1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
SUBROUTINE ZAIRY(ZR, ZI, ID, KODE, AIR, AII, NZ, IERR)
C***BEGIN PROLOGUE ZAIRY
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE AIRY FUNCTIONS AI(Z) AND DAI(Z) FOR COMPLEX Z
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C ON KODE=1, ZAIRY COMPUTES THE COMPLEX AIRY FUNCTION AI(Z) OR
C ITS DERIVATIVE DAI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
C KODE=2, A SCALING OPTION CEXP(ZTA)*AI(Z) OR CEXP(ZTA)*
C DAI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL DECAY IN
C -PI/3.LT.ARG(Z).LT.PI/3 AND THE EXPONENTIAL GROWTH IN
C PI/3.LT.ABS(ARG(Z)).LT.PI WHERE ZTA=(2/3)*Z*CSQRT(Z).
C
C WHILE THE AIRY FUNCTIONS AI(Z) AND DAI(Z)/DZ ARE ANALYTIC IN
C THE WHOLE Z PLANE, THE CORRESPONDING SCALED FUNCTIONS DEFINED
C FOR KODE=2 HAVE A CUT ALONG THE NEGATIVE REAL AXIS.
C DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
C MATHEMATICAL FUNCTIONS (REF. 1).
C
C INPUT ZR,ZI ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI)
C ID - ORDER OF DERIVATIVE, ID=0 OR ID=1
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 RETURNS
C AI=AI(Z) ON ID=0 OR
C AI=DAI(Z)/DZ ON ID=1
C = 2 RETURNS
C AI=CEXP(ZTA)*AI(Z) ON ID=0 OR
C AI=CEXP(ZTA)*DAI(Z)/DZ ON ID=1 WHERE
C ZTA=(2/3)*Z*CSQRT(Z)
C
C OUTPUT AIR,AII ARE DOUBLE PRECISION
C AIR,AII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
C KODE
C NZ - UNDERFLOW INDICATOR
C NZ= 0 , NORMAL RETURN
C NZ= 1 , AI=CMPLX(0.0D0,0.0D0) DUE TO UNDERFLOW IN
C -PI/3.LT.ARG(Z).LT.PI/3 ON KODE=1
C IERR - ERROR FLAG
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, REAL(ZTA)
C TOO LARGE ON KODE=1
C IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED
C LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
C PRODUCE LESS THAN HALF OF MACHINE ACCURACY
C IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION
C COMPLETE LOSS OF ACCURACY BY ARGUMENT
C REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C AI AND DAI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE K BESSEL
C FUNCTIONS BY
C
C AI(Z)=C*SQRT(Z)*K(1/3,ZTA) , DAI(Z)=-C*Z*K(2/3,ZTA)
C C=1.0/(PI*SQRT(3.0))
C ZTA=(2/3)*Z**(3/2)
C
C WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
C OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
C THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
C THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
C FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
C ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
C FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
C LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
C MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
C AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
C PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
C PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
C ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
C NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
C DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
C EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
C NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
C PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
C MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED ZACAI,ZBKNU,AZEXP,AZSQRT,I1MACH,D1MACH
C***END PROLOGUE ZAIRY
C COMPLEX AI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
DOUBLE PRECISION AA, AD, AII, AIR, AK, ALIM, ATRM, AZ, AZ3, BK,
* CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2, DIG,
* DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR,
* S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI,
* ZEROR, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, AZABS, ALAZ, BB
INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ, I1MACH
DIMENSION CYR(1), CYI(1)
DATA TTH, C1, C2, COEF /6.66666666666666667D-01,
* 3.55028053887817240D-01,2.58819403792806799D-01,
* 1.83776298473930683D-01/
DATA ZEROR, ZEROI, CONER, CONEI /0.0D0,0.0D0,1.0D0,0.0D0/
C***FIRST EXECUTABLE STATEMENT ZAIRY
IERR = 0
NZ=0
IF (ID.LT.0 .OR. ID.GT.1) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (IERR.NE.0) RETURN
AZ = AZABS(ZR,ZI)
TOL = DMAX1(D1MACH(4),1.0D-18)
FID = DBLE(FLOAT(ID))
IF (AZ.GT.1.0D0) GO TO 70
C-----------------------------------------------------------------------
C POWER SERIES FOR CABS(Z).LE.1.
