1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
"""
Spherical Voronoi Code
.. versionadded:: 0.18.0
"""
#
# Copyright (C) Tyler Reddy, Ross Hemsley, Edd Edmondson,
# Nikolai Nowaczyk, Joe Pitt-Francis, 2015.
#
# Distributed under the same BSD license as Scipy.
#
import numpy as np
import numpy.matlib
import scipy
import itertools
from scipy._lib._version import NumpyVersion
# Whether Numpy has stacked matrix linear algebra
HAS_NUMPY_VEC_DET = (NumpyVersion(np.__version__) >= '1.8.0')
__all__ = ['SphericalVoronoi']
def calc_circumcenters(tetrahedrons):
""" Calculates the cirumcenters of the circumspheres of tetrahedrons.
An implementation based on
http://mathworld.wolfram.com/Circumsphere.html
Parameters
----------
tetrahedrons : an array of shape (N, 4, 3)
consisting of N tetrahedrons defined by 4 points in 3D
Returns
----------
circumcenters : an array of shape (N, 3)
consisting of the N circumcenters of the tetrahedrons in 3D
"""
num = tetrahedrons.shape[0]
a = np.concatenate((tetrahedrons, np.ones((num, 4, 1))), axis=2)
sums = np.sum(tetrahedrons ** 2, axis=2)
d = np.concatenate((sums[:, :, np.newaxis], a), axis=2)
dx = np.delete(d, 1, axis=2)
dy = np.delete(d, 2, axis=2)
dz = np.delete(d, 3, axis=2)
if HAS_NUMPY_VEC_DET:
dx = np.linalg.det(dx)
dy = -np.linalg.det(dy)
dz = np.linalg.det(dz)
a = np.linalg.det(a)
else:
dx = np.array([np.linalg.det(m) for m in dx])
dy = -np.array([np.linalg.det(m) for m in dy])
dz = np.array([np.linalg.det(m) for m in dz])
a = np.array([np.linalg.det(m) for m in a])
nominator = np.vstack((dx, dy, dz))
denominator = 2*a
return (nominator / denominator).T
def project_to_sphere(points, center, radius):
"""
Projects the elements of points onto the sphere defined
by center and radius.
Parameters
----------
points : array of floats of shape (npoints, ndim)
consisting of the points in a space of dimension ndim
center : array of floats of shape (ndim,)
the center of the sphere to project on
radius : float
the radius of the sphere to project on
returns: array of floats of shape (npoints, ndim)
the points projected onto the sphere
"""
lengths = scipy.spatial.distance.cdist(points, np.array([center]))
return (points - center) / lengths * radius + center
class SphericalVoronoi:
""" Voronoi diagrams on the surface of a sphere.
.. versionadded:: 0.18.0
Parameters
----------
points : ndarray of floats, shape (npoints, 3)
Coordinates of points to construct a spherical
Voronoi diagram from
radius : float, optional
Radius of the sphere (Default: 1)
center : ndarray of floats, shape (3,)
Center of sphere (Default: origin)
Attributes
----------
points : double array of shape (npoints, 3)
the points in 3D to generate the Voronoi diagram from
radius : double
radius of the sphere
Default: None (forces estimation, which is less precise)
center : double array of shape (3,)
center of the sphere
Default: None (assumes sphere is centered at origin)
vertices : double array of shape (nvertices, 3)
Voronoi vertices corresponding to points
regions : list of list of integers of shape (npoints, _ )
the n-th entry is a list consisting of the indices
of the vertices belonging to the n-th point in points
Notes
----------
The spherical Voronoi diagram algorithm proceeds as follows. The Convex
Hull of the input points (generators) is calculated, and is equivalent to
their Delaunay triangulation on the surface of the sphere [Caroli]_.
A 3D Delaunay tetrahedralization is obtained by including the origin of
the coordinate system as the fourth vertex of each simplex of the Convex
Hull. The circumcenters of all tetrahedra in the system are calculated and
projected to the surface of the sphere, producing the Voronoi vertices.
The Delaunay tetrahedralization neighbour information is then used to
order the Voronoi region vertices around each generator. The latter
approach is substantially less sensitive to floating point issues than
angle-based methods of Voronoi region vertex sorting.
The surface area of spherical polygons is calculated by decomposing them
into triangles and using L'Huilier's Theorem to calculate the spherical
excess of each triangle [Weisstein]_. The sum of the spherical excesses is
multiplied by the square of the sphere radius to obtain the surface area
of the spherical polygon. For nearly-degenerate spherical polygons an area
of approximately 0 is returned by default, rather than attempting the
unstable calculation.
Empirical assessment of spherical Voronoi algorithm performance suggests
quadratic time complexity (loglinear is optimal, but algorithms are more
challenging to implement). The reconstitution of the surface area of the
sphere, measured as the sum of the surface areas of all Voronoi regions,
is closest to 100 % for larger (>> 10) numbers of generators.
References
----------
.. [Caroli] Caroli et al. Robust and Efficient Delaunay triangulations of
points on or close to a sphere. Research Report RR-7004, 2009.
.. [Weisstein] "L'Huilier's Theorem." From MathWorld -- A Wolfram Web
Resource. http://mathworld.wolfram.com/LHuiliersTheorem.html
See Also
--------
Voronoi : Conventional Voronoi diagrams in N dimensions.
