1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
SUBROUTINE cdfbin(which,p,q,s,xn,pr,ompr,status,bound)
C**********************************************************************
C
C SUBROUTINE CDFBIN ( WHICH, P, Q, S, XN, PR, OMPR, STATUS, BOUND )
C Cumulative Distribution Function
C BINomial distribution
C
C
C Function
C
C
C Calculates any one parameter of the binomial
C distribution given values for the others.
C
C
C Arguments
C
C
C WHICH --> Integer indicating which of the next four argument
C values is to be calculated from the others.
C Legal range: 1..4
C iwhich = 1 : Calculate P and Q from S,XN,PR and OMPR
C iwhich = 2 : Calculate S from P,Q,XN,PR and OMPR
C iwhich = 3 : Calculate XN from P,Q,S,PR and OMPR
C iwhich = 4 : Calculate PR and OMPR from P,Q,S and XN
C INTEGER WHICH
C
C P <--> The cumulation from 0 to S of the binomial distribution.
C (Probablility of S or fewer successes in XN trials each
C with probability of success PR.)
C Input range: [0,1].
C DOUBLE PRECISION P
C
C Q <--> 1-P.
C Input range: [0, 1].
C P + Q = 1.0.
C DOUBLE PRECISION Q
C
C S <--> The number of successes observed.
C Input range: [0, XN]
C Search range: [0, XN]
C DOUBLE PRECISION S
C
C XN <--> The number of binomial trials.
C Input range: (0, +infinity).
C Search range: [1E-100, 1E100]
C DOUBLE PRECISION XN
C
C PR <--> The probability of success in each binomial trial.
C Input range: [0,1].
C Search range: [0,1]
C DOUBLE PRECISION PR
C
C OMPR <--> 1-PR
C Input range: [0,1].
C Search range: [0,1]
C PR + OMPR = 1.0
C DOUBLE PRECISION OMPR
C
C STATUS <-- 0 if calculation completed correctly
C -I if input parameter number I is out of range
C 1 if answer appears to be lower than lowest
C search bound
C 2 if answer appears to be higher than greatest
C search bound
C 3 if P + Q .ne. 1
C 4 if PR + OMPR .ne. 1
C INTEGER STATUS
C
C BOUND <-- Undefined if STATUS is 0
C
C Bound exceeded by parameter number I if STATUS
C is negative.
C
C Lower search bound if STATUS is 1.
C
C Upper search bound if STATUS is 2.
C
C
C Method
C
C
C Formula 26.5.24 of Abramowitz and Stegun, Handbook of
C Mathematical Functions (1966) is used to reduce the binomial
C distribution to the cumulative incomplete beta distribution.
C
C Computation of other parameters involve a seach for a value that
C produces the desired value of P. The search relies on the
C monotinicity of P with the other parameter.
C
C
C**********************************************************************
C .. Parameters ..
DOUBLE PRECISION atol
PARAMETER (atol=1.0D-50)
DOUBLE PRECISION tol
PARAMETER (tol=1.0D-8)
DOUBLE PRECISION zero,inf
PARAMETER (zero=1.0D-100,inf=1.0D100)
DOUBLE PRECISION one
PARAMETER (one=1.0D0)
C ..
C .. Scalar Arguments ..
DOUBLE PRECISION bound,ompr,p,pr,q,s,xn
INTEGER status,which
C ..
C .. Local Scalars ..
DOUBLE PRECISION ccum,cum,fx,pq,prompr,xhi,xlo
LOGICAL qhi,qleft,qporq
C ..
C .. External Functions ..
DOUBLE PRECISION spmpar
EXTERNAL spmpar
C ..
C .. External Subroutines ..
EXTERNAL cumbin,dinvr,dstinv,dstzr,dzror
C ..
C .. Intrinsic Functions ..
INTRINSIC abs
C ..
IF (.NOT. ((which.LT.1).AND. (which.GT.4))) GO TO 30
IF (.NOT. (which.LT.1)) GO TO 10
bound = 1.0D0
GO TO 20
10 bound = 4.0D0
20 status = -1
RETURN
30 IF (which.EQ.1) GO TO 70
IF (.NOT. ((p.LT.0.0D0).OR. (p.GT.1.0D0))) GO TO 60
IF (.NOT. (p.LT.0.0D0)) GO TO 40
bound = 0.0D0
GO TO 50
40 bound = 1.0D0
50 status = -2
RETURN
60 CONTINUE
70 IF (which.EQ.1) GO TO 110
IF (.NOT. ((q.LT.0.0D0).OR. (q.GT.1.0D0))) GO TO 100
IF (.NOT. (q.LT.0.0D0)) GO TO 80
bound = 0.0D0
GO TO 90
80 bound = 1.0D0
90 status = -3
RETURN
100 CONTINUE
110 IF (which.EQ.3) GO TO 130
IF (.NOT. (xn.LE.0.0D0)) GO TO 120
bound = 0.0D0
status = -5
RETURN
120 CONTINUE
130 IF (which.EQ.2) GO TO 170
IF (.NOT. ((s.LT.0.0D0).OR. ((which.NE.3).AND.
