1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
# Copyright (c) 2012, Jaydeep P. Bardhan
# Copyright (c) 2012, Matthew G. Knepley
# Copyright (c) 2014, Janani Padmanabhan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
# OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
# OF SUCH DAMAGE.
import cython
cimport sf_error
from libc.math cimport sqrt, fabs, pow
from libc.stdlib cimport malloc, free
from numpy.math cimport NAN, PI
cdef extern from "lapack_defs.h":
void c_dstevr(char *jobz, char *range, int *n, double *d, double *e,
double *vl, double *vu, int *il, int *iu, double *abstol,
int *m, double *w, double *z, int *ldz, int *isuppz,
double *work, int *lwork, int *iwork, int *liwork, int *info) nogil
@cython.wraparound(False)
@cython.boundscheck(False)
@cython.cdivision(True)
cdef inline double* lame_coefficients(double h2, double k2, int n, int p,
void **bufferp, double signm,
double signn) nogil:
if n < 0:
sf_error.error("ellip_harm", sf_error.ARG, "invalid value for n")
return NULL
if p < 1 or p > 2*n + 1:
sf_error.error("ellip_harm", sf_error.ARG, "invalid value for p")
return NULL
if fabs(signm) != 1 or fabs(signn) != 1:
sf_error.error("ellip_harm", sf_error.ARG, "invalid signm or signn")
return NULL
cdef double s2, alpha, beta, gamma, lamba_romain, pp, psi, t1, tol, vl, vu
cdef int r, tp, j, size, i, info, lwork, liwork, c, iu
cdef char t
r = n/2
alpha = h2
beta = k2 - h2
gamma = alpha - beta
if p - 1 < r + 1:
t, tp, size = 'K', p, r + 1
elif p - 1 < (n - r) + (r + 1):
t, tp, size = 'L', p - (r + 1), n - r
elif p - 1 < (n - r) + (n - r) + (r + 1):
t, tp, size = 'M', p - (n - r) - (r + 1), n - r
elif p - 1 < 2*n + 1:
t, tp, size = 'N', p - (n - r) - (n - r) - (r + 1), r
lwork = 60*size
liwork = 30*size
tol = 0.0
vl = 0
vu = 0
cdef void *buffer = malloc((sizeof(double)*(7*size + lwork))
+ (sizeof(int)*(2*size + liwork)))
bufferp[0] = buffer
if not buffer:
sf_error.error("ellip_harm", sf_error.NO_RESULT, "failed to allocate memory")
return NULL
cdef double *g = <double *>buffer
cdef double *d = g + size
cdef double *f = d + size
cdef double *ss = f + size
cdef double *w = ss + size
cdef double *dd = w + size
cdef double *eigv = dd + size
cdef double *work = eigv + size
cdef int *iwork = <int *>(work + lwork)
cdef int *isuppz = iwork + liwork
if t == 'K':
for j in range(0, r + 1):
g[j] = (-(2*j + 2)*(2*j + 1)*beta)
if n%2:
f[j] = (-alpha*(2*(r- (j + 1)) + 2)*(2*((j + 1) + r) + 1))
d[j] = ((2*r + 1)*(2*r + 2) - 4*j*j)*alpha + (2*j + 1)*(2*j + 1)*beta
else:
f[j] = (-alpha*(2*(r - (j + 1)) + 2)*(2*(r + (j + 1)) - 1))
d[j] = 2*r*(2*r + 1)*alpha - 4*j*j*gamma
elif t == 'L':
