File: _spherical_bessel.pxd

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (372 lines) | stat: -rw-r--r-- 9,725 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# -*-cython-*-
#
# Implementation of spherical Bessel functions and modified spherical Bessel
# functions of the first and second kinds, as well as their derivatives.
#
# Author: Tadeusz Pudlik
#
# Distributed under the same license as SciPy.
#
# I attempt to correctly handle the edge cases (0 and infinity), but this is
# tricky: the values of the functions often depend on the direction in which
# the limit is taken. At zero, I follow the convention of numpy (1.9.2),
# which treats zero differently depending on its type:
#
#   >>> np.cos(0)/0
#   inf
#   >>> np.cos(0+0j)/(0+0j)
#   inf + nan*j
#
# So, real zero is assumed to be "positive zero", while complex zero has an
# unspecified sign and produces nans.  Similarly, complex infinity is taken to
# represent the "point at infinity", an ambiguity which for some functions
# makes `nan` the correct return value.

import cython
from libc.math cimport cos, sin, sqrt, M_PI_2

from numpy cimport npy_cdouble
from _complexstuff cimport *

cimport sf_error

cdef extern from "amos_wrappers.h":
    npy_cdouble cbesi_wrap( double v, npy_cdouble z) nogil
    npy_cdouble cbesj_wrap(double v, npy_cdouble z) nogil
    double cbesj_wrap_real(double v, double x) nogil
    npy_cdouble cbesk_wrap(double v, npy_cdouble z) nogil
    double cbesk_wrap_real(double v, double x) nogil
    npy_cdouble cbesy_wrap(double v, npy_cdouble z) nogil
    double cbesy_wrap_real(double v, double x) nogil

cdef extern from "cephes.h":
    double iv(double v, double x) nogil


# Fused type wrappers

cdef inline number_t cbesj(double v, number_t z) nogil:
    cdef npy_cdouble r
    if number_t is double:
        return cbesj_wrap_real(v, z)
    else:
        r = cbesj_wrap(v, npy_cdouble_from_double_complex(z))
        return double_complex_from_npy_cdouble(r)

cdef inline number_t cbesy(double v, number_t z) nogil:
    cdef npy_cdouble r
    if number_t is double:
        return cbesy_wrap_real(v, z)
    else:
        r = cbesy_wrap(v, npy_cdouble_from_double_complex(z))
        return double_complex_from_npy_cdouble(r)

cdef inline number_t cbesk(double v, number_t z) nogil:
    cdef npy_cdouble r
    if number_t is double:
        return cbesk_wrap_real(v, z)
    else:
        r = cbesk_wrap(v, npy_cdouble_from_double_complex(z))
        return double_complex_from_npy_cdouble(r)


# Spherical Bessel functions

@cython.cdivision(True)
cdef inline double spherical_jn_real(long n, double x) nogil:
    cdef double s0, s1, sn
    cdef int idx

    if npy_isnan(x):
        return x
    if n < 0:
        sf_error.error("spherical_jn", sf_error.DOMAIN, NULL)
        return nan
    if x == inf or x == -inf:
        return 0
    if x == 0:
        if n == 0:
            return 1
        else:
            return 0

    if n > 0 and n >= x:
        return sqrt(M_PI_2/x)*cbesj(n + 0.5, x)

    s0 = sin(x)/x
    if n == 0:
        return s0
    s1 = (s0 - cos(x))/x
    if n == 1:
        return s1

    for idx in range(n - 1):
        sn = (2*idx + 3)*s1/x - s0
        s0 = s1
        s1 = sn
        if npy_isinf(sn):
            # Overflow occurred already: terminate recurrence.
            return sn

    return sn


@cython.cdivision(True)
cdef inline double complex spherical_jn_complex(long n, double complex z) nogil:
    cdef double complex out
    if zisnan(z):
        return z
    if n < 0:
        sf_error.error("spherical_jn", sf_error.DOMAIN, NULL)
        return nan
    if z.real == inf or z.real == -inf:
        # http://dlmf.nist.gov/10.52.E3
        if z.imag == 0:
            return 0
        else:
            return (1+1j)*inf
    if z.real == 0 and z.imag == 0:
        if n == 0:
            return 1
        else:
            return 0

    out = zsqrt(M_PI_2/z)*cbesj(n + 0.5, z)

    if z.imag == 0:
        # Small imaginary part is spurious
        return out.real
    else:
        return out


@cython.cdivision(True)
cdef inline double spherical_yn_real(long n, double x) nogil:
    cdef double s0, s1, sn
    cdef int idx

    if npy_isnan(x):
        return x
    if n < 0:
        sf_error.error("spherical_yn", sf_error.DOMAIN, NULL)
        return nan
    if x < 0:
        return (-1)**(n+1)*spherical_yn_real(n, -x)
    if x == inf or x == -inf:
        return 0
    if x == 0:
        return -inf

    s0 = -cos(x)/x
    if n == 0:
        return s0
    s1 = (s0 - sin(x))/x
    if n == 1:
        return s1

    for idx in range(n - 1):
        sn = (2*idx + 3)*s1/x - s0
        s0 = s1
        s1 = sn
        if npy_isinf(sn):
            # Overflow occurred already: terminate recurrence.
            return sn

    return sn


@cython.cdivision(True)
cdef inline double complex spherical_yn_complex(long n, double complex z) nogil:

    if zisnan(z):
        return z
    if n < 0:
        sf_error.error("spherical_yn", sf_error.DOMAIN, NULL)
        return nan
    if z.real == 0 and z.imag == 0:
        # http://dlmf.nist.gov/10.52.E2
        return nan
    if z.real == inf or z.real == -inf:
        # http://dlmf.nist.gov/10.52.E3
        if z.imag == 0:
            return 0
        else:
            return (1+1j)*inf

    return zsqrt(M_PI_2/z)*cbesy(n + 0.5, z)


