File: distance.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (2211 lines) | stat: -rw-r--r-- 68,774 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
"""
=====================================================
Distance computations (:mod:`scipy.spatial.distance`)
=====================================================

.. sectionauthor:: Damian Eads

Function Reference
------------------

Distance matrix computation from a collection of raw observation vectors
stored in a rectangular array.

.. autosummary::
   :toctree: generated/

   pdist   -- pairwise distances between observation vectors.
   cdist   -- distances between two collections of observation vectors
   squareform -- convert distance matrix to a condensed one and vice versa

Predicates for checking the validity of distance matrices, both
condensed and redundant. Also contained in this module are functions
for computing the number of observations in a distance matrix.

.. autosummary::
   :toctree: generated/

   is_valid_dm -- checks for a valid distance matrix
   is_valid_y  -- checks for a valid condensed distance matrix
   num_obs_dm  -- # of observations in a distance matrix
   num_obs_y   -- # of observations in a condensed distance matrix

Distance functions between two numeric vectors ``u`` and ``v``. Computing
distances over a large collection of vectors is inefficient for these
functions. Use ``pdist`` for this purpose.

.. autosummary::
   :toctree: generated/

   braycurtis       -- the Bray-Curtis distance.
   canberra         -- the Canberra distance.
   chebyshev        -- the Chebyshev distance.
   cityblock        -- the Manhattan distance.
   correlation      -- the Correlation distance.
   cosine           -- the Cosine distance.
   euclidean        -- the Euclidean distance.
   mahalanobis      -- the Mahalanobis distance.
   minkowski        -- the Minkowski distance.
   seuclidean       -- the normalized Euclidean distance.
   sqeuclidean      -- the squared Euclidean distance.
   wminkowski       -- the weighted Minkowski distance.

Distance functions between two boolean vectors (representing sets) ``u`` and
``v``.  As in the case of numerical vectors, ``pdist`` is more efficient for
computing the distances between all pairs.

.. autosummary::
   :toctree: generated/

   dice             -- the Dice dissimilarity.
   hamming          -- the Hamming distance.
   jaccard          -- the Jaccard distance.
   kulsinski        -- the Kulsinski distance.
   matching         -- the matching dissimilarity.
   rogerstanimoto   -- the Rogers-Tanimoto dissimilarity.
   russellrao       -- the Russell-Rao dissimilarity.
   sokalmichener    -- the Sokal-Michener dissimilarity.
   sokalsneath      -- the Sokal-Sneath dissimilarity.
   yule             -- the Yule dissimilarity.

:func:`hamming` also operates over discrete numerical vectors.
"""

# Copyright (C) Damian Eads, 2007-2008. New BSD License.

from __future__ import division, print_function, absolute_import

__all__ = [
    'braycurtis',
    'canberra',
    'cdist',
    'chebyshev',
    'cityblock',
    'correlation',
    'cosine',
    'dice',
    'euclidean',
    'hamming',
    'is_valid_dm',
    'is_valid_y',
    'jaccard',
    'kulsinski',
    'mahalanobis',
    'matching',
    'minkowski',
    'num_obs_dm',
    'num_obs_y',
    'pdist',
    'rogerstanimoto',
    'russellrao',
    'seuclidean',
    'sokalmichener',
    'sokalsneath',
    'sqeuclidean',
    'squareform',
    'wminkowski',
    'yule'
]


import warnings
import numpy as np

from scipy._lib.six import callable, string_types
from scipy._lib.six import xrange

from . import _distance_wrap
from ..linalg import norm


def _copy_array_if_base_present(a):
    """
    Copies the array if its base points to a parent array.
    """
    if a.base is not None:
        return a.copy()
    elif np.issubsctype(a, np.float32):
        return np.array(a, dtype=np.double)
    else:
        return a


def _convert_to_bool(X):
    if X.dtype != bool:
        X = X.astype(bool)
    if not X.flags.contiguous:
        X = X.copy()
    return X


def _convert_to_double(X):
    if X.dtype != np.double:
        X = X.astype(np.double)
    if not X.flags.contiguous:
        X = X.copy()
    return X


def _validate_vector(u, dtype=None):
    # XXX Is order='c' really necessary?
    u = np.asarray(u, dtype=dtype, order='c').squeeze()
    # Ensure values such as u=1 and u=[1] still return 1-D arrays.
    u = np.atleast_1d(u)
    if u.ndim > 1:
        raise ValueError("Input vector should be 1-D.")
    return u


def minkowski(u, v, p):
    """
    Computes the Minkowski distance between two 1-D arrays.

    The Minkowski distance between 1-D arrays `u` and `v`,
    is defined as

    .. math::

       {||u-v||}_p = (\\sum{|u_i - v_i|^p})^{1/p}.

    Parameters
    ----------
    u : (N,) array_like
        Input array.
    v : (N,) array_like
        Input array.
    p : int
        The order of the norm of the difference :math:`{||u-v||}_p`.

    Returns
    -------
    d : double
        The Minkowski distance between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    if p < 1:
        raise ValueError("p must be at least 1")
    dist = norm(u - v, ord=p)
    return dist


def wminkowski(u, v, p, w):
    """
    Computes the weighted Minkowski distance between two 1-D arrays.

    The weighted Minkowski distance between `u` and `v`, defined as

    .. math::

       \\left(\\sum{(|w_i (u_i - v_i)|^p)}\\right)^{1/p}.

    Parameters
    ----------
    u : (N,) array_like
        Input array.
    v : (N,) array_like
        Input array.
    p : int
        The order of the norm of the difference :math:`{||u-v||}_p`.
    w : (N,) array_like
        The weight vector.

    Returns
    -------
    wminkowski : double
        The weighted Minkowski distance between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    w = _validate_vector(w)
    if p < 1:
        raise ValueError("p must be at least 1")
    dist = norm(w * (u - v), ord=p)
    return dist


def euclidean(u, v):
    """
    Computes the Euclidean distance between two 1-D arrays.

    The Euclidean distance between 1-D arrays `u` and `v`, is defined as

    .. math::

       {||u-v||}_2

    Parameters
    ----------
    u : (N,) array_like
        Input array.
    v : (N,) array_like
        Input array.

    Returns
    -------
    euclidean : double
        The Euclidean distance between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    dist = norm(u - v)
    return dist


def sqeuclidean(u, v):
    """
    Computes the squared Euclidean distance between two 1-D arrays.

    The squared Euclidean distance between `u` and `v` is defined as

    .. math::

       {||u-v||}_2^2.


    Parameters
    ----------
    u : (N,) array_like
        Input array.
    v : (N,) array_like
        Input array.

    Returns
    -------
    sqeuclidean : double
        The squared Euclidean distance between vectors `u` and `v`.

    """
    # Preserve float dtypes, but convert everything else to np.float64
    # for stability.
    utype, vtype = None, None
    if not (hasattr(u, "dtype") and np.issubdtype(u.dtype, np.inexact)):
        utype = np.float64
    if not (hasattr(v, "dtype") and np.issubdtype(v.dtype, np.inexact)):
        vtype = np.float64

    u = _validate_vector(u, dtype=utype)
    v = _validate_vector(v, dtype=vtype)
    u_v = u - v

    return np.dot(u_v, u_v)


def cosine(u, v):
    """
    Computes the Cosine distance between 1-D arrays.

    The Cosine distance between `u` and `v`, is defined as

    .. math::

       1 - \\frac{u \\cdot v}
                {||u||_2 ||v||_2}.

    where :math:`u \\cdot v` is the dot product of :math:`u` and
    :math:`v`.

    Parameters
    ----------
    u : (N,) array_like
        Input array.
    v : (N,) array_like
        Input array.

    Returns
    -------
    cosine : double
        The Cosine distance between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    dist = 1.0 - np.dot(u, v) / (norm(u) * norm(v))
    return dist


def correlation(u, v):
    """
    Computes the correlation distance between two 1-D arrays.

    The correlation distance between `u` and `v`, is
    defined as

    .. math::

       1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
               {{||(u - \\bar{u})||}_2 {||(v - \\bar{v})||}_2}

    where :math:`\\bar{u}` is the mean of the elements of `u`
    and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.

