File: zbesi.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (269 lines) | stat: -rw-r--r-- 12,002 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
      SUBROUTINE ZBESI(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
C***BEGIN PROLOGUE  ZBESI
C***DATE WRITTEN   830501   (YYMMDD)
C***REVISION DATE  890801   (YYMMDD)
C***CATEGORY NO.  B5K
C***KEYWORDS  I-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
C             MODIFIED BESSEL FUNCTION OF THE FIRST KIND
C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE  TO COMPUTE I-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C***DESCRIPTION
C
C                    ***A DOUBLE PRECISION ROUTINE***
C         ON KODE=1, ZBESI COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
C         BESSEL FUNCTIONS CY(J)=I(FNU+J-1,Z) FOR REAL, NONNEGATIVE
C         ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z IN THE CUT PLANE
C         -PI.LT.ARG(Z).LE.PI. ON KODE=2, ZBESI RETURNS THE SCALED
C         FUNCTIONS
C
C         CY(J)=EXP(-ABS(X))*I(FNU+J-1,Z)   J = 1,...,N , X=REAL(Z)
C
C         WITH THE EXPONENTIAL GROWTH REMOVED IN BOTH THE LEFT AND
C         RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
C         ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
C         (REF. 1).
C
C         INPUT      ZR,ZI,FNU ARE DOUBLE PRECISION
C           ZR,ZI  - Z=CMPLX(ZR,ZI),  -PI.LT.ARG(Z).LE.PI
C           FNU    - ORDER OF INITIAL I FUNCTION, FNU.GE.0.0D0
C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
C                    KODE= 1  RETURNS
C                             CY(J)=I(FNU+J-1,Z), J=1,...,N
C                        = 2  RETURNS
C                             CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)), J=1,...,N
C           N      - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
C
C         OUTPUT     CYR,CYI ARE DOUBLE PRECISION
C           CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
C                    CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
C                    CY(J)=I(FNU+J-1,Z)  OR
C                    CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X))  J=1,...,N
C                    DEPENDING ON KODE, X=REAL(Z)
C           NZ     - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
C                    NZ= 0   , NORMAL RETURN
C                    NZ.GT.0 , LAST NZ COMPONENTS OF CY SET TO ZERO
C                              TO UNDERFLOW, CY(J)=CMPLX(0.0D0,0.0D0)
C                              J = N-NZ+1,...,N
C           IERR   - ERROR FLAG
C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C                    IERR=1, INPUT ERROR   - NO COMPUTATION
C                    IERR=2, OVERFLOW      - NO COMPUTATION, REAL(Z) TOO
C                            LARGE ON KODE=1
C                    IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
C                            BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
C                            REDUCTION PRODUCE LESS THAN HALF OF MACHINE
C                            ACCURACY
C                    IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
C                            TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
C                            CANCE BY ARGUMENT REDUCTION
C                    IERR=5, ERROR              - NO COMPUTATION,
C                            ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C         THE COMPUTATION IS CARRIED OUT BY THE POWER SERIES FOR
C         SMALL CABS(Z), THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z),
C         THE MILLER ALGORITHM NORMALIZED BY THE WRONSKIAN AND A
C         NEUMANN SERIES FOR IMTERMEDIATE MAGNITUDES, AND THE
C         UNIFORM ASYMPTOTIC EXPANSIONS FOR I(FNU,Z) AND J(FNU,Z)
C         FOR LARGE ORDERS. BACKWARD RECURRENCE IS USED TO GENERATE
C         SEQUENCES OR REDUCE ORDERS WHEN NECESSARY.
C
C         THE CALCULATIONS ABOVE ARE DONE IN THE RIGHT HALF PLANE AND
C         CONTINUED INTO THE LEFT HALF PLANE BY THE FORMULA
C
C         I(FNU,Z*EXP(M*PI)) = EXP(M*PI*FNU)*I(FNU,Z)  REAL(Z).GT.0.0
C                       M = +I OR -I,  I**2=-1
C
C         FOR NEGATIVE ORDERS,THE FORMULA
C
C              I(-FNU,Z) = I(FNU,Z) + (2/PI)*SIN(PI*FNU)*K(FNU,Z)
C
C         CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
C         THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
C         INTEGER,THE MAGNITUDE OF I(-FNU,Z)=I(FNU,Z) IS A LARGE
C         NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
C         K(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
C         TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
C         UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
C         OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
C         LARGE MEANS FNU.GT.CABS(Z).
C
C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
C         LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
C         CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
C         LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
C         IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C         DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C         IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
C         LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
C         MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
C         INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
C         RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
C         ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
C         ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
C         ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
C         THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
C         TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
C         IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
C         SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
C
C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C         ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C         OR -PI/2+P.
C
C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C                 COMMERCE, 1955.
