1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
SUBROUTINE ZBESK(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
C***BEGIN PROLOGUE ZBESK
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS K-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
C MODIFIED BESSEL FUNCTION OF THE SECOND KIND,
C BESSEL FUNCTION OF THE THIRD KIND
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE K-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C
C ON KODE=1, CBESK COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
C BESSEL FUNCTIONS CY(J)=K(FNU+J-1,Z) FOR REAL, NONNEGATIVE
C ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z.NE.CMPLX(0.0,0.0)
C IN THE CUT PLANE -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESK
C RETURNS THE SCALED K FUNCTIONS,
C
C CY(J)=EXP(Z)*K(FNU+J-1,Z) , J=1,...,N,
C
C WHICH REMOVE THE EXPONENTIAL BEHAVIOR IN BOTH THE LEFT AND
C RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND
C NOTATION ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL
C FUNCTIONS (REF. 1).
C
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0),
C -PI.LT.ARG(Z).LE.PI
C FNU - ORDER OF INITIAL K FUNCTION, FNU.GE.0.0D0
C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 RETURNS
C CY(I)=K(FNU+I-1,Z), I=1,...,N
C = 2 RETURNS
C CY(I)=K(FNU+I-1,Z)*EXP(Z), I=1,...,N
C
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
C CY(I)=K(FNU+I-1,Z), I=1,...,N OR
C CY(I)=K(FNU+I-1,Z)*EXP(Z), I=1,...,N
C DEPENDING ON KODE
C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW.
C NZ= 0 , NORMAL RETURN
C NZ.GT.0 , FIRST NZ COMPONENTS OF CY SET TO ZERO DUE
C TO UNDERFLOW, CY(I)=CMPLX(0.0D0,0.0D0),
C I=1,...,N WHEN X.GE.0.0. WHEN X.LT.0.0
C NZ STATES ONLY THE NUMBER OF UNDERFLOWS
C IN THE SEQUENCE.
C
C IERR - ERROR FLAG
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, FNU IS
C TOO LARGE OR CABS(Z) IS TOO SMALL OR BOTH
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
C ACCURACY
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
C CANCE BY ARGUMENT REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C EQUATIONS OF THE REFERENCE ARE IMPLEMENTED FOR SMALL ORDERS
C DNU AND DNU+1.0 IN THE RIGHT HALF PLANE X.GE.0.0. FORWARD
C RECURRENCE GENERATES HIGHER ORDERS. K IS CONTINUED TO THE LEFT
C HALF PLANE BY THE RELATION
C
C K(FNU,Z*EXP(MP)) = EXP(-MP*FNU)*K(FNU,Z)-MP*I(FNU,Z)
C MP=MR*PI*I, MR=+1 OR -1, RE(Z).GT.0, I**2=-1
C
C WHERE I(FNU,Z) IS THE I BESSEL FUNCTION.
C
C FOR LARGE ORDERS, FNU.GT.FNUL, THE K FUNCTION IS COMPUTED
C BY MEANS OF ITS UNIFORM ASYMPTOTIC EXPANSIONS.
C
C FOR NEGATIVE ORDERS, THE FORMULA
C
C K(-FNU,Z) = K(FNU,Z)
C
C CAN BE USED.
C
C CBESK ASSUMES THAT A SIGNIFICANT DIGIT SINH(X) FUNCTION IS
C AVAILABLE.
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983.