    Parameters
    ----------
    u : (N,) array_like
        Input array.
    v : (N,) array_like
        Input array.

    Returns
    -------
    correlation : double
        The correlation distance between 1-D array `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    umu = u.mean()
    vmu = v.mean()
    um = u - umu
    vm = v - vmu
    dist = 1.0 - np.dot(um, vm) / (norm(um) * norm(vm))
    return dist


def hamming(u, v):
    """
    Computes the Hamming distance between two 1-D arrays.

    The Hamming distance between 1-D arrays `u` and `v`, is simply the
    proportion of disagreeing components in `u` and `v`. If `u` and `v` are
    boolean vectors, the Hamming distance is

    .. math::

       \\frac{c_{01} + c_{10}}{n}

    where :math:`c_{ij}` is the number of occurrences of
    :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
    :math:`k < n`.

    Parameters
    ----------
    u : (N,) array_like
        Input array.
    v : (N,) array_like
        Input array.

    Returns
    -------
    hamming : double
        The Hamming distance between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    if u.shape != v.shape:
        raise ValueError('The 1d arrays must have equal lengths.')
    return (u != v).mean()


def jaccard(u, v):
    """
    Computes the Jaccard-Needham dissimilarity between two boolean 1-D arrays.

    The Jaccard-Needham dissimilarity between 1-D boolean arrays `u` and `v`,
    is defined as

    .. math::

       \\frac{c_{TF} + c_{FT}}
            {c_{TT} + c_{FT} + c_{TF}}

    where :math:`c_{ij}` is the number of occurrences of
    :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
    :math:`k < n`.

    Parameters
    ----------
    u : (N,) array_like, bool
        Input array.
    v : (N,) array_like, bool
        Input array.

    Returns
    -------
    jaccard : double
        The Jaccard distance between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    dist = (np.double(np.bitwise_and((u != v),
                                     np.bitwise_or(u != 0, v != 0)).sum())
            / np.double(np.bitwise_or(u != 0, v != 0).sum()))
    return dist


def kulsinski(u, v):
    """
    Computes the Kulsinski dissimilarity between two boolean 1-D arrays.

    The Kulsinski dissimilarity between two boolean 1-D arrays `u` and `v`,
    is defined as

    .. math::

         \\frac{c_{TF} + c_{FT} - c_{TT} + n}
              {c_{FT} + c_{TF} + n}

    where :math:`c_{ij}` is the number of occurrences of
    :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
    :math:`k < n`.

    Parameters
    ----------
    u : (N,) array_like, bool
        Input array.
    v : (N,) array_like, bool
        Input array.

    Returns
    -------
    kulsinski : double
        The Kulsinski distance between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    n = float(len(u))
    (nff, nft, ntf, ntt) = _nbool_correspond_all(u, v)

    return (ntf + nft - ntt + n) / (ntf + nft + n)


def seuclidean(u, v, V):
    """
    Returns the standardized Euclidean distance between two 1-D arrays.

    The standardized Euclidean distance between `u` and `v`.

    Parameters
    ----------
    u : (N,) array_like
        Input array.
    v : (N,) array_like
        Input array.
    V : (N,) array_like
        `V` is an 1-D array of component variances. It is usually computed
        among a larger collection vectors.

    Returns
    -------
    seuclidean : double
        The standardized Euclidean distance between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    V = _validate_vector(V, dtype=np.float64)
    if V.shape[0] != u.shape[0] or u.shape[0] != v.shape[0]:
        raise TypeError('V must be a 1-D array of the same dimension '
                        'as u and v.')
    return np.sqrt(((u - v) ** 2 / V).sum())


def cityblock(u, v):
    """
    Computes the City Block (Manhattan) distance.

    Computes the Manhattan distance between two 1-D arrays `u` and `v`,
    which is defined as

    .. math::

       \\sum_i {\\left| u_i - v_i \\right|}.

    Parameters
    ----------
    u : (N,) array_like
        Input array.
    v : (N,) array_like
        Input array.

    Returns
    -------
    cityblock : double
        The City Block (Manhattan) distance between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    return abs(u - v).sum()


def mahalanobis(u, v, VI):
    """
    Computes the Mahalanobis distance between two 1-D arrays.

    The Mahalanobis distance between 1-D arrays `u` and `v`, is defined as

    .. math::

       \\sqrt{ (u-v) V^{-1} (u-v)^T }

    where ``V`` is the covariance matrix.  Note that the argument `VI`
    is the inverse of ``V``.

    Parameters
    ----------
    u : (N,) array_like
        Input array.
    v : (N,) array_like
        Input array.
    VI : ndarray
        The inverse of the covariance matrix.

    Returns
    -------
    mahalanobis : double
        The Mahalanobis distance between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    VI = np.atleast_2d(VI)
    delta = u - v
    m = np.dot(np.dot(delta, VI), delta)
    return np.sqrt(m)


def chebyshev(u, v):
    """
    Computes the Chebyshev distance.

    Computes the Chebyshev distance between two 1-D arrays `u` and `v`,
    which is defined as

    .. math::

       \\max_i {|u_i-v_i|}.

    Parameters
    ----------
    u : (N,) array_like
        Input vector.
    v : (N,) array_like
        Input vector.

    Returns
    -------
    chebyshev : double
        The Chebyshev distance between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    return max(abs(u - v))


def braycurtis(u, v):
    """
    Computes the Bray-Curtis distance between two 1-D arrays.

    Bray-Curtis distance is defined as

    .. math::

       \\sum{|u_i-v_i|} / \\sum{|u_i+v_i|}

    The Bray-Curtis distance is in the range [0, 1] if all coordinates are
    positive, and is undefined if the inputs are of length zero.

    Parameters
    ----------
    u : (N,) array_like
        Input array.
    v : (N,) array_like
        Input array.

    Returns
    -------
    braycurtis : double
        The Bray-Curtis distance between 1-D arrays `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v, dtype=np.float64)
    return abs(u - v).sum() / abs(u + v).sum()


def canberra(u, v):
    """
    Computes the Canberra distance between two 1-D arrays.

    The Canberra distance is defined as

    .. math::

         d(u,v) = \\sum_i \\frac{|u_i-v_i|}
                              {|u_i|+|v_i|}.

    Parameters
    ----------
    u : (N,) array_like
        Input array.
    v : (N,) array_like
        Input array.

    Returns
    -------
    canberra : double
        The Canberra distance between vectors `u` and `v`.

    Notes
    -----
    When `u[i]` and `v[i]` are 0 for given i, then the fraction 0/0 = 0 is
    used in the calculation.

    """
    u = _validate_vector(u)
    v = _validate_vector(v, dtype=np.float64)
    olderr = np.seterr(invalid='ignore')
    try:
        d = np.nansum(abs(u - v) / (abs(u) + abs(v)))
    finally:
        np.seterr(**olderr)
    return d


def _nbool_correspond_all(u, v):
    if u.dtype != v.dtype:
        raise TypeError("Arrays being compared must be of the same data type.")

    if u.dtype == int or u.dtype == np.float_ or u.dtype == np.double:
        not_u = 1.0 - u
        not_v = 1.0 - v
        nff = (not_u * not_v).sum()
        nft = (not_u * v).sum()
        ntf = (u * not_v).sum()
        ntt = (u * v).sum()
    elif u.dtype == bool:
        not_u = ~u
        not_v = ~v
        nff = (not_u & not_v).sum()
        nft = (not_u & v).sum()
        ntf = (u & not_v).sum()
        ntt = (u & v).sum()
    else:
        raise TypeError("Arrays being compared have unknown type.")

    return (nff, nft, ntf, ntt)


def _nbool_correspond_ft_tf(u, v):
    if u.dtype == int or u.dtype == np.float_ or u.dtype == np.double:
        not_u = 1.0 - u
        not_v = 1.0 - v
        nft = (not_u * v).sum()
        ntf = (u * not_v).sum()
    else:
        not_u = ~u
        not_v = ~v
        nft = (not_u & v).sum()
        ntf = (u & not_v).sum()
    return (nft, ntf)


def yule(u, v):
    """
    Computes the Yule dissimilarity between two boolean 1-D arrays.

