1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
|
# Copyright Anne M. Archibald 2008
# Additional contributions by Patrick Varilly and Sturla Molden 2012
# Revision by Sturla Molden 2015
# Balanced kd-tree construction written by Jake Vanderplas for scikit-learn
# Released under the scipy license
# distutils: language = c++
import numpy as np
import scipy.sparse
cimport numpy as np
from numpy.math cimport INFINITY
from cpython.mem cimport PyMem_Malloc, PyMem_Realloc, PyMem_Free
from libc.string cimport memset, memcpy
cimport cython
from multiprocessing import cpu_count
import threading
cdef extern from "limits.h":
long LONG_MAX
cdef extern from "ckdtree_methods.h":
int number_of_processors
number_of_processors = cpu_count()
from libcpp.vector cimport vector
from libc cimport string
__all__ = ['cKDTree']
# Borrowed references
# ===================
cdef extern from *:
struct ckdtree:
pass
int NPY_LIKELY(int)
int NPY_UNLIKELY(int)
cdef extern from "ckdtree_decl.h":
struct ckdtreenode:
np.intp_t split_dim
np.intp_t children
np.float64_t split
np.intp_t start_idx
np.intp_t end_idx
ckdtreenode *less
ckdtreenode *greater
np.intp_t _less
np.intp_t _greater
# C++ helper functions
# ====================
cdef extern from "coo_entries.h":
struct coo_entry:
np.intp_t i
np.intp_t j
np.float64_t v
cdef extern from "ordered_pair.h":
struct ordered_pair:
np.intp_t i
np.intp_t j
def new_object(obj):
return obj.__new__(obj)
cdef extern from "cpp_utils.h":
object pickle_tree_buffer(vector[ckdtreenode] *buf)
object unpickle_tree_buffer(vector[ckdtreenode] *buf, object src)
ckdtreenode *tree_buffer_root(vector[ckdtreenode] *buf)
ordered_pair *ordered_pair_vector_buf(vector[ordered_pair] *buf)
coo_entry *coo_entry_vector_buf(vector[coo_entry] *buf)
void *tree_buffer_pointer(vector[ckdtreenode] *buf)
np.intp_t *npy_intp_vector_buf(vector[np.intp_t] *buf)
np.float64_t *npy_float64_vector_buf(vector[np.float64_t] *buf)
ctypedef void *intvector_ptr_t
# coo_entry wrapper
# =================
cdef class coo_entries:
cdef:
readonly object __array_interface__
vector[coo_entry] *buf
def __cinit__(coo_entries self):
self.buf = NULL
def __init__(coo_entries self):
self.buf = new vector[coo_entry]()
def __dealloc__(coo_entries self):
if self.buf != NULL:
del self.buf
# The methods ndarray, dict, coo_matrix, and dok_matrix must only
# be called after the buffer is filled with coo_entry data. This
# is because std::vector can reallocate its internal buffer when
# push_back is called.
def ndarray(coo_entries self):
cdef:
coo_entry *pr
np.uintp_t uintptr
np.intp_t n
_dtype = [('i',np.intp),('j',np.intp),('v',np.float64)]
res_dtype = np.dtype(_dtype, align = True)
n = <np.intp_t> self.buf.size()
if NPY_LIKELY(n > 0):
pr = coo_entry_vector_buf(self.buf)
uintptr = <np.uintp_t> (<void*> pr)
dtype = np.dtype(np.uint8)
self.__array_interface__ = dict(
data = (uintptr, False),
descr = dtype.descr,
shape = (n*sizeof(coo_entry),),
strides = (dtype.itemsize,),
typestr = dtype.str,
version = 3,
)
return np.asarray(self).view(dtype=res_dtype)
else:
return np.empty(shape=(0,), dtype=res_dtype)
def dict(coo_entries self):
cdef:
np.intp_t i, j, k, n
np.float64_t v
coo_entry *pr
dict res_dict
n = <np.intp_t> self.buf.size()
if NPY_LIKELY(n > 0):
pr = coo_entry_vector_buf(self.buf)
res_dict = dict()
for k in range(n):
i = pr[k].i
j = pr[k].j
v = pr[k].v
res_dict[(i,j)] = v
return res_dict
else:
return {}
def coo_matrix(coo_entries self, m, n):
res_arr = self.ndarray()
return scipy.sparse.coo_matrix(
(res_arr['v'], (res_arr['i'], res_arr['j'])),
shape=(m, n))
def dok_matrix(coo_entries self, m, n):
return self.coo_matrix(m,n).todok()
# ordered_pair wrapper
# ====================
cdef class ordered_pairs:
cdef:
readonly object __array_interface__
vector[ordered_pair] *buf
def __cinit__(ordered_pairs self):
self.buf = NULL
def __init__(ordered_pairs self):
self.buf = new vector[ordered_pair]()
def __dealloc__(ordered_pairs self):
if self.buf != NULL:
del self.buf
# The methods ndarray and set must only be called after the buffer
# is filled with ordered_pair data.
def ndarray(ordered_pairs self):
cdef:
ordered_pair *pr
np.uintp_t uintptr
np.intp_t n
n = <np.intp_t> self.buf.size()
if NPY_LIKELY(n > 0):
pr = ordered_pair_vector_buf(self.buf)
uintptr = <np.uintp_t> (<void*> pr)
dtype = np.dtype(np.intp)
self.__array_interface__ = dict(
data = (uintptr, False),
descr = dtype.descr,
shape = (n,2),
strides = (2*dtype.itemsize,dtype.itemsize),
typestr = dtype.str,
version = 3,
)
return np.asarray(self)
else:
return np.empty(shape=(0,2), dtype=np.intp)
def set(ordered_pairs self):
cdef:
ordered_pair *pair
np.intp_t i, n
set results
results = set()
pair = ordered_pair_vector_buf(self.buf)
n = <np.intp_t> self.buf.size()
if sizeof(long) < sizeof(np.intp_t):
# Needed for Python 2.x on Win64
for i in range(n):
results.add((int(pair.i), int(pair.j)))
pair += 1
else:
# other platforms
for i in range(n):
results.add((pair.i, pair.j))
pair += 1
return results
# Tree structure exposed to Python
# ================================
cdef class cKDTreeNode:
"""
class cKDTreeNode
This class exposes a Python view of a node in the cKDTree object.
All attributes are read-only.
Attributes
----------
level : int
The depth of the node. 0 is the level of the root node.
split_dim : int
The dimension along which this node is split. If this value is -1
the node is a leafnode in the kd-tree. Leafnodes are not split further
and scanned by brute force.
split : float
The value used to separate split this node. Points with value >= split
in the split_dim dimension are sorted to the 'greater' subnode
whereas those with value < split are sorted to the 'lesser' subnode.
children : int
The number of data points sorted to this node.
data_points : ndarray of float64
An array with the data points sorted to this node.
indices : ndarray of intp
An array with the indices of the data points sorted to this node. The
indices refer to the position in the data set used to construct the
kd-tree.
lesser : cKDTreeNode or None
Subnode with the 'lesser' data points. This attribute is None for
leafnodes.
greater : cKDTreeNode or None
Subnode with the 'greater' data points. This attribute is None for
leafnodes.
"""
cdef:
readonly np.intp_t level
readonly np.intp_t split_dim
readonly np.intp_t children
readonly np.float64_t split
ckdtreenode *_node
np.ndarray _data
np.ndarray _indices
cdef void _setup(cKDTreeNode self):
self.split_dim = self._node.split_dim
self.children = self._node.children
self.split = self._node.split
property data_points:
def __get__(cKDTreeNode self):
return self._data[self.indices,:]
property indices:
def __get__(cKDTreeNode self):
cdef np.intp_t i, start, stop
if self.split_dim == -1:
start = self._node.start_idx
stop = self._node.end_idx
return self._indices[start:stop]
else:
return np.hstack([self.lesser.indices,
self.greater.indices])
property lesser:
def __get__(cKDTreeNode self):
if self.split_dim == -1:
return None
else:
n = cKDTreeNode()
n._node = self._node.less
n._data = self._data
n._indices = self._indices
n.level = self.level + 1
n._setup()
return n
property greater:
def __get__(cKDTreeNode self):
if self.split_dim == -1:
return None
else:
n = cKDTreeNode()
n._node = self._node.greater
n._data = self._data
n._indices = self._indices
n.level = self.level + 1
n._setup()
return n
# Main cKDTree class
# ==================
cdef extern from "ckdtree_methods.h":
