1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
|
"""
========================================
Special functions (:mod:`scipy.special`)
========================================
.. module:: scipy.special
Nearly all of the functions below are universal functions and follow
broadcasting and automatic array-looping rules. Exceptions are noted.
Error handling
==============
Errors are handled by returning nans, or other appropriate values.
Some of the special function routines will emit warnings when an error
occurs. By default this is disabled. To enable such messages use
``errprint(1)``, and to disable such messages use ``errprint(0)``.
Example:
>>> print scipy.special.bdtr(-1,10,0.3)
>>> scipy.special.errprint(1)
>>> print scipy.special.bdtr(-1,10,0.3)
.. autosummary::
:toctree: generated/
errprint
SpecialFunctionWarning -- Warning that can be issued with ``errprint(True)``
Available functions
===================
Airy functions
--------------
.. autosummary::
:toctree: generated/
airy -- Airy functions and their derivatives.
airye -- Exponentially scaled Airy functions
ai_zeros -- [+]Zeros of Airy functions Ai(x) and Ai'(x)
bi_zeros -- [+]Zeros of Airy functions Bi(x) and Bi'(x)
itairy --
Elliptic Functions and Integrals
--------------------------------
.. autosummary::
:toctree: generated/
ellipj -- Jacobian elliptic functions
ellipk -- Complete elliptic integral of the first kind.
ellipkm1 -- ellipkm1(x) == ellipk(1 - x)
ellipkinc -- Incomplete elliptic integral of the first kind.
ellipe -- Complete elliptic integral of the second kind.
ellipeinc -- Incomplete elliptic integral of the second kind.
Bessel Functions
----------------
.. autosummary::
:toctree: generated/
jv -- Bessel function of real-valued order and complex argument.
jn -- Alias for jv
jve -- Exponentially scaled Bessel function.
yn -- Bessel function of second kind (integer order).
yv -- Bessel function of the second kind (real-valued order).
yve -- Exponentially scaled Bessel function of the second kind.
kn -- Modified Bessel function of the second kind (integer order).
kv -- Modified Bessel function of the second kind (real order).
kve -- Exponentially scaled modified Bessel function of the second kind.
iv -- Modified Bessel function.
ive -- Exponentially scaled modified Bessel function.
hankel1 -- Hankel function of the first kind.
hankel1e -- Exponentially scaled Hankel function of the first kind.
hankel2 -- Hankel function of the second kind.
hankel2e -- Exponentially scaled Hankel function of the second kind.
The following is not an universal function:
.. autosummary::
:toctree: generated/
lmbda -- [+]Sequence of lambda functions with arbitrary order v.
Zeros of Bessel Functions
^^^^^^^^^^^^^^^^^^^^^^^^^
These are not universal functions:
.. autosummary::
:toctree: generated/
jnjnp_zeros -- [+]Zeros of integer-order Bessel functions and derivatives sorted in order.
jnyn_zeros -- [+]Zeros of integer-order Bessel functions and derivatives as separate arrays.
jn_zeros -- [+]Zeros of Jn(x)
jnp_zeros -- [+]Zeros of Jn'(x)
yn_zeros -- [+]Zeros of Yn(x)
ynp_zeros -- [+]Zeros of Yn'(x)
y0_zeros -- [+]Complex zeros: Y0(z0)=0 and values of Y0'(z0)
y1_zeros -- [+]Complex zeros: Y1(z1)=0 and values of Y1'(z1)
y1p_zeros -- [+]Complex zeros of Y1'(z1')=0 and values of Y1(z1')
Faster versions of common Bessel Functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autosummary::
:toctree: generated/
j0 -- Bessel function of order 0.
j1 -- Bessel function of order 1.
y0 -- Bessel function of second kind of order 0.
y1 -- Bessel function of second kind of order 1.
i0 -- Modified Bessel function of order 0.
i0e -- Exponentially scaled modified Bessel function of order 0.
i1 -- Modified Bessel function of order 1.
i1e -- Exponentially scaled modified Bessel function of order 1.
k0 -- Modified Bessel function of the second kind of order 0.
k0e -- Exponentially scaled modified Bessel function of the second kind of order 0.
k1 -- Modified Bessel function of the second kind of order 1.
k1e -- Exponentially scaled modified Bessel function of the second kind of order 1.