    The Yule dissimilarity is defined as

    .. math::

         \\frac{R}{c_{TT} * c_{FF} + \\frac{R}{2}}

    where :math:`c_{ij}` is the number of occurrences of
    :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
    :math:`k < n` and :math:`R = 2.0 * c_{TF} * c_{FT}`.

    Parameters
    ----------
    u : (N,) array_like, bool
        Input array.
    v : (N,) array_like, bool
        Input array.

    Returns
    -------
    yule : double
        The Yule dissimilarity between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    (nff, nft, ntf, ntt) = _nbool_correspond_all(u, v)
    return float(2.0 * ntf * nft) / float(ntt * nff + ntf * nft)


def matching(u, v):
    """
    Computes the Hamming distance between two boolean 1-D arrays.

    This is a deprecated synonym for :func:`hamming`.
    """
    return hamming(u, v)


def dice(u, v):
    """
    Computes the Dice dissimilarity between two boolean 1-D arrays.

    The Dice dissimilarity between `u` and `v`, is

    .. math::

         \\frac{c_{TF} + c_{FT}}
              {2c_{TT} + c_{FT} + c_{TF}}

    where :math:`c_{ij}` is the number of occurrences of
    :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
    :math:`k < n`.

    Parameters
    ----------
    u : (N,) ndarray, bool
        Input 1-D array.
    v : (N,) ndarray, bool
        Input 1-D array.

    Returns
    -------
    dice : double
        The Dice dissimilarity between 1-D arrays `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    if u.dtype == bool:
        ntt = (u & v).sum()
    else:
        ntt = (u * v).sum()
    (nft, ntf) = _nbool_correspond_ft_tf(u, v)
    return float(ntf + nft) / float(2.0 * ntt + ntf + nft)


def rogerstanimoto(u, v):
    """
    Computes the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.

    The Rogers-Tanimoto dissimilarity between two boolean 1-D arrays
    `u` and `v`, is defined as

    .. math::
       \\frac{R}
            {c_{TT} + c_{FF} + R}

    where :math:`c_{ij}` is the number of occurrences of
    :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
    :math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.

    Parameters
    ----------
    u : (N,) array_like, bool
        Input array.
    v : (N,) array_like, bool
        Input array.

    Returns
    -------
    rogerstanimoto : double
        The Rogers-Tanimoto dissimilarity between vectors
        `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    (nff, nft, ntf, ntt) = _nbool_correspond_all(u, v)
    return float(2.0 * (ntf + nft)) / float(ntt + nff + (2.0 * (ntf + nft)))


def russellrao(u, v):
    """
    Computes the Russell-Rao dissimilarity between two boolean 1-D arrays.

    The Russell-Rao dissimilarity between two boolean 1-D arrays, `u` and
    `v`, is defined as

    .. math::

      \\frac{n - c_{TT}}
           {n}

    where :math:`c_{ij}` is the number of occurrences of
    :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
    :math:`k < n`.

    Parameters
    ----------
    u : (N,) array_like, bool
        Input array.
    v : (N,) array_like, bool
        Input array.

    Returns
    -------
    russellrao : double
        The Russell-Rao dissimilarity between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    if u.dtype == bool:
        ntt = (u & v).sum()
    else:
        ntt = (u * v).sum()
    return float(len(u) - ntt) / float(len(u))


def sokalmichener(u, v):
    """
    Computes the Sokal-Michener dissimilarity between two boolean 1-D arrays.

    The Sokal-Michener dissimilarity between boolean 1-D arrays `u` and `v`,
    is defined as

    .. math::

       \\frac{R}
            {S + R}

    where :math:`c_{ij}` is the number of occurrences of
    :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
    :math:`k < n`, :math:`R = 2 * (c_{TF} + c_{FT})` and
    :math:`S = c_{FF} + c_{TT}`.

    Parameters
    ----------
    u : (N,) array_like, bool
        Input array.
    v : (N,) array_like, bool
        Input array.

    Returns
    -------
    sokalmichener : double
        The Sokal-Michener dissimilarity between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    if u.dtype == bool:
        ntt = (u & v).sum()
        nff = (~u & ~v).sum()
    else:
        ntt = (u * v).sum()
        nff = ((1.0 - u) * (1.0 - v)).sum()
    (nft, ntf) = _nbool_correspond_ft_tf(u, v)
    return float(2.0 * (ntf + nft)) / float(ntt + nff + 2.0 * (ntf + nft))


def sokalsneath(u, v):
    """
    Computes the Sokal-Sneath dissimilarity between two boolean 1-D arrays.

    The Sokal-Sneath dissimilarity between `u` and `v`,

    .. math::

       \\frac{R}
            {c_{TT} + R}

    where :math:`c_{ij}` is the number of occurrences of
    :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
    :math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.

    Parameters
    ----------
    u : (N,) array_like, bool
        Input array.
    v : (N,) array_like, bool
        Input array.

    Returns
    -------
    sokalsneath : double
        The Sokal-Sneath dissimilarity between vectors `u` and `v`.

    """
    u = _validate_vector(u)
    v = _validate_vector(v)
    if u.dtype == bool:
        ntt = (u & v).sum()
    else:
        ntt = (u * v).sum()
    (nft, ntf) = _nbool_correspond_ft_tf(u, v)
    denom = ntt + 2.0 * (ntf + nft)
    if denom == 0:
        raise ValueError('Sokal-Sneath dissimilarity is not defined for '
                            'vectors that are entirely false.')
    return float(2.0 * (ntf + nft)) / denom


# Registry of "simple" distance metrics' pdist and cdist implementations,
# meaning the ones that accept one dtype and have no additional arguments.
_SIMPLE_CDIST = {}
_SIMPLE_PDIST = {}

for names, wrap_name in [
    (['braycurtis'], "bray_curtis"),
    (['canberra'], "canberra"),
    (['chebychev', 'chebyshev', 'cheby', 'cheb', 'ch'], "chebyshev"),
    (["cityblock", "cblock", "cb", "c"], "city_block"),
    (["euclidean", "euclid", "eu", "e"], "euclidean"),
    (["sqeuclidean", "sqe", "sqeuclid"], "sqeuclidean"),
]:
    cdist_fn = getattr(_distance_wrap, "cdist_%s_wrap" % wrap_name)
    pdist_fn = getattr(_distance_wrap, "pdist_%s_wrap" % wrap_name)
    for name in names:
        _SIMPLE_CDIST[name] = _convert_to_double, cdist_fn
        _SIMPLE_PDIST[name] = _convert_to_double, pdist_fn

for name in ["dice", "kulsinski", "matching", "rogerstanimoto", "russellrao",
             "sokalmichener", "sokalsneath", "yule"]:
    wrap_name = "hamming" if name == "matching" else name

    cdist_fn = getattr(_distance_wrap, "cdist_%s_bool_wrap" % wrap_name)
    _SIMPLE_CDIST[name] = _convert_to_bool, cdist_fn

    pdist_fn = getattr(_distance_wrap, "pdist_%s_bool_wrap" % wrap_name)
    _SIMPLE_PDIST[name] = _convert_to_bool, pdist_fn


def pdist(X, metric='euclidean', p=2, w=None, V=None, VI=None):
    """
    Pairwise distances between observations in n-dimensional space.

    The following are common calling conventions.

    1. ``Y = pdist(X, 'euclidean')``

       Computes the distance between m points using Euclidean distance
       (2-norm) as the distance metric between the points. The points
       are arranged as m n-dimensional row vectors in the matrix X.

    2. ``Y = pdist(X, 'minkowski', p)``

       Computes the distances using the Minkowski distance
       :math:`||u-v||_p` (p-norm) where :math:`p \\geq 1`.

    3. ``Y = pdist(X, 'cityblock')``

       Computes the city block or Manhattan distance between the
       points.

    4. ``Y = pdist(X, 'seuclidean', V=None)``

       Computes the standardized Euclidean distance. The standardized
       Euclidean distance between two n-vectors ``u`` and ``v`` is

       .. math::

          \\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}


       V is the variance vector; V[i] is the variance computed over all
       the i'th components of the points.  If not passed, it is
       automatically computed.

    5. ``Y = pdist(X, 'sqeuclidean')``

       Computes the squared Euclidean distance :math:`||u-v||_2^2` between
       the vectors.