# External build and query methods in C++. These will internally
# release the GIL to avoid locking up the interpreter.
int ckdtree_isinf(np.float64_t x)
object build_ckdtree(ckdtree *self,
np.intp_t start_idx,
np.intp_t end_idx,
np.float64_t *maxes,
np.float64_t *mins,
int _median,
int _compact)
object query_knn(const ckdtree *self,
np.float64_t *dd,
np.intp_t *ii,
const np.float64_t *xx,
const np.intp_t n,
const np.intp_t *k,
const np.intp_t nk,
const np.intp_t kmax,
const np.float64_t eps,
const np.float64_t p,
const np.float64_t distance_upper_bound)
object query_pairs(const ckdtree *self,
const np.float64_t r,
const np.float64_t p,
const np.float64_t eps,
vector[ordered_pair] *results)
object count_neighbors(const ckdtree *self,
const ckdtree *other,
np.intp_t n_queries,
np.float64_t *real_r,
np.intp_t *results,
np.intp_t *idx,
const np.float64_t p)
object query_ball_point(const ckdtree *self,
const np.float64_t *x,
const np.float64_t r,
const np.float64_t p,
const np.float64_t eps,
const np.intp_t n_queries,
vector[np.intp_t] **results)
object query_ball_tree(const ckdtree *self,
const ckdtree *other,
const np.float64_t r,
const np.float64_t p,
const np.float64_t eps,
vector[np.intp_t] **results)
object sparse_distance_matrix(const ckdtree *self,
const ckdtree *other,
const np.float64_t p,
const np.float64_t max_distance,
vector[coo_entry] *results)
cdef public class cKDTree [object ckdtree, type ckdtree_type]:
"""
cKDTree(data, leafsize=16, compact_nodes=True, copy_data=False,
balanced_tree=True)
kd-tree for quick nearest-neighbor lookup
This class provides an index into a set of k-dimensional points
which can be used to rapidly look up the nearest neighbors of any
point.
The algorithm used is described in Maneewongvatana and Mount 1999.
The general idea is that the kd-tree is a binary trie, each of whose
nodes represents an axis-aligned hyperrectangle. Each node specifies
an axis and splits the set of points based on whether their coordinate
along that axis is greater than or less than a particular value.
During construction, the axis and splitting point are chosen by the
"sliding midpoint" rule, which ensures that the cells do not all
become long and thin.
The tree can be queried for the r closest neighbors of any given point
(optionally returning only those within some maximum distance of the
point). It can also be queried, with a substantial gain in efficiency,
for the r approximate closest neighbors.
For large dimensions (20 is already large) do not expect this to run
significantly faster than brute force. High-dimensional nearest-neighbor
queries are a substantial open problem in computer science.
Parameters
----------
data : array_like, shape (n,m)
The n data points of dimension m to be indexed. This array is
not copied unless this is necessary to produce a contiguous
array of doubles, and so modifying this data will result in
bogus results. The data are also copied if the kd-tree is built
with copy_data=True.
leafsize : positive int, optional
The number of points at which the algorithm switches over to
brute-force. Default: 16.
compact_nodes : bool, optional
If True, the kd-tree is built to shrink the hyperrectangles to
the actual data range. This usually gives a more compact tree and
faster queries at the expense of longer build time. Default: True.
copy_data : bool, optional
If True the data is always copied to protect the kd-tree against
data corruption. Default: False.
balanced_tree : bool, optional
If True, the median is used to split the hyperrectangles instead of
the midpoint. This usually gives a more compact tree and
faster queries at the expense of longer build time. Default: True.
boxsize : array_like or scalar, optional
Apply a m-d toroidal topology to the KDTree.. The topology is generated
by :math:`x_i + n_i L_i` where :math:`n_i` are integers and :math:`L_i`
is the boxsize along i-th dimension. The input data shall be wrapped
into :math:`[0, L_i)`. A ValueError is raised if any of the data is
outside of this bound.
See Also
--------
KDTree : Implementation of `cKDTree` in pure Python
"""
cdef:
vector[ckdtreenode] *tree_buffer
ckdtreenode *ctree
readonly cKDTreeNode tree
readonly np.ndarray data
np.float64_t *raw_data
readonly np.intp_t n, m
readonly np.intp_t leafsize
readonly np.ndarray maxes
np.float64_t *raw_maxes
readonly np.ndarray mins
np.float64_t *raw_mins
readonly np.ndarray indices
np.intp_t *raw_indices
np.ndarray _median_workspace
readonly object boxsize
np.ndarray boxsize_data
np.float64_t *raw_boxsize_data
def __cinit__(cKDTree self):
self.tree_buffer = NULL
def __init__(cKDTree self, data, np.intp_t leafsize=16, compact_nodes=True,
copy_data=False, balanced_tree=True, boxsize=None):
cdef np.ndarray[np.float64_t, ndim=2] data_arr
cdef np.float64_t *tmp
cdef int _median, _compact
cdef np.ndarray[np.float64_t, ndim=1] boxsize_arr
data_arr = np.ascontiguousarray(data, dtype=np.float64)
if copy_data and (data_arr is data):
data_arr = data_arr.copy()
self.data = data_arr
self.n = data_arr.shape[0]
self.m = data_arr.shape[1]
self.leafsize = leafsize
if self.leafsize<1:
raise ValueError("leafsize must be at least 1")
if boxsize is None:
self.boxsize = None
self.raw_boxsize_data = NULL
self.boxsize_data = None
else:
boxsize_arr = np.empty(2 * self.m, dtype=np.float64)
boxsize_arr[:] = boxsize
boxsize_arr[self.m:] = 0.5 * boxsize_arr[:self.m]