@cython.cdivision(True)
cdef inline double spherical_in_real(long n, double z) nogil:

    if npy_isnan(z):
        return z
    if n < 0:
        sf_error.error("spherical_in", sf_error.DOMAIN, NULL)
        return nan
    if z == 0:
        # http://dlmf.nist.gov/10.52.E1
        if n == 0:
            return 1
        else:
            return 0
    if npy_isinf(z):
        # http://dlmf.nist.gov/10.49.E8
        if z == -inf:
            return (-1)**n*inf
        else:
            return inf

    return sqrt(M_PI_2/z)*iv(n + 0.5, z)


@cython.cdivision(True)
cdef inline double complex spherical_in_complex(long n, double complex z) nogil:
    cdef npy_cdouble s

    if zisnan(z):
        return z
    if n < 0:
        sf_error.error("spherical_in", sf_error.DOMAIN, NULL)
        return nan
    if zabs(z) == 0:
        # http://dlmf.nist.gov/10.52.E1
        if n == 0:
            return 1
        else:
            return 0
    if zisinf(z):
        # http://dlmf.nist.gov/10.52.E5
        if z.imag == 0:
            if z.real == -inf:
                return (-1)**n*inf
            else:
                return inf
        else:
            return nan

    s = cbesi_wrap(n + 0.5, npy_cdouble_from_double_complex(z))
    return zsqrt(M_PI_2/z)*double_complex_from_npy_cdouble(s)


@cython.cdivision(True)
cdef inline double spherical_kn_real(long n, double z) nogil:

    if npy_isnan(z):
        return z
    if n < 0:
        sf_error.error("spherical_kn", sf_error.DOMAIN, NULL)
        return nan
    if z == 0:
        return inf
    if npy_isinf(z):
        # http://dlmf.nist.gov/10.52.E6
        if z == inf:
            return 0
        else:
            return -inf

    return sqrt(M_PI_2/z)*cbesk(n + 0.5, z)


@cython.cdivision(True)
cdef inline double complex spherical_kn_complex(long n, double complex z) nogil:

    if zisnan(z):
        return z
    if n < 0:
        sf_error.error("spherical_kn", sf_error.DOMAIN, NULL)
        return nan
    if zabs(z) == 0:
        return nan
    if zisinf(z):
        # http://dlmf.nist.gov/10.52.E6
        if z.imag == 0:
            if z.real == inf:
                return 0
            else:
                return -inf
        else:
            return nan

    return zsqrt(M_PI_2/z)*cbesk(n + 0.5, z)


# Derivatives

@cython.cdivision(True)
cdef inline double spherical_jn_d_real(long n, double x) nogil:
    if n == 0:
        return -spherical_jn_real(1, x)
    else:
        if x == 0:
            return 0
        return (spherical_jn_real(n - 1, x) -
                (n + 1)*spherical_jn_real(n, x)/x)


@cython.cdivision(True)
cdef inline double complex spherical_jn_d_complex(long n, double complex x) nogil:
    if n == 0:
        return -spherical_jn_complex(1, x)
    else:
        return (spherical_jn_complex(n - 1, x) -
                (n + 1)*spherical_jn_complex(n, x)/x)


@cython.cdivision(True)
cdef inline double spherical_yn_d_real(long n, double x) nogil:
    if n == 0:
        return -spherical_yn_real(1, x)
    else:
        return (spherical_yn_real(n - 1, x) -
                (n + 1)*spherical_yn_real(n, x)/x)


@cython.cdivision(True)
cdef inline double complex spherical_yn_d_complex(long n, double complex x) nogil:
    if n == 0:
        return -spherical_yn_complex(1, x)
    else:
        return (spherical_yn_complex(n - 1, x) -
                (n + 1)*spherical_yn_complex(n, x)/x)


@cython.cdivision(True)
cdef inline double spherical_in_d_real(long n, double x) nogil:
    if n == 0:
        return spherical_in_real(1, x)
    else:
        if x == 0:
            return 0
        return (spherical_in_real(n - 1, x) -
                (n + 1)*spherical_in_real(n, x)/x)


@cython.cdivision(True)
cdef inline double complex spherical_in_d_complex(long n, double complex x) nogil:
    if n == 0:
        return spherical_in_complex(1, x)
    else:
        if x == 0:
            return 0
        return (spherical_in_complex(n - 1, x) -
                (n + 1)*spherical_in_complex(n, x)/x)


@cython.cdivision(True)
cdef inline double spherical_kn_d_real(long n, double x) nogil:
    if n == 0:
        return -spherical_kn_real(1, x)
    else:
        return (-spherical_kn_real(n - 1, x) -
                (n + 1)*spherical_kn_real(n, x)/x)


@cython.cdivision(True)
cdef inline double complex spherical_kn_d_complex(long n, double complex x) nogil:
    if n == 0:
        return -spherical_kn_complex(1, x)
    else:
        return (-spherical_kn_complex(n - 1, x) -
                (n + 1)*spherical_kn_complex(n, x)/x)