    6. ``Y = pdist(X, 'cosine')``

       Computes the cosine distance between vectors u and v,

       .. math::

          1 - \\frac{u \\cdot v}
                   {{||u||}_2 {||v||}_2}

       where :math:`||*||_2` is the 2-norm of its argument ``*``, and
       :math:`u \\cdot v` is the dot product of ``u`` and ``v``.

    7. ``Y = pdist(X, 'correlation')``

       Computes the correlation distance between vectors u and v. This is

       .. math::

          1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
                   {{||(u - \\bar{u})||}_2 {||(v - \\bar{v})||}_2}

       where :math:`\\bar{v}` is the mean of the elements of vector v,
       and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.

    8. ``Y = pdist(X, 'hamming')``

       Computes the normalized Hamming distance, or the proportion of
       those vector elements between two n-vectors ``u`` and ``v``
       which disagree. To save memory, the matrix ``X`` can be of type
       boolean.

    9. ``Y = pdist(X, 'jaccard')``

       Computes the Jaccard distance between the points. Given two
       vectors, ``u`` and ``v``, the Jaccard distance is the
       proportion of those elements ``u[i]`` and ``v[i]`` that
       disagree.

    10. ``Y = pdist(X, 'chebyshev')``

       Computes the Chebyshev distance between the points. The
       Chebyshev distance between two n-vectors ``u`` and ``v`` is the
       maximum norm-1 distance between their respective elements. More
       precisely, the distance is given by

       .. math::

          d(u,v) = \\max_i {|u_i-v_i|}

    11. ``Y = pdist(X, 'canberra')``

       Computes the Canberra distance between the points. The
       Canberra distance between two points ``u`` and ``v`` is

       .. math::

         d(u,v) = \\sum_i \\frac{|u_i-v_i|}
                              {|u_i|+|v_i|}


    12. ``Y = pdist(X, 'braycurtis')``

       Computes the Bray-Curtis distance between the points. The
       Bray-Curtis distance between two points ``u`` and ``v`` is


       .. math::

            d(u,v) = \\frac{\\sum_i {u_i-v_i}}
                          {\\sum_i {u_i+v_i}}

    13. ``Y = pdist(X, 'mahalanobis', VI=None)``

       Computes the Mahalanobis distance between the points. The
       Mahalanobis distance between two points ``u`` and ``v`` is
       :math:`(u-v)(1/V)(u-v)^T` where :math:`(1/V)` (the ``VI``
       variable) is the inverse covariance. If ``VI`` is not None,
       ``VI`` will be used as the inverse covariance matrix.

    14. ``Y = pdist(X, 'yule')``

       Computes the Yule distance between each pair of boolean
       vectors. (see yule function documentation)

    15. ``Y = pdist(X, 'matching')``

       Synonym for 'hamming'.

    16. ``Y = pdist(X, 'dice')``

       Computes the Dice distance between each pair of boolean
       vectors. (see dice function documentation)

    17. ``Y = pdist(X, 'kulsinski')``

       Computes the Kulsinski distance between each pair of
       boolean vectors. (see kulsinski function documentation)

    18. ``Y = pdist(X, 'rogerstanimoto')``

       Computes the Rogers-Tanimoto distance between each pair of
       boolean vectors. (see rogerstanimoto function documentation)

    19. ``Y = pdist(X, 'russellrao')``

       Computes the Russell-Rao distance between each pair of
       boolean vectors. (see russellrao function documentation)

    20. ``Y = pdist(X, 'sokalmichener')``

       Computes the Sokal-Michener distance between each pair of
       boolean vectors. (see sokalmichener function documentation)

    21. ``Y = pdist(X, 'sokalsneath')``

       Computes the Sokal-Sneath distance between each pair of
       boolean vectors. (see sokalsneath function documentation)

    22. ``Y = pdist(X, 'wminkowski')``

       Computes the weighted Minkowski distance between each pair of
       vectors. (see wminkowski function documentation)

    23. ``Y = pdist(X, f)``

       Computes the distance between all pairs of vectors in X
       using the user supplied 2-arity function f. For example,
       Euclidean distance between the vectors could be computed
       as follows::

         dm = pdist(X, lambda u, v: np.sqrt(((u-v)**2).sum()))

       Note that you should avoid passing a reference to one of
       the distance functions defined in this library. For example,::

         dm = pdist(X, sokalsneath)

       would calculate the pair-wise distances between the vectors in
       X using the Python function sokalsneath. This would result in
       sokalsneath being called :math:`{n \\choose 2}` times, which
       is inefficient. Instead, the optimized C version is more
       efficient, and we call it using the following syntax.::

         dm = pdist(X, 'sokalsneath')

    Parameters
    ----------
    X : ndarray
        An m by n array of m original observations in an
        n-dimensional space.
    metric : str or function, optional
        The distance metric to use. The distance function can
        be 'braycurtis', 'canberra', 'chebyshev', 'cityblock',
        'correlation', 'cosine', 'dice', 'euclidean', 'hamming',
        'jaccard', 'kulsinski', 'mahalanobis', 'matching',
        'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean',
        'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'.
    w : ndarray, optional
        The weight vector (for weighted Minkowski).
    p : double, optional
        The p-norm to apply (for Minkowski, weighted and unweighted)
    V : ndarray, optional
        The variance vector (for standardized Euclidean).
    VI : ndarray, optional
        The inverse of the covariance matrix (for Mahalanobis).

    Returns
    -------
    Y : ndarray
        Returns a condensed distance matrix Y.  For
        each :math:`i` and :math:`j` (where :math:`i<j<n`), the
        metric ``dist(u=X[i], v=X[j])`` is computed and stored in entry ``ij``.

    See Also
    --------
    squareform : converts between condensed distance matrices and
                 square distance matrices.

    Notes
    -----
    See ``squareform`` for information on how to calculate the index of
    this entry or to convert the condensed distance matrix to a
    redundant square matrix.

    """
    # You can also call this as:
    #     Y = pdist(X, 'test_abc')
    # where 'abc' is the metric being tested.  This computes the distance
    # between all pairs of vectors in X using the distance metric 'abc' but with
    # a more succinct, verifiable, but less efficient implementation.

    X = np.asarray(X, order='c')

    # The C code doesn't do striding.
    X = _copy_array_if_base_present(X)

    s = X.shape
    if len(s) != 2:
        raise ValueError('A 2-dimensional array must be passed.')

    m, n = s
    dm = np.zeros((m * (m - 1)) // 2, dtype=np.double)

    wmink_names = ['wminkowski', 'wmi', 'wm', 'wpnorm']
    if w is None and (metric == wminkowski or metric in wmink_names):
        raise ValueError('weighted minkowski requires a weight '
                            'vector `w` to be given.')

    if callable(metric):
        if metric == minkowski:
            def dfun(u, v):
                return minkowski(u, v, p)
        elif metric == wminkowski:
            def dfun(u, v):
                return wminkowski(u, v, p, w)
        elif metric == seuclidean:
            def dfun(u, v):
                return seuclidean(u, v, V)
        elif metric == mahalanobis:
            def dfun(u, v):
                return mahalanobis(u, v, V)
        else:
            dfun = metric