# FIXME: how to use a matching del if new is used?
self.boxsize_data = boxsize_arr
self.raw_boxsize_data = <np.float64_t*> np.PyArray_DATA(boxsize_arr)
self.boxsize = boxsize_arr[:self.m].copy()
if (self.data >= self.boxsize[None, :]).any():
raise ValueError("Some input data are greater than the size of the periodic box.")
if (self.data < 0).any():
raise ValueError("Negative input data are outside of the periodic box.")
self.maxes = np.ascontiguousarray(np.amax(self.data,axis=0), dtype=np.float64)
self.mins = np.ascontiguousarray(np.amin(self.data,axis=0), dtype=np.float64)
self.indices = np.ascontiguousarray(np.arange(self.n,dtype=np.intp))
self.raw_data = <np.float64_t*> np.PyArray_DATA(self.data)
self.raw_maxes = <np.float64_t*> np.PyArray_DATA(self.maxes)
self.raw_mins = <np.float64_t*> np.PyArray_DATA(self.mins)
self.raw_indices = <np.intp_t*> np.PyArray_DATA(self.indices)
_compact = 1 if compact_nodes else 0
_median = 1 if balanced_tree else 0
if _median:
self._median_workspace = np.zeros(self.n)
self.tree_buffer = new vector[ckdtreenode]()
try:
tmp = <np.float64_t*> PyMem_Malloc(self.m*2*sizeof(np.float64_t))
if tmp == NULL: raise MemoryError()
memcpy(tmp, self.raw_maxes, self.m*sizeof(np.float64_t))
memcpy(tmp + self.m, self.raw_mins, self.m*sizeof(np.float64_t))
build_ckdtree(<ckdtree*> self, 0, self.n, tmp, tmp + self.m,
_median, _compact)
finally:
PyMem_Free(tmp)
self._median_workspace = None
# set up the tree structure pointers
self.ctree = tree_buffer_root(self.tree_buffer)
self._post_init(self.ctree)
# make the tree viewable from Python
self.tree = cKDTreeNode()
self.tree._node = self.ctree
self.tree._data = self.data
self.tree._indices = self.indices
self.tree.level = 0
self.tree._setup()
cdef int _post_init(cKDTree self, ckdtreenode *node) except -1:
# recurse the tree and re-initialize
# "less" and "greater" fields
if node.split_dim == -1:
# leafnode
node.less = NULL
node.greater = NULL
else:
node.less = self.ctree + node._less
node.greater = self.ctree + node._greater
self._post_init(node.less)
self._post_init(node.greater)
return 0
def __dealloc__(cKDTree self):
if self.tree_buffer != NULL:
del self.tree_buffer
# -----
# query
# -----
@cython.boundscheck(False)
def query(cKDTree self, object x, object k=1, np.float64_t eps=0,
np.float64_t p=2, np.float64_t distance_upper_bound=INFINITY,
np.intp_t n_jobs=1):
"""
query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf, n_jobs=1)
Query the kd-tree for nearest neighbors
Parameters
----------
x : array_like, last dimension self.m
An array of points to query.
k : list of integer or integer
The list of k-th nearest neighbors to return. If k is an
integer it is treated as a list of [1, ... k] (range(1, k+1)).
Note that the counting starts from 1.
eps : non-negative float
Return approximate nearest neighbors; the k-th returned value
is guaranteed to be no further than (1+eps) times the
distance to the real k-th nearest neighbor.
p : float, 1<=p<=infinity
Which Minkowski p-norm to use.
1 is the sum-of-absolute-values "Manhattan" distance
2 is the usual Euclidean distance
infinity is the maximum-coordinate-difference distance
distance_upper_bound : nonnegative float
Return only neighbors within this distance. This is used to prune
tree searches, so if you are doing a series of nearest-neighbor
queries, it may help to supply the distance to the nearest neighbor
of the most recent point.
n_jobs : int, optional
Number of jobs to schedule for parallel processing. If -1 is given
all processors are used. Default: 1.
Returns
-------
d : array of floats
The distances to the nearest neighbors.
If x has shape tuple+(self.m,), then d has shape tuple+(len(k),).
When k == 1, the last dimension of the output is squeezed.