C-----------------------------------------------------------------------
S1R = CONER
S1I = CONEI
S2R = CONER
S2I = CONEI
IF (AZ.LT.TOL) GO TO 170
AA = AZ*AZ
IF (AA.LT.TOL/AZ) GO TO 40
TRM1R = CONER
TRM1I = CONEI
TRM2R = CONER
TRM2I = CONEI
ATRM = 1.0D0
STR = ZR*ZR - ZI*ZI
STI = ZR*ZI + ZI*ZR
Z3R = STR*ZR - STI*ZI
Z3I = STR*ZI + STI*ZR
AZ3 = AZ*AA
AK = 2.0D0 + FID
BK = 3.0D0 - FID - FID
CK = 4.0D0 - FID
DK = 3.0D0 + FID + FID
D1 = AK*DK
D2 = BK*CK
AD = DMIN1(D1,D2)
AK = 24.0D0 + 9.0D0*FID
BK = 30.0D0 - 9.0D0*FID
DO 30 K=1,25
STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
TRM1R = STR
S1R = S1R + TRM1R
S1I = S1I + TRM1I
STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
TRM2R = STR
S2R = S2R + TRM2R
S2I = S2I + TRM2I
ATRM = ATRM*AZ3/AD
D1 = D1 + AK
D2 = D2 + BK
AD = DMIN1(D1,D2)
IF (ATRM.LT.TOL*AD) GO TO 40
AK = AK + 18.0D0
BK = BK + 18.0D0
30 CONTINUE
40 CONTINUE
IF (ID.EQ.1) GO TO 50
AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I)
AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R)
IF (KODE.EQ.1) RETURN
CALL AZSQRT(ZR, ZI, STR, STI)
ZTAR = TTH*(ZR*STR-ZI*STI)
ZTAI = TTH*(ZR*STI+ZI*STR)
CALL AZEXP(ZTAR, ZTAI, STR, STI)
PTR = AIR*STR - AII*STI
AII = AIR*STI + AII*STR
AIR = PTR
RETURN
50 CONTINUE
AIR = -S2R*C2
AII = -S2I*C2
IF (AZ.LE.TOL) GO TO 60
STR = ZR*S1R - ZI*S1I
STI = ZR*S1I + ZI*S1R
CC = C1/(1.0D0+FID)
AIR = AIR + CC*(STR*ZR-STI*ZI)
AII = AII + CC*(STR*ZI+STI*ZR)
60 CONTINUE
IF (KODE.EQ.1) RETURN
CALL AZSQRT(ZR, ZI, STR, STI)
ZTAR = TTH*(ZR*STR-ZI*STI)
ZTAI = TTH*(ZR*STI+ZI*STR)
CALL AZEXP(ZTAR, ZTAI, STR, STI)
PTR = STR*AIR - STI*AII
AII = STR*AII + STI*AIR
AIR = PTR
RETURN
C-----------------------------------------------------------------------
C CASE FOR CABS(Z).GT.1.0
C-----------------------------------------------------------------------
70 CONTINUE
FNU = (1.0D0+FID)/3.0D0
C-----------------------------------------------------------------------
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0D-18.