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
C
C***ROUTINES CALLED ZACON,ZBKNU,ZBUNK,ZUOIK,AZABS,I1MACH,D1MACH
C***END PROLOGUE ZBESK
C
C COMPLEX CY,Z
DOUBLE PRECISION AA, ALIM, ALN, ARG, AZ, CYI, CYR, DIG, ELIM, FN,
* FNU, FNUL, RL, R1M5, TOL, UFL, ZI, ZR, D1MACH, AZABS, BB
INTEGER IERR, K, KODE, K1, K2, MR, N, NN, NUF, NW, NZ, I1MACH
DIMENSION CYR(N), CYI(N)
C***FIRST EXECUTABLE STATEMENT ZBESK
IERR = 0
NZ=0
IF (ZI.EQ.0.0E0 .AND. ZR.EQ.0.0E0) IERR=1
IF (FNU.LT.0.0D0) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (N.LT.1) IERR=1
IF (IERR.NE.0) RETURN
NN = N
C-----------------------------------------------------------------------
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU
C-----------------------------------------------------------------------
TOL = DMAX1(D1MACH(4),1.0D-18)
K1 = I1MACH(15)
K2 = I1MACH(16)
R1M5 = D1MACH(5)
K = MIN0(IABS(K1),IABS(K2))
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
K1 = I1MACH(14) - 1
AA = R1M5*DBLE(FLOAT(K1))
DIG = DMIN1(AA,18.0D0)
AA = AA*2.303D0
ALIM = ELIM + DMAX1(-AA,-41.45D0)
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
RL = 1.2D0*DIG + 3.0D0
C-----------------------------------------------------------------------------
C TEST FOR PROPER RANGE
C-----------------------------------------------------------------------
AZ = AZABS(ZR,ZI)
FN = FNU + DBLE(FLOAT(NN-1))
AA = 0.5D0/TOL
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
AA = DMIN1(AA,BB)
IF (AZ.GT.AA) GO TO 260
IF (FN.GT.AA) GO TO 260
AA = DSQRT(AA)
IF (AZ.GT.AA) IERR=3
IF (FN.GT.AA) IERR=3
C-----------------------------------------------------------------------
C OVERFLOW TEST ON THE LAST MEMBER OF THE SEQUENCE
C-----------------------------------------------------------------------
C UFL = DEXP(-ELIM)
UFL = D1MACH(1)*1.0D+3
IF (AZ.LT.UFL) GO TO 180
IF (FNU.GT.FNUL) GO TO 80
IF (FN.LE.1.0D0) GO TO 60
IF (FN.GT.2.0D0) GO TO 50
IF (AZ.GT.TOL) GO TO 60
ARG = 0.5D0*AZ
ALN = -FN*DLOG(ARG)
IF (ALN.GT.ELIM) GO TO 180
GO TO 60
50 CONTINUE
CALL ZUOIK(ZR, ZI, FNU, KODE, 2, NN, CYR, CYI, NUF, TOL, ELIM,
* ALIM)
IF (NUF.LT.0) GO TO 180
NZ = NZ + NUF
NN = NN - NUF
C-----------------------------------------------------------------------
C HERE NN=N OR NN=0 SINCE NUF=0,NN, OR -1 ON RETURN FROM CUOIK
C IF NUF=NN, THEN CY(I)=CZERO FOR ALL I
C-----------------------------------------------------------------------
IF (NN.EQ.0) GO TO 100
60 CONTINUE
IF (ZR.LT.0.0D0) GO TO 70
C-----------------------------------------------------------------------
C RIGHT HALF PLANE COMPUTATION, REAL(Z).GE.0.
C-----------------------------------------------------------------------
CALL ZBKNU(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, TOL, ELIM, ALIM)
IF (NW.LT.0) GO TO 200
NZ=NW
RETURN
C-----------------------------------------------------------------------
C LEFT HALF PLANE COMPUTATION
C PI/2.LT.ARG(Z).LE.PI AND -PI.LT.ARG(Z).LT.-PI/2.
C-----------------------------------------------------------------------
70 CONTINUE
IF (NZ.NE.0) GO TO 180
MR = 1
IF (ZI.LT.0.0D0) MR = -1
CALL ZACON(ZR, ZI, FNU, KODE, MR, NN, CYR, CYI, NW, RL, FNUL,
* TOL, ELIM, ALIM)
IF (NW.LT.0) GO TO 200
NZ=NW
RETURN
C-----------------------------------------------------------------------
C UNIFORM ASYMPTOTIC EXPANSIONS FOR FNU.GT.FNUL
C-----------------------------------------------------------------------
80 CONTINUE
MR = 0
IF (ZR.GE.0.0D0) GO TO 90
MR = 1
IF (ZI.LT.0.0D0) MR = -1
90 CONTINUE
CALL ZBUNK(ZR, ZI, FNU, KODE, MR, NN, CYR, CYI, NW, TOL, ELIM,
* ALIM)
IF (NW.LT.0) GO TO 200
NZ = NZ + NW
RETURN
100 CONTINUE
IF (ZR.LT.0.0D0) GO TO 180
RETURN
180 CONTINUE
NZ = 0
IERR=2
RETURN
200 CONTINUE
IF(NW.EQ.(-1)) GO TO 180
NZ=0
IERR=5
RETURN
260 CONTINUE
NZ=0
IERR=4
RETURN
END
|