        X = _convert_to_double(X)

        k = 0
        for i in xrange(0, m - 1):
            for j in xrange(i + 1, m):
                dm[k] = dfun(X[i], X[j])
                k = k + 1

    elif isinstance(metric, string_types):
        mstr = metric.lower()

        try:
            validate, pdist_fn = _SIMPLE_PDIST[mstr]
            X = validate(X)
            pdist_fn(X, dm)
            return dm
        except KeyError:
            pass

        if mstr in ['hamming', 'hamm', 'ha', 'h']:
            if X.dtype == bool:
                X = _convert_to_bool(X)
                _distance_wrap.pdist_hamming_bool_wrap(X, dm)
            else:
                X = _convert_to_double(X)
                _distance_wrap.pdist_hamming_wrap(X, dm)
        elif mstr in ['jaccard', 'jacc', 'ja', 'j']:
            if X.dtype == bool:
                X = _convert_to_bool(X)
                _distance_wrap.pdist_jaccard_bool_wrap(X, dm)
            else:
                X = _convert_to_double(X)
                _distance_wrap.pdist_jaccard_wrap(X, dm)
        elif mstr in ['minkowski', 'mi', 'm']:
            X = _convert_to_double(X)
            _distance_wrap.pdist_minkowski_wrap(X, dm, p)
        elif mstr in wmink_names:
            X = _convert_to_double(X)
            w = _convert_to_double(np.asarray(w))
            _distance_wrap.pdist_weighted_minkowski_wrap(X, dm, p, w)
        elif mstr in ['seuclidean', 'se', 's']:
            X = _convert_to_double(X)
            if V is not None:
                V = np.asarray(V, order='c')
                if V.dtype != np.double:
                    raise TypeError('Variance vector V must contain doubles.')
                if len(V.shape) != 1:
                    raise ValueError('Variance vector V must '
                                     'be one-dimensional.')
                if V.shape[0] != n:
                    raise ValueError('Variance vector V must be of the same '
                            'dimension as the vectors on which the distances '
                            'are computed.')
                # The C code doesn't do striding.
                VV = _copy_array_if_base_present(_convert_to_double(V))
            else:
                VV = np.var(X, axis=0, ddof=1)
            _distance_wrap.pdist_seuclidean_wrap(X, VV, dm)
        elif mstr in ['cosine', 'cos']:
            X = _convert_to_double(X)
            norms = _row_norms(X)
            _distance_wrap.pdist_cosine_wrap(X, dm, norms)
        elif mstr in ['old_cosine', 'old_cos']:
            X = _convert_to_double(X)
            norms = _row_norms(X)
            nV = norms.reshape(m, 1)
            # The numerator u * v
            nm = np.dot(X, X.T)
            # The denom. ||u||*||v||
            de = np.dot(nV, nV.T)
            dm = 1.0 - (nm / de)
            dm[xrange(0, m), xrange(0, m)] = 0.0
            dm = squareform(dm)
        elif mstr in ['correlation', 'co']:
            X = _convert_to_double(X)
            X2 = X - X.mean(1)[:, np.newaxis]
            norms = _row_norms(X2)
            _distance_wrap.pdist_cosine_wrap(X2, dm, norms)
        elif mstr in ['mahalanobis', 'mahal', 'mah']:
            X = _convert_to_double(X)
            if VI is not None:
                VI = _convert_to_double(np.asarray(VI, order='c'))
                VI = _copy_array_if_base_present(VI)
            else:
                if m <= n:
                    # There are fewer observations than the dimension of
                    # the observations.
                    raise ValueError("The number of observations (%d) is too "
                                     "small; the covariance matrix is "
                                     "singular. For observations with %d "
                                     "dimensions, at least %d observations "
                                     "are required." % (m, n, n + 1))
                V = np.atleast_2d(np.cov(X.T))
                VI = _convert_to_double(np.linalg.inv(V).T.copy())
            # (u-v)V^(-1)(u-v)^T
            _distance_wrap.pdist_mahalanobis_wrap(X, VI, dm)
        elif metric == 'test_euclidean':
            dm = pdist(X, euclidean)
        elif metric == 'test_sqeuclidean':
            if V is None:
                V = np.var(X, axis=0, ddof=1)
            else:
                V = np.asarray(V, order='c')
            dm = pdist(X, lambda u, v: seuclidean(u, v, V))
        elif metric == 'test_braycurtis':
            dm = pdist(X, braycurtis)
        elif metric == 'test_mahalanobis':
            if VI is None:
                V = np.cov(X.T)
                VI = np.linalg.inv(V)
            else:
                VI = np.asarray(VI, order='c')
            VI = _copy_array_if_base_present(VI)
            # (u-v)V^(-1)(u-v)^T
            dm = pdist(X, (lambda u, v: mahalanobis(u, v, VI)))
        elif metric == 'test_canberra':
            dm = pdist(X, canberra)
        elif metric == 'test_cityblock':
            dm = pdist(X, cityblock)
        elif metric == 'test_minkowski':
            dm = pdist(X, minkowski, p=p)
        elif metric == 'test_wminkowski':
            dm = pdist(X, wminkowski, p=p, w=w)
        elif metric == 'test_cosine':
            dm = pdist(X, cosine)
        elif metric == 'test_correlation':
            dm = pdist(X, correlation)
        elif metric == 'test_hamming':
            dm = pdist(X, hamming)
        elif metric == 'test_jaccard':
            dm = pdist(X, jaccard)
        elif metric == 'test_chebyshev' or metric == 'test_chebychev':
            dm = pdist(X, chebyshev)
        elif metric == 'test_yule':
            dm = pdist(X, yule)
        elif metric == 'test_matching':
            dm = pdist(X, matching)
        elif metric == 'test_dice':
            dm = pdist(X, dice)
        elif metric == 'test_kulsinski':
            dm = pdist(X, kulsinski)
        elif metric == 'test_rogerstanimoto':
            dm = pdist(X, rogerstanimoto)
        elif metric == 'test_russellrao':
            dm = pdist(X, russellrao)
        elif metric == 'test_sokalsneath':
            dm = pdist(X, sokalsneath)
        elif metric == 'test_sokalmichener':
            dm = pdist(X, sokalmichener)
        else:
            raise ValueError('Unknown Distance Metric: %s' % mstr)
    else:
        raise TypeError('2nd argument metric must be a string identifier '
                        'or a function.')
    return dm


def squareform(X, force="no", checks=True):
    """
    Converts a vector-form distance vector to a square-form distance
    matrix, and vice-versa.

    Parameters
    ----------
    X : ndarray
        Either a condensed or redundant distance matrix.
    force : str, optional
        As with MATLAB(TM), if force is equal to 'tovector' or 'tomatrix',
        the input will be treated as a distance matrix or distance vector
        respectively.
    checks : bool, optional
        If `checks` is set to False, no checks will be made for matrix
        symmetry nor zero diagonals. This is useful if it is known that
        ``X - X.T1`` is small and ``diag(X)`` is close to zero.
        These values are ignored any way so they do not disrupt the
        squareform transformation.

    Returns
    -------
    Y : ndarray
        If a condensed distance matrix is passed, a redundant one is
        returned, or if a redundant one is passed, a condensed distance
        matrix is returned.

    Notes
    -----

    1. v = squareform(X)

       Given a square d-by-d symmetric distance matrix X,
       ``v=squareform(X)`` returns a ``d * (d-1) / 2`` (or
       `${n \\choose 2}$`) sized vector v.

      v[{n \\choose 2}-{n-i \\choose 2} + (j-i-1)] is the distance
      between points i and j. If X is non-square or asymmetric, an error
      is returned.

    2. X = squareform(v)

      Given a d*(d-1)/2 sized v for some integer d>=2 encoding distances
      as described, X=squareform(v) returns a d by d distance matrix X. The
      X[i, j] and X[j, i] values are set to
      v[{n \\choose 2}-{n-i \\choose 2} + (j-i-1)] and all
      diagonal elements are zero.

    """

    X = _convert_to_double(np.asarray(X, order='c'))

    s = X.shape

    if force.lower() == 'tomatrix':
        if len(s) != 1:
            raise ValueError("Forcing 'tomatrix' but input X is not a "
                             "distance vector.")
    elif force.lower() == 'tovector':
        if len(s) != 2:
            raise ValueError("Forcing 'tovector' but input X is not a "
                             "distance matrix.")

    # X = squareform(v)
    if len(s) == 1:
        if X.shape[0] == 0:
            return np.zeros((1, 1), dtype=np.double)

        # Grab the closest value to the square root of the number
        # of elements times 2 to see if the number of elements
        # is indeed a binomial coefficient.
        d = int(np.ceil(np.sqrt(X.shape[0] * 2)))

        # Check that v is of valid dimensions.
        if d * (d - 1) / 2 != int(s[0]):
            raise ValueError('Incompatible vector size. It must be a binomial '
                             'coefficient n choose 2 for some integer n >= 2.')