Missing neighbors are indicated with infinite distances.
i : ndarray of ints
The locations of the neighbors in self.data.
If `x` has shape tuple+(self.m,), then `i` has shape tuple+(len(k),).
When k == 1, the last dimension of the output is squeezed.
Missing neighbors are indicated with self.n.
Notes
-----
If the KD-Tree is periodic, the position :py:code:`x` is wrapped into the
box.
When the input k is a list, a query for arange(max(k)) is performed, but
only columns that store the requested values of k are preserved. This is
implemented in a manner that reduces memory usage.
Examples
--------
>>> tree = cKDTree(data)
To query the nearest neighbours and return squeezed result, use
>>> dd, ii = tree.query(x, k=1)
To query the nearest neighbours and return unsqueezed result, use
>>> dd, ii = tree.query(x, k=[1])
To query the second nearest neighbours and return unsqueezed result, use
>>> dd, ii = tree.query(x, k=[2])
To query the first and second nearest neighbours, use
>>> dd, ii = tree.query(x, k=2)
or, be more specific
>>> dd, ii = tree.query(x, k=[1, 2])
"""
cdef:
np.intp_t n, i, j
int overflown
x_arr = np.asarray(x, dtype=np.float64)
if x_arr.ndim == 0 or x_arr.shape[x_arr.ndim - 1] != self.m:
raise ValueError("x must consist of vectors of length %d but "
"has shape %s" % (int(self.m), np.shape(x)))
if p < 1:
raise ValueError("Only p-norms with 1<=p<=infinity permitted")
if x_arr.ndim == 1:
single = True
x_arr = x_arr[np.newaxis,:]
else:
single = False
nearest = False
if np.isscalar(k):
if k == 1:
nearest = True
k = np.arange(1, k + 1)
retshape = np.shape(x)[:-1]
n = <np.intp_t> np.prod(retshape)
xx = np.ascontiguousarray(x_arr).reshape(n, self.m)
dd = np.empty((n,len(k)),dtype=np.float64)
dd.fill(INFINITY)
ii = np.empty((n,len(k)),dtype=np.intp)
ii.fill(self.n)
# Do the query in an external C++ function.
# The GIL will be released in the external query function.
def _thread_func(self, np.intp_t start, np.intp_t stop):
cdef:
np.ndarray[np.intp_t,ndim=2] _ii = ii
np.ndarray[np.float64_t,ndim=2] _dd = dd
np.ndarray[np.float64_t,ndim=2] _xx = xx
np.ndarray[np.intp_t,ndim=1] _k = np.array(k, dtype=np.intp)
kmax = np.max(k)
query_knn(<ckdtree*>self, &_dd[start,0], &_ii[start,0],
&_xx[start,0], stop-start, &_k[0], len(k), kmax, eps, p, distance_upper_bound)
if (n_jobs == -1):
n_jobs = number_of_processors
if n_jobs > 1:
# static scheduling without load balancing is good enough
ranges = [(j * n // n_jobs, (j + 1) * n // n_jobs)
for j in range(n_jobs)]
# There might be n_jobs+1 threads spawned here, but only n_jobs of
# them will do significant work.
threads = [threading.Thread(target=_thread_func,
args=(self, start, stop)) for start, stop in ranges]
# Set the daemon flag so the process can be aborted,
# start all threads and wait for completion.
for t in threads:
t.daemon = True
t.start()
for t in threads:
t.join()
else:
_thread_func(self, 0, n)
# massage the output in conformabity to the documented behavior
if sizeof(long) < sizeof(np.intp_t):
# ... e.g. Windows 64
overflown = False
for i in range(n):
for j in range(len(k)):
if ii[i,j] > <np.intp_t>LONG_MAX:
# C long overlow, return array of dtype=np.int_p
overflown = True
break
if overflown:
break
if overflown:
ddret = np.reshape(dd,retshape+(len(k),))
iiret = np.reshape(ii,retshape+(len(k),))
else:
ddret = np.reshape(dd,retshape+(len(k),))
iiret = np.reshape(ii,retshape+(len(k),)).astype(int)
else:
# ... most other platforms
ddret = np.reshape(dd,retshape+(len(k),))
iiret = np.reshape(ii,retshape+(len(k),))
if nearest:
ddret = ddret[..., 0]
iiret = iiret[..., 0]
# the only case where we return a python scalar
if single:
ddret = float(ddret)
iiret = int(iiret)
return ddret, iiret
# ----------------
# query_ball_point
# ----------------
def query_ball_point(cKDTree self, object x, np.float64_t r,
np.float64_t p=2., np.float64_t eps=0, n_jobs=1):
"""
query_ball_point(self, x, r, p=2., eps=0)
Find all points within distance r of point(s) x.
