File: _ellip_harm_2.pyx

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (214 lines) | stat: -rw-r--r-- 5,569 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import ctypes
from libc.math cimport sqrt, fabs
from libc.stdlib cimport free
from numpy import nan
import scipy.integrate

# The access to global variables is protected by
# is protected by _ellip_lock in _ellip_harm.py

cdef double * _global_eval
cdef double _global_h2, _global_k2
cdef int _global_n, _global_p

from ._ellip_harm cimport ellip_harmonic, ellip_harm_eval, lame_coefficients

cdef double _F_integrand(double t) nogil:
    cdef double h2, k2, t2, i, a, result
    cdef int n, p
    cdef double * eval
    t2 = t*t
    h2 = _global_h2
    k2 = _global_k2
    n = _global_n
    p = _global_p
    eval = _global_eval
    i = ellip_harm_eval( h2, k2, n, p, 1/t, eval, 1, 1)
    result = 1/(i*i*sqrt(1 - t2*k2)*sqrt(1 - t2*h2))
    return result

_F_integrand_t = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
_F_integrand_ctypes = ctypes.cast(<size_t>&_F_integrand, _F_integrand_t)

cdef double _F_integrand1(double t) nogil:
    cdef double h2, k2, t2, i, a, h, result
    cdef int n, p
    cdef double * eval
    t2 = t*t
    h2 = _global_h2
    k2 =_global_k2
    n = _global_n
    p = _global_p
    eval = _global_eval

    h = sqrt(h2)
    k = sqrt(k2)
    i = ellip_harm_eval( h2, k2, n, p, t, eval, 1, 1)
    result = i*i/sqrt((t + h)*(t + k))
    return result

_F_integrand1_t = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
_F_integrand1_ctypes = ctypes.cast(<size_t>&_F_integrand1, _F_integrand1_t)

cdef double _F_integrand2(double t) nogil:
    cdef double h2, k2, t2, i, a, h, result
    cdef int n, p
    cdef double * eval
    t2 = t*t
    h2 = _global_h2
    k2 =_global_k2
    n = _global_n
    p = _global_p
    eval = _global_eval

    h = sqrt(h2)
    k = sqrt(k2)
    i = ellip_harm_eval( h2, k2, n, p, t, eval, 1, 1)
    result = t2*i*i/sqrt((t + h)*(t + k))
    return result

_F_integrand2_t = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
_F_integrand2_ctypes = ctypes.cast(<size_t>&_F_integrand2, _F_integrand2_t)

cdef double _F_integrand3(double t) nogil:
    cdef double h2, k2, t2, i, a, h, result
    cdef int n, p
    cdef double * eval
    t2 = t*t
    h2 = _global_h2
    k2 =_global_k2
    n = _global_n
    p = _global_p
    eval = _global_eval

    h = sqrt(h2)
    k = sqrt(k2)
    i = ellip_harm_eval( h2, k2, n, p, t, eval, 1, 1)
    result = i*i/sqrt((t + h)*(k2 - t2))
    return result

_F_integrand3_t = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
_F_integrand3_ctypes = ctypes.cast(<size_t>&_F_integrand3, _F_integrand3_t)

cdef double _F_integrand4(double t) nogil:
    cdef double h2, k2, t2, i, a, h, result
    cdef int n, p
    cdef double *eval
    t2 = t*t
    h2 = _global_h2
    k2 =_global_k2
    n = _global_n
    p = _global_p
    eval = _global_eval

    h = sqrt(h2)
    k = sqrt(k2)
    i = ellip_harm_eval( h2, k2, n, p, t, eval, 1, 1)
    result = i*i*t2/sqrt((t + h)*(k2 - t2))
    return result

_F_integrand4_t = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
_F_integrand4_ctypes = ctypes.cast(<size_t>&_F_integrand4, _F_integrand4_t)


def _ellipsoid(double h2, double k2, int n, int p, double s):
    global _global_h2
    global _global_k2
    global _global_n
    global _global_p
    global _global_eval

    cdef double * eval
    cdef void *bufferp
    eval = lame_coefficients(h2, k2, n, p, &bufferp, 1, 1)
    if not eval:
        return nan

    _global_h2 = h2
    _global_k2 = k2
    _global_n = n
    _global_p = p
    _global_eval = eval

    cdef double res, err

    try:
        res, err = scipy.integrate.quad(_F_integrand_ctypes, 0, 1/s,
                                        epsabs=1e-300, epsrel=1e-15)
    finally:
        free(bufferp)
    if err > 1e-10*fabs(res) + 1e-290:
        return nan
    res = res*(2*n + 1)*ellip_harmonic( h2, k2, n, p, s, 1, 1)
    return res


def _ellipsoid_norm(double h2, double k2, int n, int p):
    global _global_h2
    global _global_k2
    global _global_n
    global _global_p
    global _global_eval

    cdef double *eigv
    cdef void *bufferp
    eval = lame_coefficients(h2, k2, n, p, &bufferp, 1, 1)
    if not eval:
        return nan

    _global_h2 = h2
    _global_k2 = k2
    _global_n = n
    _global_p = p
    _global_eval = eval

    cdef double res, res1, res2, res3, err, err1, err2, err3

    h = sqrt(h2)
    k = sqrt(k2)
    try:
        quad = scipy.integrate.quad

        wvar = (-0.5, -0.5)

        res, err = quad(_F_integrand1_ctypes, h, k,
                        epsabs=1e-300, epsrel=1e-15, weight="alg", wvar=wvar)

        res1, err1 = quad(_F_integrand2_ctypes, h, k,
                          epsabs=1e-300, epsrel=1e-15, weight="alg", wvar=wvar)

        wvar = (0, -0.5)

        res2, err2 = quad(_F_integrand3_ctypes, 0, h,
                          epsabs=1e-300, epsrel=1e-15, weight="alg", wvar=wvar)

        res3, err3 = quad(_F_integrand4_ctypes, 0, h,
                          epsabs=1e-300, epsrel=1e-15, weight="alg", wvar=wvar)

    finally:
        free(bufferp)

    error = 8*(res2*err1 + err2*res1 + res*err3 + res3*err)
    result = 8*(res1*res2 - res*res3)

    if error > 10e-8*fabs(result):
        return nan
    return result


# Needed for the _sf_error calls in _ellip_harm.pxd

cimport numpy as np

np.import_array()
np.import_ufunc()

cdef extern from "numpy/ufuncobject.h":
    int PyUFunc_getfperr() nogil

cdef public int wrap_PyUFunc_getfperr() nogil:
    """
    Call PyUFunc_getfperr in a context where PyUFunc_API array is initialized;
    this avoids messing with the UNIQUE_SYMBOL #defines
    """
    return PyUFunc_getfperr()