Integrals of Bessel Functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autosummary::
:toctree: generated/
itj0y0 -- Basic integrals of j0 and y0 from 0 to x.
it2j0y0 -- Integrals of (1-j0(t))/t from 0 to x and y0(t)/t from x to inf.
iti0k0 -- Basic integrals of i0 and k0 from 0 to x.
it2i0k0 -- Integrals of (i0(t)-1)/t from 0 to x and k0(t)/t from x to inf.
besselpoly -- Integral of a Bessel function: Jv(2* a* x) * x[+]lambda from x=0 to 1.
Derivatives of Bessel Functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autosummary::
:toctree: generated/
jvp -- Nth derivative of Jv(v,z)
yvp -- Nth derivative of Yv(v,z)
kvp -- Nth derivative of Kv(v,z)
ivp -- Nth derivative of Iv(v,z)
h1vp -- Nth derivative of H1v(v,z)
h2vp -- Nth derivative of H2v(v,z)
Spherical Bessel Functions
^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autosummary::
:toctree: generated/
spherical_jn -- Spherical Bessel function of the first kind, jn(z)
spherical_yn -- Spherical Bessel function of the second kind, yn(z)
spherical_in -- Modified spherical Bessel function of the first kind, in(z)
spherical_kn -- Modified spherical Bessel function of the second kind, kn(z)
These are not universal functions:
.. autosummary::
:toctree: generated/
sph_jn -- [+]Sequence of spherical Bessel functions, jn(z)
sph_yn -- [+]Sequence of spherical Bessel functions, yn(z)
sph_jnyn -- [+]Sequence of spherical Bessel functions, jn(z) and yn(z)
sph_in -- [+]Sequence of spherical Bessel functions, in(z)
sph_kn -- [+]Sequence of spherical Bessel functions, kn(z)
sph_inkn -- [+]Sequence of spherical Bessel functions, in(z) and kn(z)
Riccati-Bessel Functions
^^^^^^^^^^^^^^^^^^^^^^^^
These are not universal functions:
.. autosummary::
:toctree: generated/
riccati_jn -- [+]Sequence of Ricatti-Bessel functions of first kind.
riccati_yn -- [+]Sequence of Ricatti-Bessel functions of second kind.
Struve Functions
----------------
.. autosummary::
:toctree: generated/
struve -- Struve function --- Hv(x)
modstruve -- Modified Struve function --- Lv(x)
itstruve0 -- Integral of H0(t) from 0 to x
it2struve0 -- Integral of H0(t)/t from x to Inf.
itmodstruve0 -- Integral of L0(t) from 0 to x.
Raw Statistical Functions
-------------------------
.. seealso:: :mod:`scipy.stats`: Friendly versions of these functions.
.. autosummary::
:toctree: generated/
bdtr -- Sum of terms 0 through k of the binomial pdf.
bdtrc -- Sum of terms k+1 through n of the binomial pdf.
bdtri -- Inverse of bdtr
bdtrik --
bdtrin --
btdtr -- Integral from 0 to x of beta pdf.
btdtri -- Quantiles of beta distribution
btdtria --
btdtrib --
fdtr -- Integral from 0 to x of F pdf.
fdtrc -- Integral from x to infinity under F pdf.
fdtri -- Inverse of fdtrc
fdtridfd --
gdtr -- Integral from 0 to x of gamma pdf.
gdtrc -- Integral from x to infinity under gamma pdf.
gdtria -- Inverse with respect to `a` of gdtr.
gdtrib -- Inverse with respect to `b` of gdtr.