Parameters
----------
x : array_like, shape tuple + (self.m,)
The point or points to search for neighbors of.
r : positive float
The radius of points to return.
p : float, optional
Which Minkowski p-norm to use. Should be in the range [1, inf].
eps : nonnegative float, optional
Approximate search. Branches of the tree are not explored if their
nearest points are further than ``r / (1 + eps)``, and branches are
added in bulk if their furthest points are nearer than
``r * (1 + eps)``.
n_jobs : int, optional
Number of jobs to schedule for parallel processing. If -1 is given
all processors are used. Default: 1.
Returns
-------
results : list or array of lists
If `x` is a single point, returns a list of the indices of the
neighbors of `x`. If `x` is an array of points, returns an object
array of shape tuple containing lists of neighbors.
Notes
-----
If you have many points whose neighbors you want to find, you may save
substantial amounts of time by putting them in a cKDTree and using
query_ball_tree.
Examples
--------
>>> from scipy import spatial
>>> x, y = np.mgrid[0:4, 0:4]
>>> points = zip(x.ravel(), y.ravel())
>>> tree = spatial.cKDTree(points)
>>> tree.query_ball_point([2, 0], 1)
[4, 8, 9, 12]
"""
cdef:
np.ndarray[np.float64_t, ndim=1, mode="c"] xx
np.ndarray[np.float64_t, ndim=2, mode="c"] vxx
vector[np.intp_t] *vres
vector[np.intp_t] **vvres
np.uintp_t vvres_uintp
np.intp_t *cur
list tmp
np.intp_t i, j, n, m
vres = NULL
vvres = NULL
try:
x = np.asarray(x, dtype=np.float64)
if x.shape[-1] != self.m:
raise ValueError("Searching for a %d-dimensional point in a "
"%d-dimensional KDTree" %
(int(x.shape[-1]), int(self.m)))
if len(x.shape) == 1:
vres = new vector[np.intp_t]()
xx = np.ascontiguousarray(x, dtype=np.float64)
query_ball_point(<ckdtree*> self, &xx[0], r, p, eps, 1, &vres)
n = <np.intp_t> vres.size()
tmp = n * [None]
if NPY_LIKELY(n > 0):
cur = npy_intp_vector_buf(vres)
for i in range(n):
tmp[i] = cur[0]
cur += 1
result = tmp
else:
retshape = x.shape[:-1]
# allocate an array of std::vector<npy_intp>
n = np.prod(retshape)
vvres = (<vector[np.intp_t] **>
PyMem_Malloc(n * sizeof(intvector_ptr_t)))
if vvres == NULL:
raise MemoryError()
memset(<void*> vvres, 0, n * sizeof(intvector_ptr_t))
for i in range(n):
vvres[i] = new vector[np.intp_t]()
result = np.empty(retshape, dtype=object)
vxx = np.zeros((n,self.m), dtype=np.float64)
i = 0
for c in np.ndindex(retshape):
vxx[i,:] = x[c]
i += 1
# multithreading logic is similar to cKDTree.query
if (n_jobs == -1):
n_jobs = number_of_processors
if n_jobs > 1:
CHUNK = n//n_jobs if n//n_jobs else n
def _thread_func(self, _j, _vxx, r, p, eps, _vvres, CHUNK):
cdef:
np.intp_t j = _j
np.ndarray[np.float64_t,ndim=2] vxx = _vxx
vector[np.intp_t] **vvres
np.intp_t start = j*CHUNK
np.intp_t stop = start + CHUNK
stop = n if stop > n else stop
vvres = (<vector[np.intp_t] **>
(<void*> (<np.uintp_t> _vvres)))
if start < n:
query_ball_point(<ckdtree*>self, &vxx[start,0],
r, p, eps, stop-start, vvres+start)
vvres_uintp = <np.uintp_t> (<void*> vvres)
threads = [threading.Thread(target=_thread_func,
args=(self, j, vxx, r, p, eps,vvres_uintp,CHUNK))
for j in range(1+(n//CHUNK))]
for t in threads:
t.daemon = True
t.start()
for t in threads:
t.join()
else:
query_ball_point(<ckdtree*>self, &vxx[0,0], r, p, eps,
n, vvres)
i = 0
for c in np.ndindex(retshape):
m = <np.intp_t> (vvres[i].size())
if NPY_LIKELY(m > 0):
tmp = m * [None]
cur = npy_intp_vector_buf(vvres[i])
for j in range(m):
tmp[j] = cur[0]
cur += 1
result[c] = sorted(tmp)
else:
result[c] = []
i += 1
finally:
if vres != NULL:
del vres
if vvres != NULL:
for i in range(n):
if vvres[i] != NULL:
del vvres[i]
PyMem_Free(vvres)
return result
# ---------------
# query_ball_tree
# ---------------
def query_ball_tree(cKDTree self, cKDTree other,
np.float64_t r, np.float64_t p=2., np.float64_t eps=0):
"""
query_ball_tree(self, other, r, p=2., eps=0)
Find all pairs of points whose distance is at most r
Parameters
----------
other : cKDTree instance
The tree containing points to search against.