        # Allocate memory for the distance matrix.
        M = np.zeros((d, d), dtype=np.double)

        # Since the C code does not support striding using strides.
        # The dimensions are used instead.
        X = _copy_array_if_base_present(X)

        # Fill in the values of the distance matrix.
        _distance_wrap.to_squareform_from_vector_wrap(M, X)

        # Return the distance matrix.
        return M
    elif len(s) == 2:
        if s[0] != s[1]:
            raise ValueError('The matrix argument must be square.')
        if checks:
            is_valid_dm(X, throw=True, name='X')

        # One-side of the dimensions is set here.
        d = s[0]

        if d <= 1:
            return np.array([], dtype=np.double)

        # Create a vector.
        v = np.zeros((d * (d - 1)) // 2, dtype=np.double)

        # Since the C code does not support striding using strides.
        # The dimensions are used instead.
        X = _copy_array_if_base_present(X)

        # Convert the vector to squareform.
        _distance_wrap.to_vector_from_squareform_wrap(X, v)
        return v
    else:
        raise ValueError(('The first argument must be one or two dimensional '
                         'array. A %d-dimensional array is not '
                         'permitted') % len(s))


def is_valid_dm(D, tol=0.0, throw=False, name="D", warning=False):
    """
    Returns True if input array is a valid distance matrix.

    Distance matrices must be 2-dimensional numpy arrays containing
    doubles. They must have a zero-diagonal, and they must be symmetric.

    Parameters
    ----------
    D : ndarray
        The candidate object to test for validity.
    tol : float, optional
        The distance matrix should be symmetric. `tol` is the maximum
        difference between entries ``ij`` and ``ji`` for the distance
        metric to be considered symmetric.
    throw : bool, optional
        An exception is thrown if the distance matrix passed is not valid.
    name : str, optional
        The name of the variable to checked. This is useful if
        throw is set to True so the offending variable can be identified
        in the exception message when an exception is thrown.
    warning : bool, optional
        Instead of throwing an exception, a warning message is
        raised.

    Returns
    -------
    valid : bool
        True if the variable `D` passed is a valid distance matrix.

    Notes
    -----
    Small numerical differences in `D` and `D.T` and non-zeroness of
    the diagonal are ignored if they are within the tolerance specified
    by `tol`.

    """
    D = np.asarray(D, order='c')
    valid = True
    try:
        s = D.shape
        if D.dtype != np.double:
            if name:
                raise TypeError(('Distance matrix \'%s\' must contain doubles '
                                 '(double).') % name)
            else:
                raise TypeError('Distance matrix must contain doubles '
                                '(double).')
        if len(D.shape) != 2:
            if name:
                raise ValueError(('Distance matrix \'%s\' must have shape=2 '
                                 '(i.e. be two-dimensional).') % name)
            else:
                raise ValueError('Distance matrix must have shape=2 (i.e. '
                                 'be two-dimensional).')
        if tol == 0.0:
            if not (D == D.T).all():
                if name:
                    raise ValueError(('Distance matrix \'%s\' must be '
                                     'symmetric.') % name)
                else:
                    raise ValueError('Distance matrix must be symmetric.')
            if not (D[xrange(0, s[0]), xrange(0, s[0])] == 0).all():
                if name:
                    raise ValueError(('Distance matrix \'%s\' diagonal must '
                                     'be zero.') % name)
                else:
                    raise ValueError('Distance matrix diagonal must be zero.')
        else:
            if not (D - D.T <= tol).all():
                if name:
                    raise ValueError(('Distance matrix \'%s\' must be '
                                      'symmetric within tolerance %5.5f.')
                                     % (name, tol))
                else:
                    raise ValueError('Distance matrix must be symmetric within'
                                     ' tolerance %5.5f.' % tol)
            if not (D[xrange(0, s[0]), xrange(0, s[0])] <= tol).all():
                if name:
                    raise ValueError(('Distance matrix \'%s\' diagonal must be'
                                      ' close to zero within tolerance %5.5f.')
                                     % (name, tol))
                else:
                    raise ValueError(('Distance matrix \'%s\' diagonal must be'
                                      ' close to zero within tolerance %5.5f.')
                                     % tol)
    except Exception as e:
        if throw:
            raise
        if warning:
            warnings.warn(str(e))
        valid = False
    return valid


def is_valid_y(y, warning=False, throw=False, name=None):
    """
    Returns True if the input array is a valid condensed distance matrix.

    Condensed distance matrices must be 1-dimensional
    numpy arrays containing doubles. Their length must be a binomial
    coefficient :math:`{n \\choose 2}` for some positive integer n.

    Parameters
    ----------
    y : ndarray
        The condensed distance matrix.
    warning : bool, optional
        Invokes a warning if the variable passed is not a valid
        condensed distance matrix. The warning message explains why
        the distance matrix is not valid.  `name` is used when
        referencing the offending variable.
    throw : bool, optional
        Throws an exception if the variable passed is not a valid
        condensed distance matrix.
    name : bool, optional
        Used when referencing the offending variable in the
        warning or exception message.

    """
    y = np.asarray(y, order='c')
    valid = True
    try:
        if y.dtype != np.double:
            if name:
                raise TypeError(('Condensed distance matrix \'%s\' must '
                                 'contain doubles (double).') % name)
            else:
                raise TypeError('Condensed distance matrix must contain '
                                'doubles (double).')
        if len(y.shape) != 1:
            if name:
                raise ValueError(('Condensed distance matrix \'%s\' must '
                                  'have shape=1 (i.e. be one-dimensional).')
                                 % name)
            else:
                raise ValueError('Condensed distance matrix must have shape=1 '
                                 '(i.e. be one-dimensional).')
        n = y.shape[0]
        d = int(np.ceil(np.sqrt(n * 2)))
        if (d * (d - 1) / 2) != n:
            if name:
                raise ValueError(('Length n of condensed distance matrix '
                                  '\'%s\' must be a binomial coefficient, i.e.'
                                  'there must be a k such that '
                                  '(k \choose 2)=n)!') % name)
            else:
                raise ValueError('Length n of condensed distance matrix must '
                                 'be a binomial coefficient, i.e. there must '
                                 'be a k such that (k \choose 2)=n)!')
    except Exception as e:
        if throw:
            raise
        if warning:
            warnings.warn(str(e))
        valid = False
    return valid


def num_obs_dm(d):
    """
    Returns the number of original observations that correspond to a
    square, redundant distance matrix.

    Parameters
    ----------
    d : ndarray
        The target distance matrix.

    Returns
    -------
    num_obs_dm : int
        The number of observations in the redundant distance matrix.

    """
    d = np.asarray(d, order='c')
    is_valid_dm(d, tol=np.inf, throw=True, name='d')
    return d.shape[0]


def num_obs_y(Y):
    """
    Returns the number of original observations that correspond to a
    condensed distance matrix.

    Parameters
    ----------
    Y : ndarray
        Condensed distance matrix.

    Returns
    -------
    n : int
        The number of observations in the condensed distance matrix `Y`.

    """
    Y = np.asarray(Y, order='c')
    is_valid_y(Y, throw=True, name='Y')
    k = Y.shape[0]
    if k == 0:
        raise ValueError("The number of observations cannot be determined on "
                         "an empty distance matrix.")
    d = int(np.ceil(np.sqrt(k * 2)))
    if (d * (d - 1) / 2) != k:
        raise ValueError("Invalid condensed distance matrix passed. Must be "
                         "some k where k=(n choose 2) for some n >= 2.")
    return d


def _row_norms(X):
    norms = np.einsum('ij,ij->i', X, X, dtype=np.double)
    return np.sqrt(norms, out=norms)


def _cosine_cdist(XA, XB, dm):
    XA = _convert_to_double(XA)
    XB = _convert_to_double(XB)

    np.dot(XA, XB.T, out=dm)

    dm /= _row_norms(XA).reshape(-1, 1)
    dm /= _row_norms(XB)
    dm *= -1
    dm += 1


def cdist(XA, XB, metric='euclidean', p=2, V=None, VI=None, w=None):
    """
    Computes distance between each pair of the two collections of inputs.

    The following are common calling conventions:

    1. ``Y = cdist(XA, XB, 'euclidean')``

       Computes the distance between :math:`m` points using
       Euclidean distance (2-norm) as the distance metric between the
       points. The points are arranged as :math:`m`
       :math:`n`-dimensional row vectors in the matrix X.

