File: test_lsmr.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (168 lines) | stat: -rw-r--r-- 4,925 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""
Copyright (C) 2010 David Fong and Michael Saunders
Distributed under the same license as Scipy

Testing Code for LSMR.

03 Jun 2010: First version release with lsmr.py

David Chin-lung Fong            clfong@stanford.edu
Institute for Computational and Mathematical Engineering
Stanford University

Michael Saunders                saunders@stanford.edu
Systems Optimization Laboratory
Dept of MS&E, Stanford University.

"""

from __future__ import division, print_function, absolute_import

from numpy import array, arange, eye, zeros, ones, sqrt, transpose, hstack
from numpy.linalg import norm
from numpy.testing import run_module_suite, assert_almost_equal

from scipy.sparse import coo_matrix
from scipy.sparse.linalg.interface import aslinearoperator
from scipy.sparse.linalg import lsmr


class TestLSMR:
    def setUp(self):
        self.n = 10
        self.m = 10

    def assertCompatibleSystem(self, A, xtrue):
        Afun = aslinearoperator(A)
        b = Afun.matvec(xtrue)
        x = lsmr(A, b)[0]
        assert_almost_equal(norm(x - xtrue), 0, decimal=5)

    def testIdentityACase1(self):
        A = eye(self.n)
        xtrue = zeros((self.n, 1))
        self.assertCompatibleSystem(A, xtrue)

    def testIdentityACase2(self):
        A = eye(self.n)
        xtrue = ones((self.n,1))
        self.assertCompatibleSystem(A, xtrue)

    def testIdentityACase3(self):
        A = eye(self.n)
        xtrue = transpose(arange(self.n,0,-1))
        self.assertCompatibleSystem(A, xtrue)

    def testBidiagonalA(self):
        A = lowerBidiagonalMatrix(20,self.n)
        xtrue = transpose(arange(self.n,0,-1))
        self.assertCompatibleSystem(A,xtrue)

    def testScalarB(self):
        A = array([[1.0, 2.0]])
        b = 3.0
        x = lsmr(A, b)[0]
        assert_almost_equal(norm(A.dot(x) - b), 0)

    def testColumnB(self):
        A = eye(self.n)
        b = ones((self.n, 1))
        x = lsmr(A, b)[0]
        assert_almost_equal(norm(A.dot(x) - b.ravel()), 0)


class TestLSMRReturns:
    def setUp(self):
        self.n = 10
        self.A = lowerBidiagonalMatrix(20,self.n)
        self.xtrue = transpose(arange(self.n,0,-1))
        self.Afun = aslinearoperator(self.A)
        self.b = self.Afun.matvec(self.xtrue)
        self.returnValues = lsmr(self.A,self.b)

    def testNormr(self):
        x, istop, itn, normr, normar, normA, condA, normx = self.returnValues
        assert_almost_equal(normr, norm(self.b - self.Afun.matvec(x)))

    def testNormar(self):
        x, istop, itn, normr, normar, normA, condA, normx = self.returnValues
        assert_almost_equal(normar,
                norm(self.Afun.rmatvec(self.b - self.Afun.matvec(x))))

    def testNormx(self):
        x, istop, itn, normr, normar, normA, condA, normx = self.returnValues
        assert_almost_equal(normx, norm(x))


def lowerBidiagonalMatrix(m, n):
    # This is a simple example for testing LSMR.
    # It uses the leading m*n submatrix from
    # A = [ 1
    #       1 2
    #         2 3
    #           3 4
    #             ...
    #               n ]
    # suitably padded by zeros.
    #
    # 04 Jun 2010: First version for distribution with lsmr.py
    if m <= n:
        row = hstack((arange(m, dtype=int),
                      arange(1, m, dtype=int)))
        col = hstack((arange(m, dtype=int),
                      arange(m-1, dtype=int)))
        data = hstack((arange(1, m+1, dtype=float),
                       arange(1,m, dtype=float)))
        return coo_matrix((data, (row, col)), shape=(m,n))
    else:
        row = hstack((arange(n, dtype=int),
                      arange(1, n+1, dtype=int)))
        col = hstack((arange(n, dtype=int),
                      arange(n, dtype=int)))
        data = hstack((arange(1, n+1, dtype=float),
                       arange(1,n+1, dtype=float)))
        return coo_matrix((data,(row, col)), shape=(m,n))


def lsmrtest(m, n, damp):
    """Verbose testing of lsmr"""

    A = lowerBidiagonalMatrix(m,n)
    xtrue = arange(n,0,-1, dtype=float)
    Afun = aslinearoperator(A)

    b = Afun.matvec(xtrue)

    atol = 1.0e-7
    btol = 1.0e-7
    conlim = 1.0e+10
    itnlim = 10*n
    show = 1

    x, istop, itn, normr, normar, norma, conda, normx \
      = lsmr(A, b, damp, atol, btol, conlim, itnlim, show)

    j1 = min(n,5)
    j2 = max(n-4,1)
    print(' ')
    print('First elements of x:')
    str = ['%10.4f' % (xi) for xi in x[0:j1]]
    print(''.join(str))
    print(' ')
    print('Last  elements of x:')
    str = ['%10.4f' % (xi) for xi in x[j2-1:]]
    print(''.join(str))

    r = b - Afun.matvec(x)
    r2 = sqrt(norm(r)**2 + (damp*norm(x))**2)
    print(' ')
    str = 'normr (est.)  %17.10e' % (normr)
    str2 = 'normr (true)  %17.10e' % (r2)
    print(str)
    print(str2)
    print(' ')

if __name__ == "__main__":
    # Comment out the next line to run unit tests only
    lsmrtest(20,10,0)
    run_module_suite()