File: cdfnor.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (188 lines) | stat: -rw-r--r-- 5,198 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
      SUBROUTINE cdfnor(which,p,q,x,mean,sd,status,bound)
C**********************************************************************
C
C      SUBROUTINE CDFNOR( WHICH, P, Q, X, MEAN, SD, STATUS, BOUND )
C               Cumulative Distribution Function
C               NORmal distribution
C
C
C                              Function
C
C
C     Calculates any one parameter of the normal
C     distribution given values for the others.
C
C
C                              Arguments
C
C
C     WHICH  --> Integer indicating  which of the  next  parameter
C     values is to be calculated using values  of the others.
C     Legal range: 1..4
C               iwhich = 1 : Calculate P and Q from X,MEAN and SD
C               iwhich = 2 : Calculate X from P,Q,MEAN and SD
C               iwhich = 3 : Calculate MEAN from P,Q,X and SD
C               iwhich = 4 : Calculate SD from P,Q,X and MEAN
C                    INTEGER WHICH
C
C     P <--> The integral from -infinity to X of the normal density.
C            Input range: (0,1].
C                    DOUBLE PRECISION P
C
C     Q <--> 1-P.
C            Input range: (0, 1].
C            P + Q = 1.0.
C                    DOUBLE PRECISION Q
C
C     X < --> Upper limit of integration of the normal-density.
C             Input range: ( -infinity, +infinity)
C                    DOUBLE PRECISION X
C
C     MEAN <--> The mean of the normal density.
C               Input range: (-infinity, +infinity)
C                    DOUBLE PRECISION MEAN
C
C     SD <--> Standard Deviation of the normal density.
C             Input range: (0, +infinity).
C                    DOUBLE PRECISION SD
C
C     STATUS <-- 0 if calculation completed correctly
C               -I if input parameter number I is out of range
C                1 if answer appears to be lower than lowest
C                  search bound
C                2 if answer appears to be higher than greatest
C                  search bound
C                3 if P + Q .ne. 1
C                    INTEGER STATUS
C
C     BOUND <-- Undefined if STATUS is 0
C
C               Bound exceeded by parameter number I if STATUS
C               is negative.
C
C               Lower search bound if STATUS is 1.
C
C               Upper search bound if STATUS is 2.
C
C
C                              Method
C
C
C
C
C     A slightly modified version of ANORM from
C
C     Cody, W.D. (1993). "ALGORITHM 715: SPECFUN - A Portabel FORTRAN
C     Package of Special Function Routines and Test Drivers"
C     acm Transactions on Mathematical Software. 19, 22-32.
C
C     is used to calulate the  cumulative standard normal distribution.
C
C     The rational functions from pages  90-95  of Kennedy and Gentle,
C     Statistical  Computing,  Marcel  Dekker, NY,  1980 are  used  as
C     starting values to Newton's Iterations which compute the inverse
C     standard normal.  Therefore no  searches  are necessary for  any
C     parameter.
C
C     For X < -15, the asymptotic expansion for the normal is used  as
C     the starting value in finding the inverse standard normal.
C     This is formula 26.2.12 of Abramowitz and Stegun.
C
C
C                              Note
C
C
C      The normal density is proportional to
C      exp( - 0.5 * (( X - MEAN)/SD)**2)
C
C
C**********************************************************************
C     .. Scalar Arguments ..
      DOUBLE PRECISION bound,mean,p,q,sd,x
      INTEGER status,which
C     ..
C     .. Local Scalars ..
      DOUBLE PRECISION pq,z
C     ..
C     .. External Functions ..
      DOUBLE PRECISION dinvnr,spmpar
      EXTERNAL dinvnr,spmpar
C     ..
C     .. External Subroutines ..
      EXTERNAL cumnor
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC abs
C     ..
      status = 0
      IF (.NOT. ((which.LT.1).OR. (which.GT.4))) GO TO 30
      IF (.NOT. (which.LT.1)) GO TO 10
      bound = 1.0D0
      GO TO 20

   10 bound = 4.0D0
   20 status = -1
      RETURN

   30 IF (which.EQ.1) GO TO 70
      IF (.NOT. ((p.LE.0.0D0).OR. (p.GT.1.0D0))) GO TO 60
      IF (.NOT. (p.LE.0.0D0)) GO TO 40
      bound = 0.0D0
      GO TO 50

   40 bound = 1.0D0
   50 status = -2
      RETURN

   60 CONTINUE
   70 IF (which.EQ.1) GO TO 110
      IF (.NOT. ((q.LE.0.0D0).OR. (q.GT.1.0D0))) GO TO 100
      IF (.NOT. (q.LE.0.0D0)) GO TO 80
      bound = 0.0D0
      GO TO 90

   80 bound = 1.0D0
   90 status = -3
      RETURN

  100 CONTINUE
  110 IF (which.EQ.1) GO TO 150
      pq = p + q
      IF (.NOT. (abs(((pq)-0.5D0)-0.5D0).GT.
     +    (3.0D0*spmpar(1)))) GO TO 140
      IF (.NOT. (pq.LT.0.0D0)) GO TO 120
      bound = 0.0D0
      GO TO 130

  120 bound = 1.0D0
  130 status = 3
      RETURN

  140 CONTINUE
  150 IF (which.EQ.4) GO TO 170
      IF (.NOT. (sd.LE.0.0D0)) GO TO 160
      bound = 0.0D0
      status = -6
      RETURN

  160 CONTINUE
  170 IF ((1).EQ. (which)) THEN
          z = (x-mean)/sd
          CALL cumnor(z,p,q)

      ELSE IF ((2).EQ. (which)) THEN
          z = dinvnr(p,q)
          x = sd*z + mean

      ELSE IF ((3).EQ. (which)) THEN
          z = dinvnr(p,q)
          mean = x - sd*z

      ELSE IF ((4).EQ. (which)) THEN
          z = dinvnr(p,q)
          sd = (x-mean)/z
      END IF

      RETURN

      END