File: test_matfuncs.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (526 lines) | stat: -rw-r--r-- 19,051 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
#!/usr/bin/env python
#
# Created by: Pearu Peterson, March 2002
#
""" Test functions for scipy.linalg.matfuncs module

"""
from __future__ import division, print_function, absolute_import

import math

import warnings

import numpy as np
from numpy import array, eye, exp, random
from numpy.linalg import matrix_power
from numpy.testing import (TestCase, run_module_suite,
        assert_allclose, assert_, assert_array_almost_equal, assert_equal,
        assert_array_almost_equal_nulp)

from scipy.sparse import csc_matrix, SparseEfficiencyWarning
from scipy.sparse.construct import eye as speye
from scipy.sparse.linalg.matfuncs import (expm, _expm,
        ProductOperator, MatrixPowerOperator,
        _onenorm_matrix_power_nnm)
from scipy.linalg import logm
from scipy.special import factorial
import scipy.sparse
import scipy.sparse.linalg


def _burkardt_13_power(n, p):
    """
    A helper function for testing matrix functions.

    Parameters
    ----------
    n : integer greater than 1
        Order of the square matrix to be returned.
    p : non-negative integer
        Power of the matrix.

    Returns
    -------
    out : ndarray representing a square matrix
        A Forsythe matrix of order n, raised to the power p.

    """
    # Input validation.
    if n != int(n) or n < 2:
        raise ValueError('n must be an integer greater than 1')
    n = int(n)
    if p != int(p) or p < 0:
        raise ValueError('p must be a non-negative integer')
    p = int(p)

    # Construct the matrix explicitly.
    a, b = divmod(p, n)
    large = np.power(10.0, -n*a)
    small = large * np.power(10.0, -n)
    return np.diag([large]*(n-b), b) + np.diag([small]*b, b-n)


def test_onenorm_matrix_power_nnm():
    np.random.seed(1234)
    for n in range(1, 5):
        for p in range(5):
            M = np.random.random((n, n))
            Mp = np.linalg.matrix_power(M, p)
            observed = _onenorm_matrix_power_nnm(M, p)
            expected = np.linalg.norm(Mp, 1)
            assert_allclose(observed, expected)


class TestExpM(TestCase):
    def test_zero_ndarray(self):
        a = array([[0.,0],[0,0]])
        assert_array_almost_equal(expm(a),[[1,0],[0,1]])

    def test_zero_sparse(self):
        a = csc_matrix([[0.,0],[0,0]])
        assert_array_almost_equal(expm(a).toarray(),[[1,0],[0,1]])

    def test_zero_matrix(self):
        a = np.matrix([[0.,0],[0,0]])
        assert_array_almost_equal(expm(a),[[1,0],[0,1]])

    def test_misc_types(self):
        A = expm(np.array([[1]]))
        yield assert_allclose, expm(((1,),)), A
        yield assert_allclose, expm([[1]]), A
        yield assert_allclose, expm(np.matrix([[1]])), A
        yield assert_allclose, expm(np.array([[1]])), A
        yield assert_allclose, expm(csc_matrix([[1]])), A
        B = expm(np.array([[1j]]))
        yield assert_allclose, expm(((1j,),)), B
        yield assert_allclose, expm([[1j]]), B
        yield assert_allclose, expm(np.matrix([[1j]])), B
        yield assert_allclose, expm(csc_matrix([[1j]])), B

    def test_bidiagonal_sparse(self):
        A = csc_matrix([
            [1, 3, 0],
            [0, 1, 5],
            [0, 0, 2]], dtype=float)
        e1 = math.exp(1)
        e2 = math.exp(2)
        expected = np.array([
            [e1, 3*e1, 15*(e2 - 2*e1)],
            [0, e1, 5*(e2 - e1)],
            [0, 0, e2]], dtype=float)
        observed = expm(A).toarray()
        assert_array_almost_equal(observed, expected)