    2. ``Y = cdist(XA, XB, 'minkowski', p)``

       Computes the distances using the Minkowski distance
       :math:`||u-v||_p` (:math:`p`-norm) where :math:`p \\geq 1`.

    3. ``Y = cdist(XA, XB, 'cityblock')``

       Computes the city block or Manhattan distance between the
       points.

    4. ``Y = cdist(XA, XB, 'seuclidean', V=None)``

       Computes the standardized Euclidean distance. The standardized
       Euclidean distance between two n-vectors ``u`` and ``v`` is

       .. math::

          \\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}.

       V is the variance vector; V[i] is the variance computed over all
       the i'th components of the points. If not passed, it is
       automatically computed.

    5. ``Y = cdist(XA, XB, 'sqeuclidean')``

       Computes the squared Euclidean distance :math:`||u-v||_2^2` between
       the vectors.

    6. ``Y = cdist(XA, XB, 'cosine')``

       Computes the cosine distance between vectors u and v,

       .. math::

          1 - \\frac{u \\cdot v}
                   {{||u||}_2 {||v||}_2}

       where :math:`||*||_2` is the 2-norm of its argument ``*``, and
       :math:`u \\cdot v` is the dot product of :math:`u` and :math:`v`.

    7. ``Y = cdist(XA, XB, 'correlation')``

       Computes the correlation distance between vectors u and v. This is

       .. math::

          1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
                   {{||(u - \\bar{u})||}_2 {||(v - \\bar{v})||}_2}

       where :math:`\\bar{v}` is the mean of the elements of vector v,
       and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.


    8. ``Y = cdist(XA, XB, 'hamming')``

       Computes the normalized Hamming distance, or the proportion of
       those vector elements between two n-vectors ``u`` and ``v``
       which disagree. To save memory, the matrix ``X`` can be of type
       boolean.

    9. ``Y = cdist(XA, XB, 'jaccard')``

       Computes the Jaccard distance between the points. Given two
       vectors, ``u`` and ``v``, the Jaccard distance is the
       proportion of those elements ``u[i]`` and ``v[i]`` that
       disagree where at least one of them is non-zero.

    10. ``Y = cdist(XA, XB, 'chebyshev')``

       Computes the Chebyshev distance between the points. The
       Chebyshev distance between two n-vectors ``u`` and ``v`` is the
       maximum norm-1 distance between their respective elements. More
       precisely, the distance is given by

       .. math::

          d(u,v) = \\max_i {|u_i-v_i|}.

    11. ``Y = cdist(XA, XB, 'canberra')``

       Computes the Canberra distance between the points. The
       Canberra distance between two points ``u`` and ``v`` is

       .. math::

         d(u,v) = \\sum_i \\frac{|u_i-v_i|}
                              {|u_i|+|v_i|}.

    12. ``Y = cdist(XA, XB, 'braycurtis')``

       Computes the Bray-Curtis distance between the points. The
       Bray-Curtis distance between two points ``u`` and ``v`` is


       .. math::

            d(u,v) = \\frac{\\sum_i (u_i-v_i)}
                          {\\sum_i (u_i+v_i)}

    13. ``Y = cdist(XA, XB, 'mahalanobis', VI=None)``

       Computes the Mahalanobis distance between the points. The
       Mahalanobis distance between two points ``u`` and ``v`` is
       :math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI``
       variable) is the inverse covariance. If ``VI`` is not None,
       ``VI`` will be used as the inverse covariance matrix.

    14. ``Y = cdist(XA, XB, 'yule')``

       Computes the Yule distance between the boolean
       vectors. (see `yule` function documentation)

    15. ``Y = cdist(XA, XB, 'matching')``

       Synonym for 'hamming'.

    16. ``Y = cdist(XA, XB, 'dice')``

       Computes the Dice distance between the boolean vectors. (see
       `dice` function documentation)

    17. ``Y = cdist(XA, XB, 'kulsinski')``

       Computes the Kulsinski distance between the boolean
       vectors. (see `kulsinski` function documentation)

    18. ``Y = cdist(XA, XB, 'rogerstanimoto')``

       Computes the Rogers-Tanimoto distance between the boolean
       vectors. (see `rogerstanimoto` function documentation)

    19. ``Y = cdist(XA, XB, 'russellrao')``

       Computes the Russell-Rao distance between the boolean
       vectors. (see `russellrao` function documentation)

    20. ``Y = cdist(XA, XB, 'sokalmichener')``

       Computes the Sokal-Michener distance between the boolean
       vectors. (see `sokalmichener` function documentation)

    21. ``Y = cdist(XA, XB, 'sokalsneath')``

       Computes the Sokal-Sneath distance between the vectors. (see
       `sokalsneath` function documentation)


    22. ``Y = cdist(XA, XB, 'wminkowski')``

       Computes the weighted Minkowski distance between the
       vectors. (see `wminkowski` function documentation)

    23. ``Y = cdist(XA, XB, f)``

       Computes the distance between all pairs of vectors in X
       using the user supplied 2-arity function f. For example,
       Euclidean distance between the vectors could be computed
       as follows::

         dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum()))

       Note that you should avoid passing a reference to one of
       the distance functions defined in this library. For example,::

         dm = cdist(XA, XB, sokalsneath)

       would calculate the pair-wise distances between the vectors in
       X using the Python function `sokalsneath`. This would result in
       sokalsneath being called :math:`{n \\choose 2}` times, which
       is inefficient. Instead, the optimized C version is more
       efficient, and we call it using the following syntax::

         dm = cdist(XA, XB, 'sokalsneath')

    Parameters
    ----------
    XA : ndarray
        An :math:`m_A` by :math:`n` array of :math:`m_A`
        original observations in an :math:`n`-dimensional space.
        Inputs are converted to float type.
    XB : ndarray
        An :math:`m_B` by :math:`n` array of :math:`m_B`
        original observations in an :math:`n`-dimensional space.
        Inputs are converted to float type.
    metric : str or callable, optional
        The distance metric to use.  If a string, the distance function can be
        'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation',
        'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski',
        'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao',
        'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
        'wminkowski', 'yule'.
    w : ndarray, optional
        The weight vector (for weighted Minkowski).
    p : scalar, optional
        The p-norm to apply (for Minkowski, weighted and unweighted)
    V : ndarray, optional
        The variance vector (for standardized Euclidean).
    VI : ndarray, optional
        The inverse of the covariance matrix (for Mahalanobis).

    Returns
    -------
    Y : ndarray
        A :math:`m_A` by :math:`m_B` distance matrix is returned.
        For each :math:`i` and :math:`j`, the metric
        ``dist(u=XA[i], v=XB[j])`` is computed and stored in the
        :math:`ij` th entry.

    Raises
    ------
    ValueError
        An exception is thrown if `XA` and `XB` do not have
        the same number of columns.

    Examples
    --------
    Find the Euclidean distances between four 2-D coordinates:

    >>> from scipy.spatial import distance
    >>> coords = [(35.0456, -85.2672),
    ...           (35.1174, -89.9711),
    ...           (35.9728, -83.9422),
    ...           (36.1667, -86.7833)]
    >>> distance.cdist(coords, coords, 'euclidean')
    array([[ 0.    ,  4.7044,  1.6172,  1.8856],
           [ 4.7044,  0.    ,  6.0893,  3.3561],
           [ 1.6172,  6.0893,  0.    ,  2.8477],
           [ 1.8856,  3.3561,  2.8477,  0.    ]])


    Find the Manhattan distance from a 3-D point to the corners of the unit
    cube:

    >>> a = np.array([[0, 0, 0],
    ...               [0, 0, 1],
    ...               [0, 1, 0],
    ...               [0, 1, 1],
    ...               [1, 0, 0],
    ...               [1, 0, 1],
    ...               [1, 1, 0],
    ...               [1, 1, 1]])
    >>> b = np.array([[ 0.1,  0.2,  0.4]])
    >>> distance.cdist(a, b, 'cityblock')
    array([[ 0.7],
           [ 0.9],
           [ 1.3],
           [ 1.5],
           [ 1.5],
           [ 1.7],
           [ 2.1],
           [ 2.3]])

    """
    # You can also call this as:
    #     Y = cdist(XA, XB, 'test_abc')
    # where 'abc' is the metric being tested.  This computes the distance
    # between all pairs of vectors in XA and XB using the distance metric 'abc'
    # but with a more succinct, verifiable, but less efficient implementation.