r : float
The maximum distance, has to be positive.
p : float, optional
Which Minkowski norm to use. `p` has to meet the condition
``1 <= p <= infinity``.
eps : float, optional
Approximate search. Branches of the tree are not explored
if their nearest points are further than ``r/(1+eps)``, and
branches are added in bulk if their furthest points are nearer
than ``r * (1+eps)``. `eps` has to be non-negative.
Returns
-------
results : list of lists
For each element ``self.data[i]`` of this tree, ``results[i]`` is a
list of the indices of its neighbors in ``other.data``.
"""
cdef:
vector[np.intp_t] **vvres
np.intp_t i, j, n, m
np.intp_t *cur
list results
list tmp
# Make sure trees are compatible
if self.m != other.m:
raise ValueError("Trees passed to query_ball_tree have different "
"dimensionality")
n = self.n
try:
# allocate an array of std::vector<npy_intp>
vvres = (<vector[np.intp_t] **>
PyMem_Malloc(n * sizeof(intvector_ptr_t)))
if vvres == NULL:
raise MemoryError()
memset(<void*> vvres, 0, n * sizeof(intvector_ptr_t))
for i in range(n):
vvres[i] = new vector[np.intp_t]()
# query in C++
# the GIL will be released in the C++ code
query_ball_tree(
<ckdtree*> self, <ckdtree*> other, r, p, eps, vvres)
# store the results in a list of lists
results = n * [None]
for i in range(n):
m = <np.intp_t> (vvres[i].size())
if NPY_LIKELY(m > 0):
tmp = m * [None]
cur = npy_intp_vector_buf(vvres[i])
for j in range(m):
tmp[j] = cur[0]
cur += 1
results[i] = sorted(tmp)
else:
results[i] = []
finally:
if vvres != NULL:
for i in range(n):
if vvres[i] != NULL:
del vvres[i]
PyMem_Free(vvres)
return results
# -----------
# query_pairs
# -----------
def query_pairs(cKDTree self, np.float64_t r, np.float64_t p=2.,
np.float64_t eps=0, output_type='set'):
"""
query_pairs(self, r, p=2., eps=0)
Find all pairs of points whose distance is at most r.
Parameters
----------
r : positive float
The maximum distance.
p : float, optional
Which Minkowski norm to use. `p` has to meet the condition
``1 <= p <= infinity``.
eps : float, optional
Approximate search. Branches of the tree are not explored
if their nearest points are further than ``r/(1+eps)``, and
branches are added in bulk if their furthest points are nearer
than ``r * (1+eps)``. `eps` has to be non-negative.
output_type : string, optional
Choose the output container, 'set' or 'ndarray'. Default: 'set'
Returns
-------
results : set or ndarray
Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding
positions are close. If output_type is 'ndarray', an ndarry is
returned instead of a set.
"""
cdef ordered_pairs results
results = ordered_pairs()
query_pairs(<ckdtree*> self, r, p, eps, results.buf)
if output_type == 'set':
return results.set()
elif output_type == 'ndarray':
return results.ndarray()
else:
raise ValueError("Invalid output type")
# ---------------
# count_neighbors
# ---------------
@cython.boundscheck(False)
def count_neighbors(cKDTree self, cKDTree other, object r, np.float64_t p=2.):
"""
count_neighbors(self, other, r, p=2.)
Count how many nearby pairs can be formed.
Count the number of pairs (x1,x2) can be formed, with x1 drawn
from self and x2 drawn from `other`, and where
``distance(x1, x2, p) <= r``.
This is the "two-point correlation" described in Gray and Moore 2000,
"N-body problems in statistical learning", and the code here is based
on their algorithm.
Parameters
----------
other : cKDTree instance
The other tree to draw points from.
r : float or one-dimensional array of floats
The radius to produce a count for. Multiple radii are searched with
a single tree traversal.
p : float, optional
1<=p<=infinity, default 2.0
Which Minkowski p-norm to use
Returns
-------
result : int or 1-D array of ints
The number of pairs.
