1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
#!/usr/bin/env python
""" Test functions for the sparse.linalg.isolve module
"""
from __future__ import division, print_function, absolute_import
import warnings
import numpy as np
from numpy.testing import (TestCase, assert_equal, assert_array_equal,
assert_, assert_allclose, assert_raises, run_module_suite)
from numpy import zeros, arange, array, abs, max, ones, eye, iscomplexobj
from scipy.linalg import norm
from scipy.sparse import spdiags, csr_matrix, SparseEfficiencyWarning
from scipy.sparse.linalg import LinearOperator, aslinearoperator
from scipy.sparse.linalg.isolve import cg, cgs, bicg, bicgstab, gmres, qmr, minres, lgmres
# TODO check that method preserve shape and type
# TODO test both preconditioner methods
class Case(object):
def __init__(self, name, A, skip=None):
self.name = name
self.A = A
if skip is None:
self.skip = []
else:
self.skip = skip
def __repr__(self):
return "<%s>" % self.name
class IterativeParams(object):
def __init__(self):
# list of tuples (solver, symmetric, positive_definite )
solvers = [cg, cgs, bicg, bicgstab, gmres, qmr, minres, lgmres]
sym_solvers = [minres, cg]
posdef_solvers = [cg]
real_solvers = [minres]
self.solvers = solvers
# list of tuples (A, symmetric, positive_definite )
self.cases = []
# Symmetric and Positive Definite
N = 40
data = ones((3,N))
data[0,:] = 2
data[1,:] = -1
data[2,:] = -1
Poisson1D = spdiags(data, [0,-1,1], N, N, format='csr')
self.Poisson1D = Case("poisson1d", Poisson1D)
self.cases.append(Case("poisson1d", Poisson1D))
# note: minres fails for single precision
self.cases.append(Case("poisson1d", Poisson1D.astype('f'),
skip=[minres]))
# Symmetric and Negative Definite
self.cases.append(Case("neg-poisson1d", -Poisson1D,
skip=posdef_solvers))
# note: minres fails for single precision
self.cases.append(Case("neg-poisson1d", (-Poisson1D).astype('f'),
skip=posdef_solvers + [minres]))
# Symmetric and Indefinite
data = array([[6, -5, 2, 7, -1, 10, 4, -3, -8, 9]],dtype='d')
RandDiag = spdiags(data, [0], 10, 10, format='csr')
self.cases.append(Case("rand-diag", RandDiag, skip=posdef_solvers))
self.cases.append(Case("rand-diag", RandDiag.astype('f'),
skip=posdef_solvers))
# Random real-valued
np.random.seed(1234)
data = np.random.rand(4, 4)
self.cases.append(Case("rand", data, skip=posdef_solvers+sym_solvers))
self.cases.append(Case("rand", data.astype('f'),
skip=posdef_solvers+sym_solvers))
# Random symmetric real-valued
np.random.seed(1234)
data = np.random.rand(4, 4)
data = data + data.T
self.cases.append(Case("rand-sym", data, skip=posdef_solvers))
self.cases.append(Case("rand-sym", data.astype('f'),
skip=posdef_solvers))
# Random pos-def symmetric real
np.random.seed(1234)
data = np.random.rand(9, 9)
data = np.dot(data.conj(), data.T)
self.cases.append(Case("rand-sym-pd", data))
# note: minres fails for single precision
self.cases.append(Case("rand-sym-pd", data.astype('f'),
skip=[minres]))
# Random complex-valued
np.random.seed(1234)
data = np.random.rand(4, 4) + 1j*np.random.rand(4, 4)
self.cases.append(Case("rand-cmplx", data,
skip=posdef_solvers+sym_solvers+real_solvers))
self.cases.append(Case("rand-cmplx", data.astype('F'),
skip=posdef_solvers+sym_solvers+real_solvers))
# Random hermitian complex-valued
np.random.seed(1234)
data = np.random.rand(4, 4) + 1j*np.random.rand(4, 4)
data = data + data.T.conj()
self.cases.append(Case("rand-cmplx-herm", data,
skip=posdef_solvers+real_solvers))
self.cases.append(Case("rand-cmplx-herm", data.astype('F'),
skip=posdef_solvers+real_solvers))
# Random pos-def hermitian complex-valued
np.random.seed(1234)
data = np.random.rand(9, 9) + 1j*np.random.rand(9, 9)
data = np.dot(data.conj(), data.T)
self.cases.append(Case("rand-cmplx-sym-pd", data, skip=real_solvers))
self.cases.append(Case("rand-cmplx-sym-pd", data.astype('F'),
skip=real_solvers))
# Non-symmetric and Positive Definite
#
# cgs, qmr, and bicg fail to converge on this one
# -- algorithmic limitation apparently
data = ones((2,10))
data[0,:] = 2
data[1,:] = -1
A = spdiags(data, [0,-1], 10, 10, format='csr')
self.cases.append(Case("nonsymposdef", A,
skip=sym_solvers+[cgs, qmr, bicg]))
self.cases.append(Case("nonsymposdef", A.astype('F'),
skip=sym_solvers+[cgs, qmr, bicg]))
params = None
def setup_module():
global params
params = IterativeParams()
def check_maxiter(solver, case):
A = case.A
tol = 1e-12
b = arange(A.shape[0], dtype=float)
x0 = 0*b
residuals = []