gdtrix -- Inverse with respect to `x` of gdtr.
nbdtr -- Sum of terms 0 through k of the negative binomial pdf.
nbdtrc -- Sum of terms k+1 to infinity under negative binomial pdf.
nbdtri -- Inverse of nbdtr
nbdtrik --
nbdtrin --
ncfdtr -- CDF of non-central t distribution.
ncfdtridfd -- Find degrees of freedom (denominator) of noncentral F distribution.
ncfdtridfn -- Find degrees of freedom (numerator) of noncentral F distribution.
ncfdtri -- Inverse CDF of noncentral F distribution.
ncfdtrinc -- Find noncentrality parameter of noncentral F distribution.
nctdtr -- CDF of noncentral t distribution.
nctdtridf -- Find degrees of freedom of noncentral t distribution.
nctdtrit -- Inverse CDF of noncentral t distribution.
nctdtrinc -- Find noncentrality parameter of noncentral t distribution.
nrdtrimn -- Find mean of normal distribution from cdf and std.
nrdtrisd -- Find std of normal distribution from cdf and mean.
pdtr -- Sum of terms 0 through k of the Poisson pdf.
pdtrc -- Sum of terms k+1 to infinity of the Poisson pdf.
pdtri -- Inverse of pdtr
pdtrik --
stdtr -- Integral from -infinity to t of the Student-t pdf.
stdtridf --
stdtrit --
chdtr -- Integral from 0 to x of the Chi-square pdf.
chdtrc -- Integral from x to infnity of Chi-square pdf.
chdtri -- Inverse of chdtrc.
chdtriv --
ndtr -- Integral from -infinity to x of standard normal pdf
log_ndtr -- Logarithm of integral from -infinity to x of standard normal pdf
ndtri -- Inverse of ndtr (quantiles)
chndtr --
chndtridf --
chndtrinc --
chndtrix --
smirnov -- Kolmogorov-Smirnov complementary CDF for one-sided test statistic (Dn+ or Dn-)
smirnovi -- Inverse of smirnov.
kolmogorov -- The complementary CDF of the (scaled) two-sided test statistic (Kn*) valid for large n.
kolmogi -- Inverse of kolmogorov
tklmbda -- Tukey-Lambda CDF
logit --
expit --
boxcox -- Compute the Box-Cox transformation.
boxcox1p -- Compute the Box-Cox transformation of 1 + x.
inv_boxcox -- Compute the inverse of the Box-Cox tranformation.
inv_boxcox1p -- Compute the inverse of the Box-Cox transformation of 1 + x.
Information Theory Functions
----------------------------
.. autosummary::
:toctree: generated/
entr -- entr(x) = -x*log(x)
rel_entr -- rel_entr(x, y) = x*log(x/y)
kl_div -- kl_div(x, y) = x*log(x/y) - x + y
huber -- Huber loss function.
pseudo_huber -- Pseudo-Huber loss function.
Gamma and Related Functions
---------------------------
.. autosummary::
:toctree: generated/
gamma -- Gamma function.
gammaln -- Log of the absolute value of the Gamma function.
loggamma -- Principal branch of the logarithm of the Gamma function.
gammasgn -- Sign of the gamma function.
gammainc -- Incomplete gamma integral.
gammaincinv -- Inverse of gammainc.
gammaincc -- Complemented incomplete gamma integral.
gammainccinv -- Inverse of gammaincc.
beta -- Beta function.
betaln -- Log of the absolute value of the beta function.
betainc -- Incomplete beta integral.
betaincinv -- Inverse of betainc.
psi -- Logarithmic derivative of the gamma function.
rgamma -- One divided by the gamma function.
polygamma -- Nth derivative of psi function.
multigammaln -- Log of the multivariate gamma.
digamma -- Digamma function (derivative of the logarithm of gamma).
poch -- The Pochhammer symbol (rising factorial).