Examples
--------
>>> from matplotlib import colors
>>> from mpl_toolkits.mplot3d.art3d import Poly3DCollection
>>> import matplotlib.pyplot as plt
>>> from scipy.spatial import SphericalVoronoi
>>> from mpl_toolkits.mplot3d import proj3d
>>> # set input data
>>> points = np.array([[0, 0, 1], [0, 0, -1], [1, 0, 0],
... [0, 1, 0], [0, -1, 0], [-1, 0, 0], ])
>>> center = np.array([0, 0, 0])
>>> radius = 1
>>> # calculate spherical Voronoi diagram
>>> sv = SphericalVoronoi(points, radius, center)
>>> # sort vertices (optional, helpful for plotting)
>>> sv.sort_vertices_of_regions()
>>> # generate plot
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')
>>> # plot the unit sphere for reference (optional)
>>> u = np.linspace(0, 2 * np.pi, 100)
>>> v = np.linspace(0, np.pi, 100)
>>> x = np.outer(np.cos(u), np.sin(v))
>>> y = np.outer(np.sin(u), np.sin(v))
>>> z = np.outer(np.ones(np.size(u)), np.cos(v))
>>> ax.plot_surface(x, y, z, color='y', alpha=0.1)
>>> # plot generator points
>>> ax.scatter(points[:, 0], points[:, 1], points[:, 2], c='b')
>>> # plot Voronoi vertices
>>> ax.scatter(sv.vertices[:, 0], sv.vertices[:, 1], sv.vertices[:, 2],
... c='g')
>>> # indicate Voronoi regions (as Euclidean polygons)
>>> for region in sv.regions:
... random_color = colors.rgb2hex(np.random.rand(3))
... polygon = Poly3DCollection([sv.vertices[region]], alpha=1.0)
... polygon.set_color(random_color)
... ax.add_collection3d(polygon)
>>> plt.show()
"""
def __init__(self, points, radius=None, center=None):
"""
Initializes the object and starts the computation of the Voronoi
diagram.
points : The generator points of the Voronoi diagram assumed to be
all on the sphere with radius supplied by the radius parameter and
center supplied by the center parameter.
radius : The radius of the sphere. Will default to 1 if not supplied.
center : The center of the sphere. Will default to the origin if not
supplied.
"""
self.points = points
if np.any(center):
self.center = center
else:
self.center = np.zeros(3)
if radius:
self.radius = radius
else:
self.radius = 1
self.vertices = None
self.regions = None
self._tri = None
self._calc_vertices_regions()
def _calc_vertices_regions(self):
"""
Calculates the Voronoi vertices and regions of the generators stored
in self.points. The vertices will be stored in self.vertices and the
regions in self.regions.
This algorithm was discussed at PyData London 2015 by
Tyler Reddy, Ross Hemsley and Nikolai Nowaczyk
"""
# perform 3D Delaunay triangulation on data set
# (here ConvexHull can also be used, and is faster)
self._tri = scipy.spatial.ConvexHull(self.points)
# add the center to each of the simplices in tri to get the same
# tetrahedrons we'd have gotten from Delaunay tetrahedralization
tetrahedrons = self._tri.points[self._tri.simplices]
tetrahedrons = np.insert(
tetrahedrons,
3,
np.array([self.center]),
axis=1
)
# produce circumcenters of tetrahedrons from 3D Delaunay
circumcenters = calc_circumcenters(tetrahedrons)
# project tetrahedron circumcenters to the surface of the sphere
self.vertices = project_to_sphere(
circumcenters,
self.center,
self.radius
)
# calculate regions from triangulation
generator_indices = np.arange(self.points.shape[0])
filter_tuple = np.where((np.expand_dims(self._tri.simplices,
-1) == generator_indices).any(axis=1))
list_tuples_associations = zip(filter_tuple[1],
filter_tuple[0])
list_tuples_associations = sorted(list_tuples_associations,
key=lambda t: t[0])
# group by generator indices to produce
# unsorted regions in nested list
groups = []
for k, g in itertools.groupby(list_tuples_associations,
lambda t: t[0]):
groups.append([element[1] for element in list(g)])
self.regions = groups
def sort_vertices_of_regions(self):
"""
For each region in regions, it sorts the indices of the Voronoi
vertices such that the resulting points are in a clockwise or
counterclockwise order around the generator point.
This is done as follows: Recall that the n-th region in regions
surrounds the n-th generator in points and that the k-th
Voronoi vertex in vertices is the projected circumcenter of the
tetrahedron obtained by the k-th triangle in _tri.simplices (and the
origin). For each region n, we choose the first triangle (=Voronoi
vertex) in _tri.simplices and a vertex of that triangle not equal to
the center n. These determine a unique neighbor of that triangle,
which is then chosen as the second triangle. The second triangle
will have a unique vertex not equal to the current vertex or the
center. This determines a unique neighbor of the second triangle,
which is then chosen as the third triangle and so forth. We proceed
through all the triangles (=Voronoi vertices) belonging to the
generator in points and obtain a sorted version of the vertices
of its surrounding region.
"""
for n in range(0, len(self.regions)):
remaining = self.regions[n][:]
sorted_vertices = []
current_simplex = remaining[0]
current_vertex = [k for k in self._tri.simplices[current_simplex]
if k != n][0]
remaining.remove(current_simplex)
sorted_vertices.append(current_simplex)
while remaining:
current_simplex = [
s for s in remaining
if current_vertex in self._tri.simplices[s]
][0]
current_vertex = [
s for s in self._tri.simplices[current_simplex]
if s != n and s != current_vertex
][0]
remaining.remove(current_simplex)
sorted_vertices.append(current_simplex)
self.regions[n] = sorted_vertices
|