1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
import ctypes
from libc.math cimport sqrt, fabs
from libc.stdlib cimport free
from numpy import nan
import scipy.integrate
# The access to global variables is protected by
# is protected by _ellip_lock in _ellip_harm.py
cdef double * _global_eval
cdef double _global_h2, _global_k2
cdef int _global_n, _global_p
from ._ellip_harm cimport ellip_harmonic, ellip_harm_eval, lame_coefficients
cdef double _F_integrand(double t) nogil:
cdef double h2, k2, t2, i, a, result
cdef int n, p
cdef double * eval
t2 = t*t
h2 = _global_h2
k2 = _global_k2
n = _global_n
p = _global_p
eval = _global_eval
i = ellip_harm_eval( h2, k2, n, p, 1/t, eval, 1, 1)
result = 1/(i*i*sqrt(1 - t2*k2)*sqrt(1 - t2*h2))
return result
_F_integrand_t = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
_F_integrand_ctypes = ctypes.cast(<size_t>&_F_integrand, _F_integrand_t)
cdef double _F_integrand1(double t) nogil:
cdef double h2, k2, t2, i, a, h, result
cdef int n, p
cdef double * eval
t2 = t*t
h2 = _global_h2
k2 =_global_k2
n = _global_n
p = _global_p
eval = _global_eval
h = sqrt(h2)
k = sqrt(k2)
i = ellip_harm_eval( h2, k2, n, p, t, eval, 1, 1)
result = i*i/sqrt((t + h)*(t + k))
return result
_F_integrand1_t = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
_F_integrand1_ctypes = ctypes.cast(<size_t>&_F_integrand1, _F_integrand1_t)
cdef double _F_integrand2(double t) nogil:
cdef double h2, k2, t2, i, a, h, result
cdef int n, p
cdef double * eval
t2 = t*t
h2 = _global_h2
k2 =_global_k2
n = _global_n
p = _global_p
eval = _global_eval
h = sqrt(h2)
k = sqrt(k2)
i = ellip_harm_eval( h2, k2, n, p, t, eval, 1, 1)
result = t2*i*i/sqrt((t + h)*(t + k))
return result
_F_integrand2_t = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
_F_integrand2_ctypes = ctypes.cast(<size_t>&_F_integrand2, _F_integrand2_t)
cdef double _F_integrand3(double t) nogil:
cdef double h2, k2, t2, i, a, h, result
cdef int n, p
cdef double * eval
t2 = t*t
h2 = _global_h2
k2 =_global_k2
n = _global_n
p = _global_p
eval = _global_eval
h = sqrt(h2)
k = sqrt(k2)
i = ellip_harm_eval( h2, k2, n, p, t, eval, 1, 1)
result = i*i/sqrt((t + h)*(k2 - t2))
return result
_F_integrand3_t = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
_F_integrand3_ctypes = ctypes.cast(<size_t>&_F_integrand3, _F_integrand3_t)
cdef double _F_integrand4(double t) nogil:
cdef double h2, k2, t2, i, a, h, result
cdef int n, p
cdef double *eval
t2 = t*t
h2 = _global_h2
k2 =_global_k2
n = _global_n
p = _global_p
eval = _global_eval
h = sqrt(h2)
k = sqrt(k2)
i = ellip_harm_eval( h2, k2, n, p, t, eval, 1, 1)
result = i*i*t2/sqrt((t + h)*(k2 - t2))
return result
_F_integrand4_t = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
_F_integrand4_ctypes = ctypes.cast(<size_t>&_F_integrand4, _F_integrand4_t)
def _ellipsoid(double h2, double k2, int n, int p, double s):
global _global_h2
global _global_k2
global _global_n
global _global_p
global _global_eval
cdef double * eval
cdef void *bufferp
eval = lame_coefficients(h2, k2, n, p, &bufferp, 1, 1)
if not eval:
return nan
_global_h2 = h2
_global_k2 = k2
_global_n = n
_global_p = p
_global_eval = eval
cdef double res, err
try:
res, err = scipy.integrate.quad(_F_integrand_ctypes, 0, 1/s,
epsabs=1e-300, epsrel=1e-15)
finally:
free(bufferp)
if err > 1e-10*fabs(res) + 1e-290:
return nan
res = res*(2*n + 1)*ellip_harmonic( h2, k2, n, p, s, 1, 1)
return res
def _ellipsoid_norm(double h2, double k2, int n, int p):
global _global_h2
global _global_k2
global _global_n
global _global_p
global _global_eval
cdef double *eigv
cdef void *bufferp
eval = lame_coefficients(h2, k2, n, p, &bufferp, 1, 1)
if not eval:
return nan
_global_h2 = h2
_global_k2 = k2
_global_n = n
_global_p = p
_global_eval = eval
cdef double res, res1, res2, res3, err, err1, err2, err3
h = sqrt(h2)
k = sqrt(k2)
try:
quad = scipy.integrate.quad
wvar = (-0.5, -0.5)
res, err = quad(_F_integrand1_ctypes, h, k,
epsabs=1e-300, epsrel=1e-15, weight="alg", wvar=wvar)
res1, err1 = quad(_F_integrand2_ctypes, h, k,
epsabs=1e-300, epsrel=1e-15, weight="alg", wvar=wvar)
wvar = (0, -0.5)
res2, err2 = quad(_F_integrand3_ctypes, 0, h,
epsabs=1e-300, epsrel=1e-15, weight="alg", wvar=wvar)
res3, err3 = quad(_F_integrand4_ctypes, 0, h,
epsabs=1e-300, epsrel=1e-15, weight="alg", wvar=wvar)
finally:
free(bufferp)
error = 8*(res2*err1 + err2*res1 + res*err3 + res3*err)
result = 8*(res1*res2 - res*res3)
if error > 10e-8*fabs(result):
return nan
return result
# Needed for the _sf_error calls in _ellip_harm.pxd
cimport numpy as np
np.import_array()
np.import_ufunc()
cdef extern from "numpy/ufuncobject.h":
int PyUFunc_getfperr() nogil
cdef public int wrap_PyUFunc_getfperr() nogil:
"""
Call PyUFunc_getfperr in a context where PyUFunc_API array is initialized;
this avoids messing with the UNIQUE_SYMBOL #defines
"""
return PyUFunc_getfperr()
|