Error Function and Fresnel Integrals
------------------------------------
.. autosummary::
:toctree: generated/
erf -- Error function.
erfc -- Complemented error function (1- erf(x))
erfcx -- Scaled complemented error function exp(x**2)*erfc(x)
erfi -- Imaginary error function, -i erf(i x)
erfinv -- Inverse of error function
erfcinv -- Inverse of erfc
wofz -- Fadeeva function.
dawsn -- Dawson's integral.
fresnel -- Fresnel sine and cosine integrals.
fresnel_zeros -- Complex zeros of both Fresnel integrals
modfresnelp -- Modified Fresnel integrals F_+(x) and K_+(x)
modfresnelm -- Modified Fresnel integrals F_-(x) and K_-(x)
These are not universal functions:
.. autosummary::
:toctree: generated/
erf_zeros -- [+]Complex zeros of erf(z)
fresnelc_zeros -- [+]Complex zeros of Fresnel cosine integrals
fresnels_zeros -- [+]Complex zeros of Fresnel sine integrals
Legendre Functions
------------------
.. autosummary::
:toctree: generated/
lpmv -- Associated Legendre Function of arbitrary non-negative degree v.
sph_harm -- Spherical Harmonics (complex-valued) Y^m_n(theta,phi)
These are not universal functions:
.. autosummary::
:toctree: generated/
clpmn -- [+]Associated Legendre Function of the first kind for complex arguments.
lpn -- [+]Legendre Functions (polynomials) of the first kind
lqn -- [+]Legendre Functions of the second kind.
lpmn -- [+]Associated Legendre Function of the first kind for real arguments.
lqmn -- [+]Associated Legendre Function of the second kind.
Ellipsoidal Harmonics
---------------------
.. autosummary::
:toctree: generated/
ellip_harm -- Ellipsoidal harmonic E
ellip_harm_2 -- Ellipsoidal harmonic F
ellip_normal -- Ellipsoidal normalization constant
Orthogonal polynomials
----------------------
The following functions evaluate values of orthogonal polynomials:
.. autosummary::
:toctree: generated/
assoc_laguerre
eval_legendre
eval_chebyt
eval_chebyu
eval_chebyc
eval_chebys
eval_jacobi
eval_laguerre
eval_genlaguerre
eval_hermite
eval_hermitenorm
eval_gegenbauer
eval_sh_legendre
eval_sh_chebyt
eval_sh_chebyu
eval_sh_jacobi
The functions below, in turn, return the polynomial coefficients in
:class:`~.orthopoly1d` objects, which function similarly as :ref:`numpy.poly1d`.
The :class:`~.orthopoly1d` class also has an attribute ``weights`` which returns
the roots, weights, and total weights for the appropriate form of Gaussian
quadrature. These are returned in an ``n x 3`` array with roots in the first
column, weights in the second column, and total weights in the final column.
Note that :class:`~.orthopoly1d` objects are converted to ``poly1d`` when doing
arithmetic, and lose information of the original orthogonal polynomial.
.. autosummary::
:toctree: generated/
legendre -- [+]Legendre polynomial P_n(x) (lpn -- for function).
chebyt -- [+]Chebyshev polynomial T_n(x)
chebyu -- [+]Chebyshev polynomial U_n(x)
chebyc -- [+]Chebyshev polynomial C_n(x)
chebys -- [+]Chebyshev polynomial S_n(x)
jacobi -- [+]Jacobi polynomial P^(alpha,beta)_n(x)
laguerre -- [+]Laguerre polynomial, L_n(x)
genlaguerre -- [+]Generalized (Associated) Laguerre polynomial, L^alpha_n(x)
hermite -- [+]Hermite polynomial H_n(x)
hermitenorm -- [+]Normalized Hermite polynomial, He_n(x)
gegenbauer -- [+]Gegenbauer (Ultraspherical) polynomials, C^(alpha)_n(x)
sh_legendre -- [+]shifted Legendre polynomial, P*_n(x)
sh_chebyt -- [+]shifted Chebyshev polynomial, T*_n(x)
sh_chebyu -- [+]shifted Chebyshev polynomial, U*_n(x)
sh_jacobi -- [+]shifted Jacobi polynomial, J*_n(x) = G^(p,q)_n(x)
.. warning::
Computing values of high-order polynomials (around ``order > 20``) using
polynomial coefficients is numerically unstable. To evaluate polynomial
values, the ``eval_*`` functions should be used instead.
