1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import (assert_, assert_equal, assert_almost_equal,
assert_array_almost_equal)
from scipy._lib.six import xrange
import scipy.sparse
import scipy.sparse.linalg
from scipy.sparse.linalg import lsqr
from time import time
# Set up a test problem
n = 35
G = np.eye(n)
normal = np.random.normal
norm = np.linalg.norm
for jj in xrange(5):
gg = normal(size=n)
hh = gg * gg.T
G += (hh + hh.T) * 0.5
G += normal(size=n) * normal(size=n)
b = normal(size=n)
tol = 1e-10
show = False
maxit = None
def test_basic():
svx = np.linalg.solve(G, b)
X = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=maxit)
xo = X[0]
assert_(norm(svx - xo) < 1e-5)
def test_gh_2466():
row = np.array([0, 0])
col = np.array([0, 1])
val = np.array([1, -1])
A = scipy.sparse.coo_matrix((val, (row, col)), shape=(1, 2))
b = np.asarray([4])
lsqr(A, b)
def test_well_conditioned_problems():
# Test that sparse the lsqr solver returns the right solution
# on various problems with different random seeds.
# This is a non-regression test for a potential ZeroDivisionError
# raised when computing the `test2` & `test3` convergence conditions.
n = 10
A_sparse = scipy.sparse.eye(n, n)
A_dense = A_sparse.toarray()
with np.errstate(invalid='raise'):
for seed in range(30):
rng = np.random.RandomState(seed + 10)
beta = rng.rand(n)
beta[beta == 0] = 0.00001 # ensure that all the betas are not null
b = A_sparse * beta[:, np.newaxis]
output = lsqr(A_sparse, b, show=show)
# Check that the termination condition corresponds to an approximate
# solution to Ax = b
assert_equal(output[1], 1)
solution = output[0]
# Check that we recover the ground truth solution
assert_array_almost_equal(solution, beta)
# Sanity check: compare to the dense array solver
reference_solution = np.linalg.solve(A_dense, b).ravel()
assert_array_almost_equal(solution, reference_solution)
def test_b_shapes():
# Test b being a scalar.
A = np.array([[1.0, 2.0]])
b = 3.0
x = lsqr(A, b)[0]
assert_almost_equal(norm(A.dot(x) - b), 0)
# Test b being a column vector.
A = np.eye(10)
b = np.ones((10, 1))
x = lsqr(A, b)[0]
assert_almost_equal(norm(A.dot(x) - b.ravel()), 0)
if __name__ == "__main__":
svx = np.linalg.solve(G, b)
tic = time()
X = lsqr(G, b, show=show, atol=tol, btol=tol, iter_lim=maxit)
xo = X[0]
phio = X[3]
psio = X[7]
k = X[2]
chio = X[8]
mg = np.amax(G - G.T)
if mg > 1e-14:
sym = 'No'
else:
sym = 'Yes'
print('LSQR')
print("Is linear operator symmetric? " + sym)
print("n: %3g iterations: %3g" % (n, k))
print("Norms computed in %.2fs by LSQR" % (time() - tic))
print(" ||x|| %9.4e ||r|| %9.4e ||Ar|| %9.4e " % (chio, phio, psio))
print("Residual norms computed directly:")
print(" ||x|| %9.4e ||r|| %9.4e ||Ar|| %9.4e" % (norm(xo),
norm(G*xo - b),
norm(G.T*(G*xo-b))))
print("Direct solution norms:")
print(" ||x|| %9.4e ||r|| %9.4e " % (norm(svx), norm(G*svx - b)))
print("")
print(" || x_{direct} - x_{LSQR}|| %9.4e " % norm(svx-xo))
print("")
|