1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
SUBROUTINE cdfnbn(which,p,q,s,xn,pr,ompr,status,bound)
C**********************************************************************
C
C SUBROUTINE CDFNBN ( WHICH, P, S, XN, PR, STATUS, BOUND )
C Cumulative Distribution Function
C Negative BiNomial distribution
C
C
C Function
C
C
C Calculates any one parameter of the negative binomial
C distribution given values for the others.
C
C The cumulative negative binomial distribution returns the
C probability that there will be F or fewer failures before the
C XNth success in binomial trials each of which has probability of
C success PR.
C
C The individual term of the negative binomial is the probability of
C S failures before XN successes and is
C Choose( S, XN+S-1 ) * PR^(XN) * (1-PR)^S
C
C
C Arguments
C
C
C WHICH --> Integer indicating which of the next four argument
C values is to be calculated from the others.
C Legal range: 1..4
C iwhich = 1 : Calculate P and Q from S,XN,PR and OMPR
C iwhich = 2 : Calculate S from P,Q,XN,PR and OMPR
C iwhich = 3 : Calculate XN from P,Q,S,PR and OMPR
C iwhich = 4 : Calculate PR and OMPR from P,Q,S and XN
C INTEGER WHICH
C
C P <--> The cumulation from 0 to S of the negative
C binomial distribution.
C Input range: [0,1].
C DOUBLE PRECISION P
C
C Q <--> 1-P.
C Input range: (0, 1].
C P + Q = 1.0.
C DOUBLE PRECISION Q
C
C S <--> The upper limit of cumulation of the binomial distribution.
C There are F or fewer failures before the XNth success.
C Input range: [0, +infinity).
C Search range: [0, 1E100]
C DOUBLE PRECISION S
C
C XN <--> The number of successes.
C Input range: [0, +infinity).
C Search range: [0, 1E100]
C DOUBLE PRECISION XN
C
C PR <--> The probability of success in each binomial trial.
C Input range: [0,1].
C Search range: [0,1].
C DOUBLE PRECISION PR
C
C OMPR <--> 1-PR
C Input range: [0,1].
C Search range: [0,1]
C PR + OMPR = 1.0
C DOUBLE PRECISION OMPR
C
C STATUS <-- 0 if calculation completed correctly
C -I if input parameter number I is out of range
C 1 if answer appears to be lower than lowest
C search bound
C 2 if answer appears to be higher than greatest
C search bound
C 3 if P + Q .ne. 1
C 4 if PR + OMPR .ne. 1
C INTEGER STATUS
C
C BOUND <-- Undefined if STATUS is 0
C
C Bound exceeded by parameter number I if STATUS
C is negative.
C
C Lower search bound if STATUS is 1.
C
C Upper search bound if STATUS is 2.
C
C
C Method
C
C
C Formula 26.5.26 of Abramowitz and Stegun, Handbook of
C Mathematical Functions (1966) is used to reduce calculation of
C the cumulative distribution function to that of an incomplete
C beta.
C
C Computation of other parameters involve a seach for a value that
C produces the desired value of P. The search relies on the
C monotinicity of P with the other parameter.
C
C
C**********************************************************************
C .. Parameters ..
DOUBLE PRECISION tol
PARAMETER (tol=1.0D-8)
DOUBLE PRECISION atol
PARAMETER (atol=1.0D-50)
DOUBLE PRECISION inf
PARAMETER (inf=1.0D100)
DOUBLE PRECISION one
PARAMETER (one=1.0D0)
C ..
C .. Scalar Arguments ..
DOUBLE PRECISION bound,ompr,p,pr,q,s,xn
INTEGER status,which
C ..
C .. Local Scalars ..
DOUBLE PRECISION ccum,cum,fx,pq,prompr,xhi,xlo
LOGICAL qhi,qleft,qporq
C ..
C .. External Functions ..
DOUBLE PRECISION spmpar
EXTERNAL spmpar
C ..
C .. External Subroutines ..
EXTERNAL cumnbn,dinvr,dstinv,dstzr,dzror
C ..
C .. Intrinsic Functions ..
INTRINSIC abs
C ..