    def test_padecases_dtype_float(self):
        for dtype in [np.float32, np.float64]:
            for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
                A = scale * eye(3, dtype=dtype)
                observed = expm(A)
                expected = exp(scale) * eye(3, dtype=dtype)
                assert_array_almost_equal_nulp(observed, expected, nulp=100)

    def test_padecases_dtype_complex(self):
        for dtype in [np.complex64, np.complex128]:
            for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
                A = scale * eye(3, dtype=dtype)
                observed = expm(A)
                expected = exp(scale) * eye(3, dtype=dtype)
                assert_array_almost_equal_nulp(observed, expected, nulp=100)

    def test_padecases_dtype_sparse_float(self):
        # float32 and complex64 lead to errors in spsolve/UMFpack
        dtype = np.float64
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=SparseEfficiencyWarning)
            for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
                a = scale * speye(3, 3, dtype=dtype, format='csc')
                e = exp(scale) * eye(3, dtype=dtype)
                exact_onenorm = _expm(a, use_exact_onenorm=True).toarray()
                inexact_onenorm = _expm(a, use_exact_onenorm=False).toarray()
                assert_array_almost_equal_nulp(exact_onenorm, e, nulp=100)
                assert_array_almost_equal_nulp(inexact_onenorm, e, nulp=100)

    def test_padecases_dtype_sparse_complex(self):
        # float32 and complex64 lead to errors in spsolve/UMFpack
        dtype = np.complex128
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=SparseEfficiencyWarning)
            for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
                a = scale * speye(3, 3, dtype=dtype, format='csc')
                e = exp(scale) * eye(3, dtype=dtype)
                assert_array_almost_equal_nulp(expm(a).toarray(), e, nulp=100)

    def test_logm_consistency(self):
        random.seed(1234)
        for dtype in [np.float64, np.complex128]:
            for n in range(1, 10):
                for scale in [1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2]:
                    # make logm(A) be of a given scale
                    A = (eye(n) + random.rand(n, n) * scale).astype(dtype)
                    if np.iscomplexobj(A):
                        A = A + 1j * random.rand(n, n) * scale
                    assert_array_almost_equal(expm(logm(A)), A)

    def test_integer_matrix(self):
        Q = np.array([
            [-3, 1, 1, 1],
            [1, -3, 1, 1],
            [1, 1, -3, 1],
            [1, 1, 1, -3]])
        assert_allclose(expm(Q), expm(1.0 * Q))

    def test_triangularity_perturbation(self):
        # Experiment (1) of
        # Awad H. Al-Mohy and Nicholas J. Higham (2012)
        # Improved Inverse Scaling and Squaring Algorithms
        # for the Matrix Logarithm.
        A = np.array([
            [3.2346e-1, 3e4, 3e4, 3e4],
            [0, 3.0089e-1, 3e4, 3e4],
            [0, 0, 3.221e-1, 3e4],
            [0, 0, 0, 3.0744e-1]],
            dtype=float)
        A_logm = np.array([
            [-1.12867982029050462e+00, 9.61418377142025565e+04,
             -4.52485573953179264e+09, 2.92496941103871812e+14],
            [0.00000000000000000e+00, -1.20101052953082288e+00,
             9.63469687211303099e+04, -4.68104828911105442e+09],
            [0.00000000000000000e+00, 0.00000000000000000e+00,
             -1.13289322264498393e+00, 9.53249183094775653e+04],
            [0.00000000000000000e+00, 0.00000000000000000e+00,
             0.00000000000000000e+00, -1.17947533272554850e+00]],
            dtype=float)
        assert_allclose(expm(A_logm), A, rtol=1e-4)

