        print(str3, str4)

    return x, istop, itn, normr, normar, normA, condA, normx