"""
cdef:
int r_ndim
np.intp_t n_queries, i
np.ndarray[np.float64_t, ndim=1, mode="c"] real_r
np.ndarray[np.intp_t, ndim=1, mode="c"] results, idx
# Make sure trees are compatible
if self.m != other.m:
raise ValueError("Trees passed to count_neighbors have different "
"dimensionality")
# Make a copy of r array to ensure it's contiguous and to modify it
# below
r_ndim = len(np.shape(r))
if r_ndim > 1:
raise ValueError("r must be either a single value or a "
"one-dimensional array of values")
real_r = np.array(r, ndmin=1, dtype=np.float64, copy=True)
n_queries = real_r.shape[0]
# Internally, we represent all distances as distance ** p
if not ckdtree_isinf(p):
for i in range(n_queries):
if not ckdtree_isinf(real_r[i]):
real_r[i] = real_r[i] ** p
results = np.zeros(n_queries, dtype=np.intp)
idx = np.arange(n_queries, dtype=np.intp)
count_neighbors(<ckdtree*> self, <ckdtree*> other, n_queries,
&real_r[0], &results[0], &idx[0], p)
if r_ndim == 0:
if results[0] <= <np.intp_t> LONG_MAX:
return int(results[0])
else:
return results[0]
else:
return results
# ----------------------
# sparse_distance_matrix
# ----------------------
def sparse_distance_matrix(cKDTree self, cKDTree other,
np.float64_t max_distance,
np.float64_t p=2.,
output_type='dok_matrix'):
"""
sparse_distance_matrix(self, other, max_distance, p=2.)
Compute a sparse distance matrix
Computes a distance matrix between two cKDTrees, leaving as zero
any distance greater than max_distance.
Parameters
----------
other : cKDTree
max_distance : positive float
p : float, 1<=p<=infinity
Which Minkowski p-norm to use.
output_type : string, optional
Which container to use for output data. Options: 'dok_matrix',
'coo_matrix', 'dict', or 'ndarray'. Default: 'dok_matrix'.
Returns
-------
result : dok_matrix, coo_matrix, dict or ndarray
Sparse matrix representing the results in "dictionary of keys"
format. If a dict is returned the keys are (i,j) tuples of indices.
If output_type is 'ndarray' a record array with fields 'i', 'j',
and 'k' is returned,
"""
cdef coo_entries res
# Make sure trees are compatible
if self.m != other.m:
raise ValueError("Trees passed to sparse_distance_matrix have "
"different dimensionality")
# do the query
res = coo_entries()
sparse_distance_matrix(
<ckdtree*> self, <ckdtree*> other, p, max_distance, res.buf)
if output_type == 'dict':
return res.dict()
elif output_type == 'ndarray':
return res.ndarray()
elif output_type == 'coo_matrix':
return res.coo_matrix(self.n, other.n)
elif output_type == 'dok_matrix':
return res.dok_matrix(self.n, other.n)
else:
raise ValueError('Invalid output type')
# ----------------------
# pickle
# ----------------------
def __reduce__(self):
return (new_object, (cKDTree,), self.__getstate__())
def __getstate__(cKDTree self):
cdef object state
cdef object tree = pickle_tree_buffer(self.tree_buffer)
state = (tree, self.data.copy(), self.n, self.m, self.leafsize,
self.maxes, self.mins, self.indices.copy(),
self.boxsize, self.boxsize_data)
return state
def __setstate__(cKDTree self, state):
cdef object tree
self.tree_buffer = new vector[ckdtreenode]()
# unpack the state
(tree, self.data, self.n, self.m, self.leafsize,
self.maxes, self.mins, self.indices, self.boxsize, self.boxsize_data) = state
# copy kd-tree buffer
unpickle_tree_buffer(self.tree_buffer, tree)
# set raw pointers
self.raw_data = <np.float64_t*>np.PyArray_DATA(self.data)
self.raw_maxes = <np.float64_t*>np.PyArray_DATA(self.maxes)
self.raw_mins = <np.float64_t*>np.PyArray_DATA(self.mins)
self.raw_indices = <np.intp_t*>np.PyArray_DATA(self.indices)
if self.boxsize_data is not None:
self.raw_boxsize_data = <np.float64_t*>np.PyArray_DATA(self.boxsize_data)
# set up the tree structure pointers
self.ctree = tree_buffer_root(self.tree_buffer)
self._post_init(self.ctree)
# make the tree viewable from Python
self.tree = cKDTreeNode()
self.tree._node = self.ctree
self.tree._data = self.data
self.tree._indices = self.indices
self.tree.level = 0
self.tree._setup()
|