        # Perturb the upper triangular matrix by tiny amounts,
        # so that it becomes technically not upper triangular.
        random.seed(1234)
        tiny = 1e-17
        A_logm_perturbed = A_logm.copy()
        A_logm_perturbed[1, 0] = tiny
        A_expm_logm_perturbed = expm(A_logm_perturbed)
        rtol = 1e-4
        atol = 100 * tiny
        assert_(not np.allclose(A_expm_logm_perturbed, A, rtol=rtol, atol=atol))

    def test_burkardt_1(self):
        # This matrix is diagonal.
        # The calculation of the matrix exponential is simple.
        #
        # This is the first of a series of matrix exponential tests
        # collected by John Burkardt from the following sources.
        #
        # Alan Laub,
        # Review of "Linear System Theory" by Joao Hespanha,
        # SIAM Review,
        # Volume 52, Number 4, December 2010, pages 779--781.
        #
        # Cleve Moler and Charles Van Loan,
        # Nineteen Dubious Ways to Compute the Exponential of a Matrix,
        # Twenty-Five Years Later,
        # SIAM Review,
        # Volume 45, Number 1, March 2003, pages 3--49.
        #
        # Cleve Moler,
        # Cleve's Corner: A Balancing Act for the Matrix Exponential,
        # 23 July 2012.
        #
        # Robert Ward,
        # Numerical computation of the matrix exponential
        # with accuracy estimate,
        # SIAM Journal on Numerical Analysis,
        # Volume 14, Number 4, September 1977, pages 600--610.
        exp1 = np.exp(1)
        exp2 = np.exp(2)
        A = np.array([
            [1, 0],
            [0, 2],
            ], dtype=float)
        desired = np.array([
            [exp1, 0],
            [0, exp2],
            ], dtype=float)
        actual = expm(A)
        assert_allclose(actual, desired)

    def test_burkardt_2(self):
        # This matrix is symmetric.
        # The calculation of the matrix exponential is straightforward.
        A = np.array([
            [1, 3],
            [3, 2],
            ], dtype=float)
        desired = np.array([
            [39.322809708033859, 46.166301438885753],
            [46.166301438885768, 54.711576854329110],
            ], dtype=float)
        actual = expm(A)
        assert_allclose(actual, desired)

    def test_burkardt_3(self):
        # This example is due to Laub.
        # This matrix is ill-suited for the Taylor series approach.
        # As powers of A are computed, the entries blow up too quickly.
        exp1 = np.exp(1)
        exp39 = np.exp(39)
        A = np.array([
            [0, 1],
            [-39, -40],
            ], dtype=float)
        desired = np.array([
            [
                39/(38*exp1) - 1/(38*exp39),
                -np.expm1(-38) / (38*exp1)],
            [
                39*np.expm1(-38) / (38*exp1),
                -1/(38*exp1) + 39/(38*exp39)],
            ], dtype=float)
        actual = expm(A)
        assert_allclose(actual, desired)

    def test_burkardt_4(self):
        # This example is due to Moler and Van Loan.
        # The example will cause problems for the series summation approach,
        # as well as for diagonal Pade approximations.
        A = np.array([
            [-49, 24],
            [-64, 31],
            ], dtype=float)
        U = np.array([[3, 1], [4, 2]], dtype=float)
        V = np.array([[1, -1/2], [-2, 3/2]], dtype=float)
        w = np.array([-17, -1], dtype=float)
        desired = np.dot(U * np.exp(w), V)
        actual = expm(A)
        assert_allclose(actual, desired)

    def test_burkardt_5(self):
        # This example is due to Moler and Van Loan.
        # This matrix is strictly upper triangular
        # All powers of A are zero beyond some (low) limit.
        # This example will cause problems for Pade approximations.
        A = np.array([
            [0, 6, 0, 0],
            [0, 0, 6, 0],
            [0, 0, 0, 6],
            [0, 0, 0, 0],
            ], dtype=float)
        desired = np.array([
            [1, 6, 18, 36],
            [0, 1, 6, 18],
            [0, 0, 1, 6],
            [0, 0, 0, 1],
            ], dtype=float)
        actual = expm(A)
        assert_allclose(actual, desired)