Roots and weights for orthogonal polynomials
.. autosummary::
:toctree: generated/
c_roots
cg_roots
h_roots
he_roots
j_roots
js_roots
l_roots
la_roots
p_roots
ps_roots
s_roots
t_roots
ts_roots
u_roots
us_roots
Hypergeometric Functions
------------------------
.. autosummary::
:toctree: generated/
hyp2f1 -- Gauss hypergeometric function (2F1)
hyp1f1 -- Confluent hypergeometric function (1F1)
hyperu -- Confluent hypergeometric function (U)
hyp0f1 -- Confluent hypergeometric limit function (0F1)
hyp2f0 -- Hypergeometric function (2F0)
hyp1f2 -- Hypergeometric function (1F2)
hyp3f0 -- Hypergeometric function (3F0)
Parabolic Cylinder Functions
----------------------------
.. autosummary::
:toctree: generated/
pbdv -- Parabolic cylinder function Dv(x) and derivative.
pbvv -- Parabolic cylinder function Vv(x) and derivative.
pbwa -- Parabolic cylinder function W(a,x) and derivative.
These are not universal functions:
.. autosummary::
:toctree: generated/
pbdv_seq -- [+]Sequence of parabolic cylinder functions Dv(x)
pbvv_seq -- [+]Sequence of parabolic cylinder functions Vv(x)
pbdn_seq -- [+]Sequence of parabolic cylinder functions Dn(z), complex z
Mathieu and Related Functions
-----------------------------
.. autosummary::
:toctree: generated/
mathieu_a -- Characteristic values for even solution (ce_m)
mathieu_b -- Characteristic values for odd solution (se_m)
These are not universal functions:
.. autosummary::
:toctree: generated/
mathieu_even_coef -- [+]sequence of expansion coefficients for even solution
mathieu_odd_coef -- [+]sequence of expansion coefficients for odd solution
The following return both function and first derivative:
.. autosummary::
:toctree: generated/
mathieu_cem -- Even Mathieu function
mathieu_sem -- Odd Mathieu function
mathieu_modcem1 -- Even modified Mathieu function of the first kind
mathieu_modcem2 -- Even modified Mathieu function of the second kind
mathieu_modsem1 -- Odd modified Mathieu function of the first kind
mathieu_modsem2 -- Odd modified Mathieu function of the second kind
Spheroidal Wave Functions
-------------------------
.. autosummary::
:toctree: generated/
pro_ang1 -- Prolate spheroidal angular function of the first kind
pro_rad1 -- Prolate spheroidal radial function of the first kind
pro_rad2 -- Prolate spheroidal radial function of the second kind
obl_ang1 -- Oblate spheroidal angular function of the first kind
obl_rad1 -- Oblate spheroidal radial function of the first kind
obl_rad2 -- Oblate spheroidal radial function of the second kind
pro_cv -- Compute characteristic value for prolate functions
obl_cv -- Compute characteristic value for oblate functions
pro_cv_seq -- Compute sequence of prolate characteristic values
obl_cv_seq -- Compute sequence of oblate characteristic values
The following functions require pre-computed characteristic value:
.. autosummary::
:toctree: generated/
pro_ang1_cv -- Prolate spheroidal angular function of the first kind
pro_rad1_cv -- Prolate spheroidal radial function of the first kind
pro_rad2_cv -- Prolate spheroidal radial function of the second kind
obl_ang1_cv -- Oblate spheroidal angular function of the first kind
obl_rad1_cv -- Oblate spheroidal radial function of the first kind
obl_rad2_cv -- Oblate spheroidal radial function of the second kind
Kelvin Functions
----------------
.. autosummary::
:toctree: generated/
kelvin -- All Kelvin functions (order 0) and derivatives.