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C-----------------------------------------------------------------------
K1 = I1MACH(15)
K2 = I1MACH(16)
R1M5 = D1MACH(5)
K = MIN0(IABS(K1),IABS(K2))
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
K1 = I1MACH(14) - 1
AA = R1M5*DBLE(FLOAT(K1))
DIG = DMIN1(AA,18.0D0)
AA = AA*2.303D0
ALIM = ELIM + DMAX1(-AA,-41.45D0)
RL = 1.2D0*DIG + 3.0D0
ALAZ = DLOG(AZ)
C--------------------------------------------------------------------------
C TEST FOR PROPER RANGE
C-----------------------------------------------------------------------
AA=0.5D0/TOL
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
AA=DMIN1(AA,BB)
AA=AA**TTH
IF (AZ.GT.AA) GO TO 260
AA=DSQRT(AA)
IF (AZ.GT.AA) IERR=3
CALL AZSQRT(ZR, ZI, CSQR, CSQI)
ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
C-----------------------------------------------------------------------
C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
C-----------------------------------------------------------------------
IFLAG = 0
SFAC = 1.0D0
AK = ZTAI
IF (ZR.GE.0.0D0) GO TO 80
BK = ZTAR
CK = -DABS(BK)
ZTAR = CK
ZTAI = AK
80 CONTINUE
IF (ZI.NE.0.0D0) GO TO 90
IF (ZR.GT.0.0D0) GO TO 90
ZTAR = 0.0D0
ZTAI = AK
90 CONTINUE
AA = ZTAR
IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
IF (KODE.EQ.2) GO TO 100
C-----------------------------------------------------------------------
C OVERFLOW TEST
C-----------------------------------------------------------------------
IF (AA.GT.(-ALIM)) GO TO 100
AA = -AA + 0.25D0*ALAZ
IFLAG = 1
SFAC = TOL
IF (AA.GT.ELIM) GO TO 270
100 CONTINUE
C-----------------------------------------------------------------------
C CBKNU AND CACON RETURN EXP(ZTA)*K(FNU,ZTA) ON KODE=2
C-----------------------------------------------------------------------
MR = 1
IF (ZI.LT.0.0D0) MR = -1
CALL ZACAI(ZTAR, ZTAI, FNU, KODE, MR, 1, CYR, CYI, NN, RL, TOL,
* ELIM, ALIM)
IF (NN.LT.0) GO TO 280
NZ = NZ + NN
GO TO 130
110 CONTINUE
IF (KODE.EQ.2) GO TO 120
C-----------------------------------------------------------------------
C UNDERFLOW TEST
C-----------------------------------------------------------------------
IF (AA.LT.ALIM) GO TO 120
AA = -AA - 0.25D0*ALAZ
IFLAG = 2
SFAC = 1.0D0/TOL
IF (AA.LT.(-ELIM)) GO TO 210
120 CONTINUE
CALL ZBKNU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, TOL, ELIM,
* ALIM)
130 CONTINUE
S1R = CYR(1)*COEF
S1I = CYI(1)*COEF
IF (IFLAG.NE.0) GO TO 150
IF (ID.EQ.1) GO TO 140
AIR = CSQR*S1R - CSQI*S1I
AII = CSQR*S1I + CSQI*S1R
RETURN
140 CONTINUE
AIR = -(ZR*S1R-ZI*S1I)
AII = -(ZR*S1I+ZI*S1R)
RETURN
150 CONTINUE
S1R = S1R*SFAC
S1I = S1I*SFAC
IF (ID.EQ.1) GO TO 160
STR = S1R*CSQR - S1I*CSQI
S1I = S1R*CSQI + S1I*CSQR
S1R = STR
AIR = S1R/SFAC
AII = S1I/SFAC
RETURN
160 CONTINUE
STR = -(S1R*ZR-S1I*ZI)
S1I = -(S1R*ZI+S1I*ZR)
S1R = STR
AIR = S1R/SFAC
AII = S1I/SFAC
RETURN
170 CONTINUE
AA = 1.0D+3*D1MACH(1)
S1R = ZEROR
S1I = ZEROI
IF (ID.EQ.1) GO TO 190
IF (AZ.LE.AA) GO TO 180
S1R = C2*ZR
S1I = C2*ZI
180 CONTINUE
AIR = C1 - S1R
AII = -S1I
RETURN
190 CONTINUE
AIR = -C2
AII = 0.0D0
AA = DSQRT(AA)
IF (AZ.LE.AA) GO TO 200
S1R = 0.5D0*(ZR*ZR-ZI*ZI)
S1I = ZR*ZI
200 CONTINUE
AIR = AIR + C1*S1R
AII = AII + C1*S1I
RETURN
210 CONTINUE
NZ = 1
AIR = ZEROR
AII = ZEROI
RETURN
270 CONTINUE
NZ = 0
IERR=2
RETURN
280 CONTINUE
IF(NN.EQ.(-1)) GO TO 270
NZ=0
IERR=5
RETURN
260 CONTINUE
IERR=4
NZ=0
RETURN
END
|