    def test_burkardt_6(self):
        # This example is due to Moler and Van Loan.
        # This matrix does not have a complete set of eigenvectors.
        # That means the eigenvector approach will fail.
        exp1 = np.exp(1)
        A = np.array([
            [1, 1],
            [0, 1],
            ], dtype=float)
        desired = np.array([
            [exp1, exp1],
            [0, exp1],
            ], dtype=float)
        actual = expm(A)
        assert_allclose(actual, desired)

    def test_burkardt_7(self):
        # This example is due to Moler and Van Loan.
        # This matrix is very close to example 5.
        # Mathematically, it has a complete set of eigenvectors.
        # Numerically, however, the calculation will be suspect.
        exp1 = np.exp(1)
        eps = np.spacing(1)
        A = np.array([
            [1 + eps, 1],
            [0, 1 - eps],
            ], dtype=float)
        desired = np.array([
            [exp1, exp1],
            [0, exp1],
            ], dtype=float)
        actual = expm(A)
        assert_allclose(actual, desired)

    def test_burkardt_8(self):
        # This matrix was an example in Wikipedia.
        exp4 = np.exp(4)
        exp16 = np.exp(16)
        A = np.array([
            [21, 17, 6],
            [-5, -1, -6],
            [4, 4, 16],
            ], dtype=float)
        desired = np.array([
            [13*exp16 - exp4, 13*exp16 - 5*exp4, 2*exp16 - 2*exp4],
            [-9*exp16 + exp4, -9*exp16 + 5*exp4, -2*exp16 + 2*exp4],
            [16*exp16, 16*exp16, 4*exp16],
            ], dtype=float) * 0.25
        actual = expm(A)
        assert_allclose(actual, desired)

    def test_burkardt_9(self):
        # This matrix is due to the NAG Library.
        # It is an example for function F01ECF.
        A = np.array([
            [1, 2, 2, 2],
            [3, 1, 1, 2],
            [3, 2, 1, 2],
            [3, 3, 3, 1],
            ], dtype=float)
        desired = np.array([
            [740.7038, 610.8500, 542.2743, 549.1753],
            [731.2510, 603.5524, 535.0884, 542.2743],
            [823.7630, 679.4257, 603.5524, 610.8500],
            [998.4355, 823.7630, 731.2510, 740.7038],
            ], dtype=float)
        actual = expm(A)
        assert_allclose(actual, desired)

    def test_burkardt_10(self):
        # This is Ward's example #1.
        # It is defective and nonderogatory.
        A = np.array([
            [4, 2, 0],
            [1, 4, 1],
            [1, 1, 4],
            ], dtype=float)
        assert_allclose(sorted(scipy.linalg.eigvals(A)), (3, 3, 6))
        desired = np.array([
            [147.8666224463699, 183.7651386463682, 71.79703239999647],
            [127.7810855231823, 183.7651386463682, 91.88256932318415],
            [127.7810855231824, 163.6796017231806, 111.9681062463718],
            ], dtype=float)
        actual = expm(A)
        assert_allclose(actual, desired)

    def test_burkardt_11(self):
        # This is Ward's example #2.
        # It is a symmetric matrix.
        A = np.array([
            [29.87942128909879, 0.7815750847907159, -2.289519314033932],
            [0.7815750847907159, 25.72656945571064, 8.680737820540137],
            [-2.289519314033932, 8.680737820540137, 34.39400925519054],
            ], dtype=float)
        assert_allclose(scipy.linalg.eigvalsh(A), (20, 30, 40))
        desired = np.array([
             [
                 5.496313853692378E+15,
                 -1.823188097200898E+16,
                 -3.047577080858001E+16],
             [
                -1.823188097200899E+16,
                6.060522870222108E+16,
                1.012918429302482E+17],
             [
                -3.047577080858001E+16,
                1.012918429302482E+17,
                1.692944112408493E+17],
            ], dtype=float)
        actual = expm(A)
        assert_allclose(actual, desired)

