1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
SUBROUTINE cumchn(x,df,pnonc,cum,ccum)
C***********************************************************************
C
C SUBROUTINE CUMCHN(X,DF,PNONC,CUM,CCUM)
C CUMulative of the Non-central CHi-square distribution
C
C Function
C
C Calculates the cumulative non-central chi-square
C distribution, i.e., the probability that a random variable
C which follows the non-central chi-square distribution, with
C non-centrality parameter PNONC and continuous degrees of
C freedom DF, is less than or equal to X.
C
C Arguments
C
C X --> Upper limit of integration of the non-central
C chi-square distribution.
C X is DOUBLE PRECISION
C
C DF --> Degrees of freedom of the non-central
C chi-square distribution.
C DF is DOUBLE PRECISION
C
C PNONC --> Non-centrality parameter of the non-central
C chi-square distribution.
C PNONC is DOUBLE PRECIS
C
C CUM <-- Cumulative non-central chi-square distribution.
C CUM is DOUBLE PRECISIO
C
C CCUM <-- Compliment of Cumulative non-central chi-square distribut
C CCUM is DOUBLE PRECISI
C
C
C Method
C
C Uses formula 26.4.25 of Abramowitz and Stegun, Handbook of
C Mathematical Functions, US NBS (1966) to calculate the
C non-central chi-square.
C
C Variables
C
C EPS --- Convergence criterion. The sum stops when a
C term is less than EPS*SUM.
C EPS is DOUBLE PRECISIO
C
C CCUM <-- Compliment of Cumulative non-central
C chi-square distribution.
C CCUM is DOUBLE PRECISI
C
C***********************************************************************
C
C
C .. Scalar Arguments ..
DOUBLE PRECISION ccum,cum,df,pnonc,x
C ..
C .. Local Scalars ..
DOUBLE PRECISION adj,centaj,centwt,chid2,dfd2,eps,lcntaj,lcntwt,
+ lfact,pcent,pterm,sum,sumadj,term,wt,xnonc,xx,
+ abstol
INTEGER i,icent
C ..
C .. External Functions ..
DOUBLE PRECISION alngam
EXTERNAL alngam
C ..
C .. External Subroutines ..
EXTERNAL cumchi
C ..
C .. Intrinsic Functions ..
INTRINSIC dble,exp,int,log
C ..
C .. Statement Functions ..
DOUBLE PRECISION dg
LOGICAL qsmall
C ..
C .. Data statements ..
DATA eps/1.0D-5/
DATA abstol/1.0D-300/
C ..
C .. Statement Function definitions ..
qsmall(xx) = sum .LT. abstol .OR. xx .LT. eps*sum
dg(i) = df + 2.0D0*dble(i)
C ..
C
IF (.NOT. (x.LE.0.0D0)) GO TO 10
cum = 0.0D0
ccum = 1.0D0
RETURN
10 IF (.NOT. (pnonc.LE.1.0D-10)) GO TO 20
C
C
C When non-centrality parameter is (essentially) zero,
C use cumulative chi-square distribution
C
C
CALL cumchi(x,df,cum,ccum)
RETURN
20 xnonc = pnonc/2.0D0
C***********************************************************************
C
C The following code calcualtes the weight, chi-square, and
C adjustment term for the central term in the infinite series.
C The central term is the one in which the poisson weight is
C greatest. The adjustment term is the amount that must
C be subtracted from the chi-square to move up two degrees
C of freedom.
C
C***********************************************************************
icent = int(xnonc)
IF (icent.EQ.0) icent = 1
chid2 = x/2.0D0
C
C
C Calculate central weight term
C
C
lfact = alngam(dble(icent+1))
lcntwt = -xnonc + icent*log(xnonc) - lfact
centwt = exp(lcntwt)
C
C
C Calculate central chi-square
C
C
CALL cumchi(x,dg(icent),pcent,ccum)
C
C
C Calculate central adjustment term
C
C
dfd2 = dg(icent)/2.0D0
lfact = alngam(1.0D0+dfd2)
lcntaj = dfd2*log(chid2) - chid2 - lfact
centaj = exp(lcntaj)
sum = centwt*pcent
C***********************************************************************
C
C Sum backwards from the central term towards zero.
C Quit whenever either
C (1) the zero term is reached, or
C (2) the term gets small relative to the sum, or
C
C***********************************************************************
sumadj = 0.0D0
adj = centaj
wt = centwt
i = icent
C
GO TO 40
30 IF (qsmall(term) .OR. i.EQ.0) GO TO 50
40 dfd2 = dg(i)/2.0D0
C
C
C Adjust chi-square for two fewer degrees of freedom.
C The adjusted value ends up in PTERM.
C
C
adj = adj*dfd2/chid2
sumadj = sumadj + adj
pterm = pcent + sumadj
C
C
C Adjust poisson weight for J decreased by one
C
C
wt = wt* (i/xnonc)
term = wt*pterm
sum = sum + term
i = i - 1
GO TO 30
50 sumadj = centaj
C***********************************************************************
C
C Now sum forward from the central term towards infinity.
C Quit when either
C (1) the term gets small relative to the sum, or
C
C***********************************************************************
adj = centaj
wt = centwt
i = icent
C
GO TO 70
60 IF (qsmall(term)) GO TO 80
C
C
C Update weights for next higher J
C
C
70 wt = wt* (xnonc/ (i+1))
C
C
C Calculate PTERM and add term to sum
C
C
pterm = pcent - sumadj
term = wt*pterm
sum = sum + term
C
C
C Update adjustment term for DF for next iteration
C
C
i = i + 1
dfd2 = dg(i)/2.0D0
adj = adj*chid2/dfd2
sumadj = sumadj + adj
GO TO 60
80 cum = sum
ccum = 0.5D0 + (0.5D0-cum)
C
RETURN
END
|