kelvin_zeros -- [+]Zeros of All Kelvin functions (order 0) and derivatives
ber -- Kelvin function ber x
bei -- Kelvin function bei x
berp -- Derivative of Kelvin function ber x
beip -- Derivative of Kelvin function bei x
ker -- Kelvin function ker x
kei -- Kelvin function kei x
kerp -- Derivative of Kelvin function ker x
keip -- Derivative of Kelvin function kei x
These are not universal functions:
.. autosummary::
:toctree: generated/
ber_zeros -- [+]Zeros of Kelvin function bei x
bei_zeros -- [+]Zeros of Kelvin function ber x
berp_zeros -- [+]Zeros of derivative of Kelvin function ber x
beip_zeros -- [+]Zeros of derivative of Kelvin function bei x
ker_zeros -- [+]Zeros of Kelvin function kei x
kei_zeros -- [+]Zeros of Kelvin function ker x
kerp_zeros -- [+]Zeros of derivative of Kelvin function ker x
keip_zeros -- [+]Zeros of derivative of Kelvin function kei x
Combinatorics
-------------
.. autosummary::
:toctree: generated/
comb -- [+]Combinations of N things taken k at a time, "N choose k"
perm -- [+]Permutations of N things taken k at a time, "k-permutations of N"
Other Special Functions
-----------------------
.. autosummary::
:toctree: generated/
agm -- Arithmetic-Geometric Mean
bernoulli -- Bernoulli numbers
binom -- Binomial coefficient.
diric -- Dirichlet function (periodic sinc)
euler -- Euler numbers
expn -- Exponential integral.
exp1 -- Exponential integral of order 1 (for complex argument)
expi -- Another exponential integral -- Ei(x)
factorial -- The factorial function, n! = special.gamma(n+1)
factorial2 -- Double factorial, (n!)!
factorialk -- [+](...((n!)!)!...)! where there are k '!'
shichi -- Hyperbolic sine and cosine integrals.
sici -- Integral of the sinc and "cosinc" functions.
spence -- Spence's function, also known as the dilogarithm.
lambertw -- Lambert W function
zeta -- Riemann zeta function of two arguments.
zetac -- Standard Riemann zeta function minus 1.
Convenience Functions
---------------------
.. autosummary::
:toctree: generated/
cbrt -- Cube root.
exp10 -- 10 raised to the x power.
exp2 -- 2 raised to the x power.
radian -- radian angle given degrees, minutes, and seconds.
cosdg -- cosine of the angle given in degrees.
sindg -- sine of the angle given in degrees.
tandg -- tangent of the angle given in degrees.
cotdg -- cotangent of the angle given in degrees.
log1p -- log(1+x)
expm1 -- exp(x)-1
cosm1 -- cos(x)-1
round -- round the argument to the nearest integer. If argument ends in 0.5 exactly, pick the nearest even integer.
xlogy -- x*log(y)
xlog1py -- x*log1p(y)
exprel -- (exp(x)-1)/x
sinc -- sin(x)/x
.. [+] in the description indicates a function which is not a universal
.. function and does not follow broadcasting and automatic
.. array-looping rules.
"""
from __future__ import division, print_function, absolute_import
from ._ufuncs import *
from .basic import *
from . import specfun
from . import orthogonal
from .orthogonal import *
from .spfun_stats import multigammaln
from ._ellip_harm import ellip_harm, ellip_harm_2, ellip_normal
from .lambertw import lambertw
from ._spherical_bessel import (spherical_jn, spherical_yn, spherical_in,
spherical_kn)
__all__ = [s for s in dir() if not s.startswith('_')]
from numpy.dual import register_func
register_func('i0',i0)
del register_func
from numpy.testing import Tester
test = Tester().test
|