    def test_burkardt_12(self):
        # This is Ward's example #3.
        # Ward's algorithm has difficulty estimating the accuracy
        # of its results.
        A = np.array([
            [-131, 19, 18],
            [-390, 56, 54],
            [-387, 57, 52],
            ], dtype=float)
        assert_allclose(sorted(scipy.linalg.eigvals(A)), (-20, -2, -1))
        desired = np.array([
            [-1.509644158793135, 0.3678794391096522, 0.1353352811751005],
            [-5.632570799891469, 1.471517758499875, 0.4060058435250609],
            [-4.934938326088363, 1.103638317328798, 0.5413411267617766],
            ], dtype=float)
        actual = expm(A)
        assert_allclose(actual, desired)

    def test_burkardt_13(self):
        # This is Ward's example #4.
        # This is a version of the Forsythe matrix.
        # The eigenvector problem is badly conditioned.
        # Ward's algorithm has difficulty esimating the accuracy
        # of its results for this problem.
        #
        # Check the construction of one instance of this family of matrices.
        A4_actual = _burkardt_13_power(4, 1)
        A4_desired = [[0, 1, 0, 0],
                      [0, 0, 1, 0],
                      [0, 0, 0, 1],
                      [1e-4, 0, 0, 0]]
        assert_allclose(A4_actual, A4_desired)
        # Check the expm for a few instances.
        for n in (2, 3, 4, 10):
            # Approximate expm using Taylor series.
            # This works well for this matrix family
            # because each matrix in the summation,
            # even before dividing by the factorial,
            # is entrywise positive with max entry 10**(-floor(p/n)*n).
            k = max(1, int(np.ceil(16/n)))
            desired = np.zeros((n, n), dtype=float)
            for p in range(n*k):
                Ap = _burkardt_13_power(n, p)
                assert_equal(np.min(Ap), 0)
                assert_allclose(np.max(Ap), np.power(10, -np.floor(p/n)*n))
                desired += Ap / factorial(p)
            actual = expm(_burkardt_13_power(n, 1))
            assert_allclose(actual, desired)

    def test_burkardt_14(self):
        # This is Moler's example.
        # This badly scaled matrix caused problems for MATLAB's expm().
        A = np.array([
            [0, 1e-8, 0],
            [-(2e10 + 4e8/6.), -3, 2e10],
            [200./3., 0, -200./3.],
            ], dtype=float)
        desired = np.array([
            [0.446849468283175, 1.54044157383952e-09, 0.462811453558774],
            [-5743067.77947947, -0.0152830038686819, -4526542.71278401],
            [0.447722977849494, 1.54270484519591e-09, 0.463480648837651],
            ], dtype=float)
        actual = expm(A)
        assert_allclose(actual, desired)


class TestOperators(TestCase):

    def test_product_operator(self):
        random.seed(1234)
        n = 5
        k = 2
        nsamples = 10
        for i in range(nsamples):
            A = np.random.randn(n, n)
            B = np.random.randn(n, n)
            C = np.random.randn(n, n)
            D = np.random.randn(n, k)
            op = ProductOperator(A, B, C)
            assert_allclose(op.matmat(D), A.dot(B).dot(C).dot(D))
            assert_allclose(op.T.matmat(D), (A.dot(B).dot(C)).T.dot(D))

    def test_matrix_power_operator(self):
        random.seed(1234)
        n = 5
        k = 2
        p = 3
        nsamples = 10
        for i in range(nsamples):
            A = np.random.randn(n, n)
            B = np.random.randn(n, k)
            op = MatrixPowerOperator(A, p)
            assert_allclose(op.matmat(B), matrix_power(A, p).dot(B))
            assert_allclose(op.T.matmat(B), matrix_power(A, p).T.dot(B))


if __name__ == "__main__":
    run_module_suite()