    XA = np.asarray(XA, order='c')
    XB = np.asarray(XB, order='c')

    # The C code doesn't do striding.
    XA = _copy_array_if_base_present(_convert_to_double(XA))
    XB = _copy_array_if_base_present(_convert_to_double(XB))

    s = XA.shape
    sB = XB.shape

    if len(s) != 2:
        raise ValueError('XA must be a 2-dimensional array.')
    if len(sB) != 2:
        raise ValueError('XB must be a 2-dimensional array.')
    if s[1] != sB[1]:
        raise ValueError('XA and XB must have the same number of columns '
                         '(i.e. feature dimension.)')

    mA = s[0]
    mB = sB[0]
    n = s[1]
    dm = np.zeros((mA, mB), dtype=np.double)

    if callable(metric):
        if metric == minkowski:
            for i in xrange(0, mA):
                for j in xrange(0, mB):
                    dm[i, j] = minkowski(XA[i, :], XB[j, :], p)
        elif metric == wminkowski:
            for i in xrange(0, mA):
                for j in xrange(0, mB):
                    dm[i, j] = wminkowski(XA[i, :], XB[j, :], p, w)
        elif metric == seuclidean:
            for i in xrange(0, mA):
                for j in xrange(0, mB):
                    dm[i, j] = seuclidean(XA[i, :], XB[j, :], V)
        elif metric == mahalanobis:
            for i in xrange(0, mA):
                for j in xrange(0, mB):
                    dm[i, j] = mahalanobis(XA[i, :], XB[j, :], V)
        else:
            for i in xrange(0, mA):
                for j in xrange(0, mB):
                    dm[i, j] = metric(XA[i, :], XB[j, :])
    elif isinstance(metric, string_types):
        mstr = metric.lower()

        try:
            validate, cdist_fn = _SIMPLE_CDIST[mstr]
            XA = validate(XA)
            XB = validate(XB)
            cdist_fn(XA, XB, dm)
            return dm
        except KeyError:
            pass

        if mstr in ['hamming', 'hamm', 'ha', 'h']:
            if XA.dtype == bool:
                XA = _convert_to_bool(XA)
                XB = _convert_to_bool(XB)
                _distance_wrap.cdist_hamming_bool_wrap(XA, XB, dm)
            else:
                XA = _convert_to_double(XA)
                XB = _convert_to_double(XB)
                _distance_wrap.cdist_hamming_wrap(XA, XB, dm)
        elif mstr in ['jaccard', 'jacc', 'ja', 'j']:
            if XA.dtype == bool:
                XA = _convert_to_bool(XA)
                XB = _convert_to_bool(XB)
                _distance_wrap.cdist_jaccard_bool_wrap(XA, XB, dm)
            else:
                XA = _convert_to_double(XA)
                XB = _convert_to_double(XB)
                _distance_wrap.cdist_jaccard_wrap(XA, XB, dm)
        elif mstr in ['minkowski', 'mi', 'm', 'pnorm']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            _distance_wrap.cdist_minkowski_wrap(XA, XB, dm, p)
        elif mstr in ['wminkowski', 'wmi', 'wm', 'wpnorm']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            w = _convert_to_double(w)
            _distance_wrap.cdist_weighted_minkowski_wrap(XA, XB, dm, p, w)
        elif mstr in ['seuclidean', 'se', 's']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            if V is not None:
                V = np.asarray(V, order='c')
                if V.dtype != np.double:
                    raise TypeError('Variance vector V must contain doubles.')
                if len(V.shape) != 1:
                    raise ValueError('Variance vector V must be '
                                     'one-dimensional.')
                if V.shape[0] != n:
                    raise ValueError('Variance vector V must be of the same '
                                     'dimension as the vectors on which the '
                                     'distances are computed.')
                # The C code doesn't do striding.
                VV = _copy_array_if_base_present(_convert_to_double(V))
            else:
                VV = np.var(np.vstack([XA, XB]), axis=0, ddof=1)
            _distance_wrap.cdist_seuclidean_wrap(XA, XB, VV, dm)
        elif mstr in ['cosine', 'cos']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            _cosine_cdist(XA, XB, dm)
        elif mstr in ['correlation', 'co']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            XA -= XA.mean(axis=1)[:, np.newaxis]
            XB -= XB.mean(axis=1)[:, np.newaxis]
            _cosine_cdist(XA, XB, dm)
        elif mstr in ['mahalanobis', 'mahal', 'mah']:
            XA = _convert_to_double(XA)
            XB = _convert_to_double(XB)
            if VI is not None:
                VI = _convert_to_double(np.asarray(VI, order='c'))
                VI = _copy_array_if_base_present(VI)
            else:
                m = mA + mB
                if m <= n:
                    # There are fewer observations than the dimension of
                    # the observations.
                    raise ValueError("The number of observations (%d) is too "
                                     "small; the covariance matrix is "
                                     "singular. For observations with %d "
                                     "dimensions, at least %d observations "
                                     "are required." % (m, n, n + 1))
                X = np.vstack([XA, XB])
                V = np.atleast_2d(np.cov(X.T))
                del X
                VI = np.linalg.inv(V).T.copy()
            # (u-v)V^(-1)(u-v)^T
            _distance_wrap.cdist_mahalanobis_wrap(XA, XB, VI, dm)
        elif metric == 'test_euclidean':
            dm = cdist(XA, XB, euclidean)
        elif metric == 'test_seuclidean':
            if V is None:
                V = np.var(np.vstack([XA, XB]), axis=0, ddof=1)
            else:
                V = np.asarray(V, order='c')
            dm = cdist(XA, XB, lambda u, v: seuclidean(u, v, V))
        elif metric == 'test_sqeuclidean':
            dm = cdist(XA, XB, lambda u, v: sqeuclidean(u, v))
        elif metric == 'test_braycurtis':
            dm = cdist(XA, XB, braycurtis)
        elif metric == 'test_mahalanobis':
            if VI is None:
                X = np.vstack([XA, XB])
                V = np.cov(X.T)
                VI = np.linalg.inv(V)
                X = None
                del X
            else:
                VI = np.asarray(VI, order='c')
            VI = _copy_array_if_base_present(VI)
            # (u-v)V^(-1)(u-v)^T
            dm = cdist(XA, XB, (lambda u, v: mahalanobis(u, v, VI)))
        elif metric == 'test_canberra':
            dm = cdist(XA, XB, canberra)
        elif metric == 'test_cityblock':
            dm = cdist(XA, XB, cityblock)
        elif metric == 'test_minkowski':
            dm = cdist(XA, XB, minkowski, p=p)
        elif metric == 'test_wminkowski':
            dm = cdist(XA, XB, wminkowski, p=p, w=w)
        elif metric == 'test_correlation':
            dm = cdist(XA, XB, correlation)
        elif metric == 'test_hamming':
            dm = cdist(XA, XB, hamming)
        elif metric == 'test_jaccard':
            dm = cdist(XA, XB, jaccard)
        elif metric == 'test_chebyshev' or metric == 'test_chebychev':
            dm = cdist(XA, XB, chebyshev)
        elif metric == 'test_yule':
            dm = cdist(XA, XB, yule)
        elif metric == 'test_matching':
            dm = cdist(XA, XB, matching)
        elif metric == 'test_dice':
            dm = cdist(XA, XB, dice)
        elif metric == 'test_kulsinski':
            dm = cdist(XA, XB, kulsinski)
        elif metric == 'test_rogerstanimoto':
            dm = cdist(XA, XB, rogerstanimoto)
        elif metric == 'test_russellrao':
            dm = cdist(XA, XB, russellrao)
        elif metric == 'test_sokalsneath':
            dm = cdist(XA, XB, sokalsneath)
        elif metric == 'test_sokalmichener':
            dm = cdist(XA, XB, sokalmichener)
        else:
            raise ValueError('Unknown Distance Metric: %s' % mstr)
    else:
        raise TypeError('2nd argument metric must be a string identifier '
                        'or a function.')
    return dm