IF (.NOT. ((which.LT.1).OR. (which.GT.4))) GO TO 30
IF (.NOT. (which.LT.1)) GO TO 10
bound = 1.0D0
GO TO 20
10 bound = 4.0D0
20 status = -1
RETURN
30 IF (which.EQ.1) GO TO 70
IF (.NOT. ((p.LT.0.0D0).OR. (p.GT.1.0D0))) GO TO 60
IF (.NOT. (p.LT.0.0D0)) GO TO 40
bound = 0.0D0
GO TO 50
40 bound = 1.0D0
50 status = -2
RETURN
60 CONTINUE
70 IF (which.EQ.1) GO TO 110
IF (.NOT. ((q.LE.0.0D0).OR. (q.GT.1.0D0))) GO TO 100
IF (.NOT. (q.LE.0.0D0)) GO TO 80
bound = 0.0D0
GO TO 90
80 bound = 1.0D0
90 status = -3
RETURN
100 CONTINUE
110 IF (which.EQ.2) GO TO 130
IF (.NOT. (s.LT.0.0D0)) GO TO 120
bound = 0.0D0
status = -4
RETURN
120 CONTINUE
130 IF (which.EQ.3) GO TO 150
IF (.NOT. (xn.LT.0.0D0)) GO TO 140
bound = 0.0D0
status = -5
RETURN
140 CONTINUE
150 IF (which.EQ.4) GO TO 190
IF (.NOT. ((pr.LT.0.0D0).OR. (pr.GT.1.0D0))) GO TO 180
IF (.NOT. (pr.LT.0.0D0)) GO TO 160
bound = 0.0D0
GO TO 170
160 bound = 1.0D0
170 status = -6
RETURN
180 CONTINUE
190 IF (which.EQ.4) GO TO 230
IF (.NOT. ((ompr.LT.0.0D0).OR. (ompr.GT.1.0D0))) GO TO 220
IF (.NOT. (ompr.LT.0.0D0)) GO TO 200
bound = 0.0D0
GO TO 210
200 bound = 1.0D0
210 status = -7
RETURN
220 CONTINUE
230 IF (which.EQ.1) GO TO 270
pq = p + q
IF (.NOT. (abs(((pq)-0.5D0)-0.5D0).GT.
+ (3.0D0*spmpar(1)))) GO TO 260
IF (.NOT. (pq.LT.0.0D0)) GO TO 240
bound = 0.0D0
GO TO 250
240 bound = 1.0D0
250 status = 3
RETURN
260 CONTINUE
270 IF (which.EQ.4) GO TO 310
prompr = pr + ompr
IF (.NOT. (abs(((prompr)-0.5D0)-0.5D0).GT.
+ (3.0D0*spmpar(1)))) GO TO 300
IF (.NOT. (prompr.LT.0.0D0)) GO TO 280
bound = 0.0D0
GO TO 290
280 bound = 1.0D0
290 status = 4
RETURN
300 CONTINUE
310 IF (.NOT. (which.EQ.1)) qporq = p .LE. q
IF ((1).EQ. (which)) THEN
CALL cumnbn(s,xn,pr,ompr,p,q)
status = 0
ELSE IF ((2).EQ. (which)) THEN
s = 5.0D0
CALL dstinv(0.0D0,inf,0.5D0,0.5D0,5.0D0,atol,tol)
status = 0
CALL dinvr(status,s,fx,qleft,qhi)
320 IF (.NOT. (status.EQ.1)) GO TO 350
CALL cumnbn(s,xn,pr,ompr,cum,ccum)
IF (.NOT. (qporq)) GO TO 330
fx = cum - p
GO TO 340
330 fx = ccum - q
340 CALL dinvr(status,s,fx,qleft,qhi)
GO TO 320
350 IF (.NOT. (status.EQ.-1)) GO TO 380
IF (.NOT. (qleft)) GO TO 360
status = 1
bound = 0.0D0
GO TO 370
360 status = 2
bound = inf
370 CONTINUE
380 CONTINUE
ELSE IF ((3).EQ. (which)) THEN
xn = 5.0D0
CALL dstinv(0.0D0,inf,0.5D0,0.5D0,5.0D0,atol,tol)
status = 0
CALL dinvr(status,xn,fx,qleft,qhi)
390 IF (.NOT. (status.EQ.1)) GO TO 420
CALL cumnbn(s,xn,pr,ompr,cum,ccum)
IF (.NOT. (qporq)) GO TO 400
fx = cum - p
GO TO 410
400 fx = ccum - q
410 CALL dinvr(status,xn,fx,qleft,qhi)
GO TO 390
420 IF (.NOT. (status.EQ.-1)) GO TO 450
IF (.NOT. (qleft)) GO TO 430
status = 1
bound = 0.0D0
GO TO 440
430 status = 2
bound = inf
440 CONTINUE
450 CONTINUE
ELSE IF ((4).EQ. (which)) THEN
CALL dstzr(0.0D0,1.0D0,atol,tol)
IF (.NOT. (qporq)) GO TO 480
status = 0
CALL dzror(status,pr,fx,xlo,xhi,qleft,qhi)
ompr = one - pr
460 IF (.NOT. (status.EQ.1)) GO TO 470
CALL cumnbn(s,xn,pr,ompr,cum,ccum)
fx = cum - p
CALL dzror(status,pr,fx,xlo,xhi,qleft,qhi)
ompr = one - pr
GO TO 460
470 GO TO 510
480 status = 0
CALL dzror(status,ompr,fx,xlo,xhi,qleft,qhi)
pr = one - ompr
490 IF (.NOT. (status.EQ.1)) GO TO 500
CALL cumnbn(s,xn,pr,ompr,cum,ccum)
fx = ccum - q
CALL dzror(status,ompr,fx,xlo,xhi,qleft,qhi)
pr = one - ompr
GO TO 490
500 CONTINUE
510 IF (.NOT. (status.EQ.-1)) GO TO 540
IF (.NOT. (qleft)) GO TO 520
status = 1
bound = 0.0D0
GO TO 530
520 status = 2
bound = 1.0D0
530 CONTINUE
540 END IF
RETURN
END
|