+ (s.GT.xn)))) GO TO 160
IF (.NOT. (s.LT.0.0D0)) GO TO 140
bound = 0.0D0
GO TO 150
140 bound = xn
150 status = -4
RETURN
160 CONTINUE
170 IF (which.EQ.4) GO TO 210
IF (.NOT. ((pr.LT.0.0D0).OR. (pr.GT.1.0D0))) GO TO 200
IF (.NOT. (pr.LT.0.0D0)) GO TO 180
bound = 0.0D0
GO TO 190
180 bound = 1.0D0
190 status = -6
RETURN
200 CONTINUE
210 IF (which.EQ.4) GO TO 250
IF (.NOT. ((ompr.LT.0.0D0).OR. (ompr.GT.1.0D0))) GO TO 240
IF (.NOT. (ompr.LT.0.0D0)) GO TO 220
bound = 0.0D0
GO TO 230
220 bound = 1.0D0
230 status = -7
RETURN
240 CONTINUE
250 IF (which.EQ.1) GO TO 290
pq = p + q
IF (.NOT. (abs(((pq)-0.5D0)-0.5D0).GT.
+ (3.0D0*spmpar(1)))) GO TO 280
IF (.NOT. (pq.LT.0.0D0)) GO TO 260
bound = 0.0D0
GO TO 270
260 bound = 1.0D0
270 status = 3
RETURN
280 CONTINUE
290 IF (which.EQ.4) GO TO 330
prompr = pr + ompr
IF (.NOT. (abs(((prompr)-0.5D0)-0.5D0).GT.
+ (3.0D0*spmpar(1)))) GO TO 320
IF (.NOT. (prompr.LT.0.0D0)) GO TO 300
bound = 0.0D0
GO TO 310
300 bound = 1.0D0
310 status = 4
RETURN
320 CONTINUE
330 IF (.NOT. (which.EQ.1)) qporq = p .LE. q
IF ((1).EQ. (which)) THEN
CALL cumbin(s,xn,pr,ompr,p,q)
status = 0
ELSE IF ((2).EQ. (which)) THEN
s = xn/2.0D0
CALL dstinv(0.0D0,xn,0.5D0,0.5D0,5.0D0,atol,tol)
status = 0
CALL dinvr(status,s,fx,qleft,qhi)
340 IF (.NOT. (status.EQ.1)) GO TO 370
CALL cumbin(s,xn,pr,ompr,cum,ccum)
IF (.NOT. (qporq)) GO TO 350
fx = cum - p
GO TO 360
350 fx = ccum - q
360 CALL dinvr(status,s,fx,qleft,qhi)
GO TO 340
370 IF (.NOT. (status.EQ.-1)) GO TO 400
IF (.NOT. (qleft)) GO TO 380
status = 1
bound = 0.0D0
GO TO 390
380 status = 2
bound = xn
390 CONTINUE
400 CONTINUE
ELSE IF ((3).EQ. (which)) THEN
xn = 5.0D0
CALL dstinv(zero,inf,0.5D0,0.5D0,5.0D0,atol,tol)
status = 0
CALL dinvr(status,xn,fx,qleft,qhi)
410 IF (.NOT. (status.EQ.1)) GO TO 440
CALL cumbin(s,xn,pr,ompr,cum,ccum)
IF (.NOT. (qporq)) GO TO 420
fx = cum - p
GO TO 430
420 fx = ccum - q
430 CALL dinvr(status,xn,fx,qleft,qhi)
GO TO 410
440 IF (.NOT. (status.EQ.-1)) GO TO 470
IF (.NOT. (qleft)) GO TO 450
status = 1
bound = zero
GO TO 460
450 status = 2
bound = inf
460 CONTINUE
470 CONTINUE
ELSE IF ((4).EQ. (which)) THEN
CALL dstzr(0.0D0,1.0D0,atol,tol)
IF (.NOT. (qporq)) GO TO 500
status = 0
CALL dzror(status,pr,fx,xlo,xhi,qleft,qhi)
ompr = one - pr
480 IF (.NOT. (status.EQ.1)) GO TO 490
CALL cumbin(s,xn,pr,ompr,cum,ccum)
fx = cum - p
CALL dzror(status,pr,fx,xlo,xhi,qleft,qhi)
ompr = one - pr
GO TO 480
490 GO TO 530
500 status = 0
CALL dzror(status,ompr,fx,xlo,xhi,qleft,qhi)
pr = one - ompr
510 IF (.NOT. (status.EQ.1)) GO TO 520
CALL cumbin(s,xn,pr,ompr,cum,ccum)
fx = ccum - q
CALL dzror(status,ompr,fx,xlo,xhi,qleft,qhi)
pr = one - ompr
GO TO 510
520 CONTINUE
530 IF (.NOT. (status.EQ.-1)) GO TO 560
IF (.NOT. (qleft)) GO TO 540
status = 1
bound = 0.0D0
GO TO 550
540 status = 2
bound = 1.0D0
550 CONTINUE
560 END IF
RETURN
END
|