1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
SUBROUTINE cdft(which,p,q,t,df,status,bound)
C**********************************************************************
C
C SUBROUTINE CDFT( WHICH, P, Q, T, DF, STATUS, BOUND )
C Cumulative Distribution Function
C T distribution
C
C
C Function
C
C
C Calculates any one parameter of the t distribution given
C values for the others.
C
C
C Arguments
C
C
C WHICH --> Integer indicating which argument
C values is to be calculated from the others.
C Legal range: 1..3
C iwhich = 1 : Calculate P and Q from T and DF
C iwhich = 2 : Calculate T from P,Q and DF
C iwhich = 3 : Calculate DF from P,Q and T
C INTEGER WHICH
C
C P <--> The integral from -infinity to t of the t-density.
C Input range: (0,1].
C DOUBLE PRECISION P
C
C Q <--> 1-P.
C Input range: (0, 1].
C P + Q = 1.0.
C DOUBLE PRECISION Q
C
C T <--> Upper limit of integration of the t-density.
C Input range: ( -infinity, +infinity).
C Search range: [ -1E100, 1E100 ]
C DOUBLE PRECISION T
C
C DF <--> Degrees of freedom of the t-distribution.
C Input range: (0 , +infinity).
C Search range: [1e-100, 1E10]
C DOUBLE PRECISION DF
C
C STATUS <-- 0 if calculation completed correctly
C -I if input parameter number I is out of range
C 1 if answer appears to be lower than lowest
C search bound
C 2 if answer appears to be higher than greatest
C search bound
C 3 if P + Q .ne. 1
C INTEGER STATUS
C
C BOUND <-- Undefined if STATUS is 0
C
C Bound exceeded by parameter number I if STATUS
C is negative.
C
C Lower search bound if STATUS is 1.
C
C Upper search bound if STATUS is 2.
C
C
C Method
C
C
C Formula 26.5.27 of Abramowitz and Stegun, Handbook of
C Mathematical Functions (1966) is used to reduce the computation
C of the cumulative distribution function to that of an incomplete
C beta.
C
C Computation of other parameters involve a seach for a value that
C produces the desired value of P. The search relies on the
C monotinicity of P with the other parameter.
C
C**********************************************************************
C .. Parameters ..
DOUBLE PRECISION tol
PARAMETER (tol=1.0D-8)
DOUBLE PRECISION atol
PARAMETER (atol=1.0D-50)
DOUBLE PRECISION zero,inf
PARAMETER (zero=1.0D-100,inf=1.0D100)
DOUBLE PRECISION rtinf
PARAMETER (rtinf=1.0D100)
DOUBLE PRECISION maxdf
PARAMETER (maxdf=1.0d10)
C ..
C .. Scalar Arguments ..
DOUBLE PRECISION bound,df,p,q,t
INTEGER status,which
C ..
C .. Local Scalars ..
DOUBLE PRECISION ccum,cum,fx,pq
LOGICAL qhi,qleft,qporq
C ..
C .. External Functions ..
DOUBLE PRECISION dt1,spmpar
EXTERNAL dt1,spmpar
C ..
C .. External Subroutines ..
EXTERNAL cumt,dinvr,dstinv
C ..
C .. Intrinsic Functions ..
INTRINSIC abs
C ..
IF (.NOT. ((which.LT.1).OR. (which.GT.3))) GO TO 30
IF (.NOT. (which.LT.1)) GO TO 10
bound = 1.0D0
GO TO 20
10 bound = 3.0D0
20 status = -1
RETURN
30 IF (which.EQ.1) GO TO 70
IF (.NOT. ((p.LE.0.0D0).OR. (p.GT.1.0D0))) GO TO 60
IF (.NOT. (p.LE.0.0D0)) GO TO 40
bound = 0.0D0
GO TO 50
40 bound = 1.0D0
50 status = -2
RETURN
60 CONTINUE
70 IF (which.EQ.1) GO TO 110
IF (.NOT. ((q.LE.0.0D0).OR. (q.GT.1.0D0))) GO TO 100
IF (.NOT. (q.LE.0.0D0)) GO TO 80
bound = 0.0D0
GO TO 90
80 bound = 1.0D0
90 status = -3
RETURN
100 CONTINUE
110 IF (which.EQ.3) GO TO 130
IF (.NOT. (df.LE.0.0D0)) GO TO 120
bound = 0.0D0
status = -5
RETURN
120 CONTINUE
130 IF (which.EQ.1) GO TO 170
pq = p + q
IF (.NOT. (abs(((pq)-0.5D0)-0.5D0).GT.
+ (3.0D0*spmpar(1)))) GO TO 160
IF (.NOT. (pq.LT.0.0D0)) GO TO 140
bound = 0.0D0
GO TO 150
140 bound = 1.0D0
150 status = 3
RETURN
160 CONTINUE
170 IF (.NOT. (which.EQ.1)) qporq = p .LE. q
IF ((1).EQ. (which)) THEN
CALL cumt(t,df,p,q)
status = 0
ELSE IF ((2).EQ. (which)) THEN
t = dt1(p,q,df)
CALL dstinv(-rtinf,rtinf,0.5D0,0.5D0,5.0D0,atol,tol)
status = 0
CALL dinvr(status,t,fx,qleft,qhi)
180 IF (.NOT. (status.EQ.1)) GO TO 210
CALL cumt(t,df,cum,ccum)
IF (.NOT. (qporq)) GO TO 190
fx = cum - p
GO TO 200
190 fx = ccum - q
200 CALL dinvr(status,t,fx,qleft,qhi)
GO TO 180
210 IF (.NOT. (status.EQ.-1)) GO TO 240
IF (.NOT. (qleft)) GO TO 220
status = 1
bound = -rtinf
GO TO 230
220 status = 2
bound = rtinf
230 CONTINUE
240 CONTINUE
ELSE IF ((3).EQ. (which)) THEN
df = 5.0D0
CALL dstinv(zero,maxdf,0.5D0,0.5D0,5.0D0,atol,tol)
status = 0
CALL dinvr(status,df,fx,qleft,qhi)
250 IF (.NOT. (status.EQ.1)) GO TO 280
CALL cumt(t,df,cum,ccum)
IF (.NOT. (qporq)) GO TO 260
fx = cum - p
GO TO 270
260 fx = ccum - q
270 CALL dinvr(status,df,fx,qleft,qhi)
GO TO 250
280 IF (.NOT. (status.EQ.-1)) GO TO 310
IF (.NOT. (qleft)) GO TO 290
status = 1
bound = zero
GO TO 300
290 status = 2
bound = maxdf
300 CONTINUE
310 END IF
RETURN
END
|