C
C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C                 BY D. E. AMOS, SAND83-0083, MAY, 1983.
C
C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C                 1018, MAY, 1985
C
C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C                 MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED  ZBINU,I1MACH,D1MACH
C***END PROLOGUE  ZBESI
C     COMPLEX CONE,CSGN,CW,CY,CZERO,Z,ZN
      DOUBLE PRECISION AA, ALIM, ARG, CONEI, CONER, CSGNI, CSGNR, CYI,
     * CYR, DIG, ELIM, FNU, FNUL, PI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR,
     * ZR, D1MACH, AZ, BB, FN, AZABS, ASCLE, RTOL, ATOL, STI
      INTEGER I, IERR, INU, K, KODE, K1,K2,N,NZ,NN, I1MACH
      DIMENSION CYR(N), CYI(N)
      DATA PI /3.14159265358979324D0/
      DATA CONER, CONEI /1.0D0,0.0D0/
C
C***FIRST EXECUTABLE STATEMENT  ZBESI
      IERR = 0
      NZ=0
      IF (FNU.LT.0.0D0) IERR=1
      IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
      IF (N.LT.1) IERR=1
      IF (IERR.NE.0) RETURN
C-----------------------------------------------------------------------
C     SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C     TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
C     ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C     EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL    AND
C     EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL       ARE INTERVALS NEAR
C     UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C     RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C     DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C     FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
C-----------------------------------------------------------------------
      TOL = DMAX1(D1MACH(4),1.0D-18)
      K1 = I1MACH(15)
      K2 = I1MACH(16)
      R1M5 = D1MACH(5)
      K = MIN0(IABS(K1),IABS(K2))
      ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
      K1 = I1MACH(14) - 1
      AA = R1M5*DBLE(FLOAT(K1))
      DIG = DMIN1(AA,18.0D0)
      AA = AA*2.303D0
      ALIM = ELIM + DMAX1(-AA,-41.45D0)
      RL = 1.2D0*DIG + 3.0D0
      FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
C-----------------------------------------------------------------------------
C     TEST FOR PROPER RANGE
C-----------------------------------------------------------------------
      AZ = AZABS(ZR,ZI)
      FN = FNU+DBLE(FLOAT(N-1))
      AA = 0.5D0/TOL
      BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
      AA = DMIN1(AA,BB)
      IF (AZ.GT.AA) GO TO 260
      IF (FN.GT.AA) GO TO 260
      AA = DSQRT(AA)
      IF (AZ.GT.AA) IERR=3
      IF (FN.GT.AA) IERR=3
      ZNR = ZR
      ZNI = ZI
      CSGNR = CONER
      CSGNI = CONEI
      IF (ZR.GE.0.0D0) GO TO 40
      ZNR = -ZR
      ZNI = -ZI
C-----------------------------------------------------------------------
C     CALCULATE CSGN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
C     WHEN FNU IS LARGE
C-----------------------------------------------------------------------
      INU = INT(SNGL(FNU))
      ARG = (FNU-DBLE(FLOAT(INU)))*PI
      IF (ZI.LT.0.0D0) ARG = -ARG
      CSGNR = DCOS(ARG)
      CSGNI = DSIN(ARG)
      IF (MOD(INU,2).EQ.0) GO TO 40
      CSGNR = -CSGNR
      CSGNI = -CSGNI
   40 CONTINUE
      CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
     * ELIM, ALIM)
      IF (NZ.LT.0) GO TO 120
      IF (ZR.GE.0.0D0) RETURN
C-----------------------------------------------------------------------
C     ANALYTIC CONTINUATION TO THE LEFT HALF PLANE
C-----------------------------------------------------------------------
      NN = N - NZ
      IF (NN.EQ.0) RETURN
      RTOL = 1.0D0/TOL
      ASCLE = D1MACH(1)*RTOL*1.0D+3
      DO 50 I=1,NN
C       STR = CYR(I)*CSGNR - CYI(I)*CSGNI
C       CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
C       CYR(I) = STR
        AA = CYR(I)
        BB = CYI(I)
        ATOL = 1.0D0
        IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55
          AA = AA*RTOL
          BB = BB*RTOL
          ATOL = TOL
   55   CONTINUE
        STR = AA*CSGNR - BB*CSGNI
        STI = AA*CSGNI + BB*CSGNR
        CYR(I) = STR*ATOL
        CYI(I) = STI*ATOL
        CSGNR = -CSGNR
        CSGNI = -CSGNI
   50 CONTINUE
      RETURN
  120 CONTINUE
      IF(NZ.EQ.(-2)) GO TO 130
      NZ = 0
      IERR=2
      RETURN
  130 CONTINUE
      NZ=0
      IERR=5
      RETURN
  260 CONTINUE
      NZ=0
      IERR=4
      RETURN
      END