for j in range(0, n - r):
g[j] = (-(2*j + 2)*(2*j + 3)*beta)
if n%2:
f[j] = (-alpha*(2*(r- (j + 1)) + 2)*(2*((j + 1) + r) + 1))
d[j] = (2*r + 1)*(2*r + 2)*alpha - (2*j + 1)*(2*j + 1)*gamma
else:
f[j] = (-alpha*(2*(r - (j + 1)))*(2*(r+(j + 1)) + 1))
d[j] = (2*r*(2*r + 1) - (2*j + 1)*(2*j + 1))*alpha + (2*j + 2)*(2*j + 2)*beta
elif t == 'M':
for j in range(0, n - r):
g[j] = (-(2*j + 2)*(2*j + 1)*beta)
if n%2:
f[j] = (-alpha*(2*(r - (j + 1)) + 2)*(2*((j + 1) + r) + 1))
d[j] = ((2*r + 1)*(2*r + 2) - (2*j + 1)*(2*j + 1))*alpha + 4*j*j*beta
else:
f[j] = (-alpha*(2*(r - (j + 1)))*(2*(r+(j + 1)) + 1))
d[j] = 2*r*(2*r + 1)*alpha - (2*j + 1)*(2*j + 1)*gamma
elif t == 'N':
for j in range(0, r):
g[j] = (-(2*j + 2)*(2*j + 3)*beta)
if n%2:
f[j] = (-alpha*(2*(r- (j + 1)))*(2*((j + 1) + r) + 3))
d[j] = (2*r + 1)*(2*r + 2)*alpha - (2*j + 2)*(2*j + 2)*gamma
else:
f[j] = (-alpha*(2*(r - (j + 1)))*(2*(r+(j + 1)) + 1))
d[j] = 2*r*(2*r + 1)*alpha - (2*j + 2)*(2*j +2)*alpha + (2*j + 1)*(2*j + 1)*beta
for i in range(0, size):
if i == 0:
ss[i] = 1
else:
ss[i] = sqrt(g[i - 1]/f[i - 1])*ss[i - 1]
for i in range(0, size-1):
dd[i] = g[i]*ss[i]/ss[i+1]
c_dstevr("V", "I", &size, d, dd, &vl, &vu, &tp, &tp, &tol, &c, w, eigv,
&size, isuppz, work, &lwork, iwork, &liwork, &info)
if info != 0:
sf_error.error("ellip_harm", sf_error.NO_RESULT, "failed to allocate memory")
return NULL
for i in range(0, size):
eigv[i] /= ss[i]
for i in range(0, size):
eigv[i] = eigv[i]/(eigv[size - 1]/pow(-h2, size - 1))
return eigv
@cython.wraparound(False)
@cython.boundscheck(False)
@cython.cdivision(True)
cdef inline double ellip_harm_eval(double h2, double k2, int n, int p,
double s, double *eigv, double signm,
double signn) nogil:
cdef int size, tp, r, j
cdef double s2, pp, lambda_romain, psi
s2 = s*s
r = n/2
if p - 1 < r + 1:
size, psi = r + 1, pow(s, n - 2*r)
elif p - 1 < (n - r) + (r + 1):
size, psi = n - r, pow(s, 1 - n + 2*r)*signm*sqrt(fabs(s2 - h2))
elif p - 1 < (n - r) + (n - r) + (r + 1):
size, psi = n - r, pow(s, 1 - n + 2*r)*signn*sqrt(fabs(s2 - k2))
elif p - 1 < 2*n + 1:
size, psi = r, pow(s, n - 2*r)*signm*signn*sqrt(fabs((s2 - h2)*(s2 - k2)))
lambda_romain = 1.0 - <double>s2/<double>h2
pp = eigv[size - 1]
for j in range(size - 2, -1, -1):
pp = pp*lambda_romain + eigv[j]
pp = pp*psi
return pp
cdef inline double ellip_harmonic(double h2, double k2, int n, int p, double s,
double signm, double signn) nogil:
cdef double result
cdef double *eigv
cdef void *bufferp
eigv = lame_coefficients(h2, k2, n, p, &bufferp, signm, signn)
if not eigv:
free(bufferp)
return NAN
result = ellip_harm_eval(h2, k2, n, p, s, eigv, signm, signn)
free(bufferp)
return result
|