def callback(x):
residuals.append(norm(b - case.A*x))
x, info = solver(A, b, x0=x0, tol=tol, maxiter=3, callback=callback)
assert_equal(len(residuals), 3)
assert_equal(info, 3)
def test_maxiter():
case = params.Poisson1D
for solver in params.solvers:
if solver in case.skip:
continue
yield check_maxiter, solver, case
def assert_normclose(a, b, tol=1e-8):
residual = norm(a - b)
tolerance = tol*norm(b)
msg = "residual (%g) not smaller than tolerance %g" % (residual, tolerance)
assert_(residual < tolerance, msg=msg)
def check_convergence(solver, case):
A = case.A
if A.dtype.char in "dD":
tol = 1e-8
else:
tol = 1e-2
b = arange(A.shape[0], dtype=A.dtype)
x0 = 0*b
x, info = solver(A, b, x0=x0, tol=tol)
assert_array_equal(x0, 0*b) # ensure that x0 is not overwritten
assert_equal(info,0)
assert_normclose(A.dot(x), b, tol=tol)
def test_convergence():
for solver in params.solvers:
for case in params.cases:
if solver in case.skip:
continue
yield check_convergence, solver, case
def check_precond_dummy(solver, case):
tol = 1e-8
def identity(b,which=None):
"""trivial preconditioner"""
return b
A = case.A
M,N = A.shape
D = spdiags([1.0/A.diagonal()], [0], M, N)
b = arange(A.shape[0], dtype=float)
x0 = 0*b
precond = LinearOperator(A.shape, identity, rmatvec=identity)
if solver is qmr:
x, info = solver(A, b, M1=precond, M2=precond, x0=x0, tol=tol)
else:
x, info = solver(A, b, M=precond, x0=x0, tol=tol)
assert_equal(info,0)
assert_normclose(A.dot(x), b, tol)
A = aslinearoperator(A)
A.psolve = identity
A.rpsolve = identity
x, info = solver(A, b, x0=x0, tol=tol)
assert_equal(info,0)
assert_normclose(A*x, b, tol=tol)
def test_precond_dummy():
case = params.Poisson1D
for solver in params.solvers:
if solver in case.skip:
continue
yield check_precond_dummy, solver, case
def test_gmres_basic():
A = np.vander(np.arange(10) + 1)[:, ::-1]
b = np.zeros(10)
b[0] = 1
x = np.linalg.solve(A, b)
x_gm, err = gmres(A, b, restart=5, maxiter=1)
assert_allclose(x_gm[0], 0.359, rtol=1e-2)
def test_reentrancy():
non_reentrant = [cg, cgs, bicg, bicgstab, gmres, qmr]
reentrant = [lgmres, minres]
for solver in reentrant + non_reentrant:
yield _check_reentrancy, solver, solver in reentrant
def _check_reentrancy(solver, is_reentrant):
def matvec(x):
A = np.array([[1.0, 0, 0], [0, 2.0, 0], [0, 0, 3.0]])
y, info = solver(A, x)
assert_equal(info, 0)
return y
b = np.array([1, 1./2, 1./3])
op = LinearOperator((3, 3), matvec=matvec, rmatvec=matvec,
dtype=b.dtype)
if not is_reentrant:
assert_raises(RuntimeError, solver, op, b)
else:
y, info = solver(op, b)
assert_equal(info, 0)
assert_allclose(y, [1, 1, 1])
#------------------------------------------------------------------------------
class TestQMR(TestCase):
def test_leftright_precond(self):
"""Check that QMR works with left and right preconditioners"""
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=SparseEfficiencyWarning)
from scipy.sparse.linalg.dsolve import splu
from scipy.sparse.linalg.interface import LinearOperator
n = 100
dat = ones(n)
A = spdiags([-2*dat, 4*dat, -dat], [-1,0,1],n,n)
b = arange(n,dtype='d')
L = spdiags([-dat/2, dat], [-1,0], n, n)
U = spdiags([4*dat, -dat], [0,1], n, n)
L_solver = splu(L)
U_solver = splu(U)
def L_solve(b):
return L_solver.solve(b)
def U_solve(b):
return U_solver.solve(b)
def LT_solve(b):
return L_solver.solve(b,'T')
def UT_solve(b):
return U_solver.solve(b,'T')
M1 = LinearOperator((n,n), matvec=L_solve, rmatvec=LT_solve)
M2 = LinearOperator((n,n), matvec=U_solve, rmatvec=UT_solve)
x,info = qmr(A, b, tol=1e-8, maxiter=15, M1=M1, M2=M2)
assert_equal(info,0)
assert_normclose(A*x, b, tol=1e-8)
class TestGMRES(TestCase):
def test_callback(self):
def store_residual(r, rvec):
rvec[rvec.nonzero()[0].max()+1] = r
# Define, A,b
A = csr_matrix(array([[-2,1,0,0,0,0],[1,-2,1,0,0,0],[0,1,-2,1,0,0],[0,0,1,-2,1,0],[0,0,0,1,-2,1],[0,0,0,0,1,-2]]))
b = ones((A.shape[0],))
maxiter = 1
rvec = zeros(maxiter+1)
rvec[0] = 1.0
callback = lambda r:store_residual(r, rvec)
x,flag = gmres(A, b, x0=zeros(A.shape[0]), tol=1e-16, maxiter=maxiter, callback=callback)
diff = max(abs((rvec - array([1.0, 0.81649658092772603]))))
assert_(diff < 1e-5)
def test_abi(self):
# Check we don't segfault on gmres with complex argument
A = eye(2)
b = ones(2)
r_x, r_info = gmres(A, b)
r_x = r_x.astype(complex)
x, info = gmres(A.astype(complex), b.astype(complex))
assert_(iscomplexobj(x))
assert_allclose(r_x, x)
assert_(r_info == info)
if __name__ == "__main__":
run_module_suite()
|