1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
SUBROUTINE cdfpoi(which,p,q,s,xlam,status,bound)
C**********************************************************************
C
C SUBROUTINE CDFPOI( WHICH, P, Q, S, XLAM, STATUS, BOUND )
C Cumulative Distribution Function
C POIsson distribution
C
C
C Function
C
C
C Calculates any one parameter of the Poisson
C distribution given values for the others.
C
C
C Arguments
C
C
C WHICH --> Integer indicating which argument
C value is to be calculated from the others.
C Legal range: 1..3
C iwhich = 1 : Calculate P and Q from S and XLAM
C iwhich = 2 : Calculate S from P,Q and XLAM
C iwhich = 3 : Calculate XLAM from P,Q and S
C INTEGER WHICH
C
C P <--> The cumulation from 0 to S of the poisson density.
C Input range: [0,1].
C DOUBLE PRECISION P
C
C Q <--> 1-P.
C Input range: (0, 1].
C P + Q = 1.0.
C DOUBLE PRECISION Q
C
C S <--> Upper limit of cumulation of the Poisson.
C Input range: [0, +infinity).
C Search range: [0,1E100]
C DOUBLE PRECISION S
C
C XLAM <--> Mean of the Poisson distribution.
C Input range: [0, +infinity).
C Search range: [0,1E100]
C DOUBLE PRECISION XLAM
C
C STATUS <-- 0 if calculation completed correctly
C -I if input parameter number I is out of range
C 1 if answer appears to be lower than lowest
C search bound
C 2 if answer appears to be higher than greatest
C search bound
C 3 if P + Q .ne. 1
C INTEGER STATUS
C
C BOUND <-- Undefined if STATUS is 0
C
C Bound exceeded by parameter number I if STATUS
C is negative.
C
C Lower search bound if STATUS is 1.
C
C Upper search bound if STATUS is 2.
C
C
C Method
C
C
C Formula 26.4.21 of Abramowitz and Stegun, Handbook of
C Mathematical Functions (1966) is used to reduce the computation
C of the cumulative distribution function to that of computing a
C chi-square, hence an incomplete gamma function.
C
C Cumulative distribution function (P) is calculated directly.
C Computation of other parameters involve a seach for a value that
C produces the desired value of P. The search relies on the
C monotinicity of P with the other parameter.
C
C
C**********************************************************************
IMPLICIT NONE
C .. Parameters ..
DOUBLE PRECISION tol
PARAMETER (tol=1.0D-8)
DOUBLE PRECISION atol
PARAMETER (atol=1.0D-50)
DOUBLE PRECISION inf
PARAMETER (inf=1.0D100)
C ..
C .. Scalar Arguments ..
DOUBLE PRECISION bound,p,q,s,xlam
INTEGER status,which
C ..
C .. Local Scalars ..
DOUBLE PRECISION ccum,cum,fx,pq
LOGICAL qhi,qleft,qporq
C ..
C .. External Functions ..
DOUBLE PRECISION spmpar
EXTERNAL spmpar
C ..
C .. External Subroutines ..
EXTERNAL cumpoi,dinvr,dstinv
C ..
C .. Intrinsic Functions ..
INTRINSIC abs
C ..
IF (.NOT. ((which.LT.1).OR. (which.GT.3))) GO TO 30
IF (.NOT. (which.LT.1)) GO TO 10
bound = 1.0D0
GO TO 20
10 bound = 3.0D0
20 status = -1
RETURN
30 IF (which.EQ.1) GO TO 70
IF (.NOT. ((p.LT.0.0D0).OR. (p.GT.1.0D0))) GO TO 60
IF (.NOT. (p.LT.0.0D0)) GO TO 40
bound = 0.0D0
GO TO 50
40 bound = 1.0D0
50 status = -2
RETURN
60 CONTINUE
70 IF (which.EQ.1) GO TO 110
IF (.NOT. ((q.LE.0.0D0).OR. (q.GT.1.0D0))) GO TO 100
IF (.NOT. (q.LE.0.0D0)) GO TO 80
bound = 0.0D0
GO TO 90
80 bound = 1.0D0
90 status = -3
RETURN
100 CONTINUE
110 IF (which.EQ.2) GO TO 130
IF (.NOT. (s.LT.0.0D0)) GO TO 120
bound = 0.0D0
status = -4
RETURN
120 CONTINUE
130 IF (which.EQ.3) GO TO 150
IF (.NOT. (xlam.LT.0.0D0)) GO TO 140
bound = 0.0D0
status = -5
RETURN
140 CONTINUE
150 IF (which.EQ.1) GO TO 190
pq = p + q
IF (.NOT. (abs(((pq)-0.5D0)-0.5D0).GT.
+ (3.0D0*spmpar(1)))) GO TO 180
IF (.NOT. (pq.LT.0.0D0)) GO TO 160
bound = 0.0D0
GO TO 170
160 bound = 1.0D0
170 status = 3
RETURN
180 CONTINUE
190 IF (.NOT. (which.EQ.1)) qporq = p .LE. q
IF ((1).EQ. (which)) THEN
CALL cumpoi(s,xlam,p,q)
status = 0
ELSE IF ((2).EQ. (which)) THEN
IF ((xlam .LT. 1.0D-2) .AND. (p .LT. 0.975D0)) THEN
C For sufficiently small xlam and p, the result is 0.0.
s = 0.0D0
status = 0
GO TO 260
END IF
s = 5.0D0
CALL dstinv(0.0D0,inf,0.5D0,0.5D0,5.0D0,atol,tol)
status = 0
CALL dinvr(status,s,fx,qleft,qhi)
200 IF (.NOT. (status.EQ.1)) GO TO 230
CALL cumpoi(s,xlam,cum,ccum)
IF (.NOT. (qporq)) GO TO 210
fx = cum - p
GO TO 220
210 fx = ccum - q
220 CALL dinvr(status,s,fx,qleft,qhi)
GO TO 200
230 IF (.NOT. (status.EQ.-1)) GO TO 260
IF (.NOT. (qleft)) GO TO 240
status = 1
bound = 0.0D0
GO TO 250
240 status = 2
bound = inf
250 CONTINUE
260 CONTINUE
ELSE IF ((3).EQ. (which)) THEN
xlam = 5.0D0
CALL dstinv(0.0D0,inf,0.5D0,0.5D0,5.0D0,atol,tol)
status = 0
CALL dinvr(status,xlam,fx,qleft,qhi)
270 IF (.NOT. (status.EQ.1)) GO TO 300
CALL cumpoi(s,xlam,cum,ccum)
IF (.NOT. (qporq)) GO TO 280
fx = cum - p
GO TO 290
280 fx = ccum - q
290 CALL dinvr(status,xlam,fx,qleft,qhi)
GO TO 270
300 IF (.NOT. (status.EQ.-1)) GO TO 330
IF (.NOT. (qleft)) GO TO 310
status = 1
bound = 0.0D0
GO TO 320
310 status = 2
bound = inf
320 CONTINUE
330 END IF
RETURN
END
|