File: cumchn.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (222 lines) | stat: -rw-r--r-- 6,078 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
      SUBROUTINE cumchn(x,df,pnonc,cum,ccum)
C***********************************************************************
C
C     SUBROUTINE CUMCHN(X,DF,PNONC,CUM,CCUM)
C             CUMulative of the Non-central CHi-square distribution
C
C                               Function
C
C     Calculates     the       cumulative      non-central    chi-square
C     distribution, i.e.,  the probability   that  a   random   variable
C     which    follows  the  non-central chi-square  distribution,  with
C     non-centrality  parameter    PNONC  and   continuous  degrees   of
C     freedom DF, is less than or equal to X.
C
C                              Arguments
C
C     X       --> Upper limit of integration of the non-central
C                 chi-square distribution.
C                                                 X is DOUBLE PRECISION
C
C     DF      --> Degrees of freedom of the non-central
C                 chi-square distribution.
C                                                 DF is DOUBLE PRECISION
C
C     PNONC   --> Non-centrality parameter of the non-central
C                 chi-square distribution.
C                                                 PNONC is DOUBLE PRECIS
C
C     CUM <-- Cumulative non-central chi-square distribution.
C                                                 CUM is DOUBLE PRECISIO
C
C     CCUM <-- Compliment of Cumulative non-central chi-square distribut
C                                                 CCUM is DOUBLE PRECISI
C
C
C                                Method
C
C     Uses  formula  26.4.25   of  Abramowitz  and  Stegun, Handbook  of
C     Mathematical    Functions,  US   NBS   (1966)    to calculate  the
C     non-central chi-square.
C
C                                Variables
C
C     EPS     --- Convergence criterion.  The sum stops when a
C                 term is less than EPS*SUM.
C                                                 EPS is DOUBLE PRECISIO
C
C     CCUM <-- Compliment of Cumulative non-central
C              chi-square distribution.
C                                                 CCUM is DOUBLE PRECISI
C
C***********************************************************************
C
C
C     .. Scalar Arguments ..
      DOUBLE PRECISION ccum,cum,df,pnonc,x
C     ..
C     .. Local Scalars ..
      DOUBLE PRECISION adj,centaj,centwt,chid2,dfd2,eps,lcntaj,lcntwt,
     +                 lfact,pcent,pterm,sum,sumadj,term,wt,xnonc,xx,
     +                 abstol
      INTEGER i,icent
C     ..
C     .. External Functions ..
      DOUBLE PRECISION alngam
      EXTERNAL alngam
C     ..
C     .. External Subroutines ..
      EXTERNAL cumchi
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC dble,exp,int,log
C     ..
C     .. Statement Functions ..
      DOUBLE PRECISION dg
      LOGICAL qsmall
C     ..
C     .. Data statements ..
      DATA eps/1.0D-5/
      DATA abstol/1.0D-300/
C     ..
C     .. Statement Function definitions ..
      qsmall(xx) = sum .LT. abstol .OR. xx .LT. eps*sum
      dg(i) = df + 2.0D0*dble(i)
C     ..
C
      IF (.NOT. (x.LE.0.0D0)) GO TO 10
      cum = 0.0D0
      ccum = 1.0D0
      RETURN

   10 IF (.NOT. (pnonc.LE.1.0D-10)) GO TO 20
C
C
C     When non-centrality parameter is (essentially) zero,
C     use cumulative chi-square distribution
C
C
      CALL cumchi(x,df,cum,ccum)
      RETURN

   20 xnonc = pnonc/2.0D0
C***********************************************************************
C
C     The following code calcualtes the weight, chi-square, and
C     adjustment term for the central term in the infinite series.
C     The central term is the one in which the poisson weight is
C     greatest.  The adjustment term is the amount that must
C     be subtracted from the chi-square to move up two degrees
C     of freedom.
C
C***********************************************************************
      icent = int(xnonc)
      IF (icent.EQ.0) icent = 1
      chid2 = x/2.0D0
C
C
C     Calculate central weight term
C
C
      lfact = alngam(dble(icent+1))
      lcntwt = -xnonc + icent*log(xnonc) - lfact
      centwt = exp(lcntwt)
C
C
C     Calculate central chi-square
C
C
      CALL cumchi(x,dg(icent),pcent,ccum)
C
C
C     Calculate central adjustment term
C
C
      dfd2 = dg(icent)/2.0D0
      lfact = alngam(1.0D0+dfd2)
      lcntaj = dfd2*log(chid2) - chid2 - lfact
      centaj = exp(lcntaj)
      sum = centwt*pcent
C***********************************************************************
C
C     Sum backwards from the central term towards zero.
C     Quit whenever either
C     (1) the zero term is reached, or
C     (2) the term gets small relative to the sum, or
C
C***********************************************************************
      sumadj = 0.0D0
      adj = centaj
      wt = centwt
      i = icent
C
      GO TO 40

   30 IF (qsmall(term) .OR. i.EQ.0) GO TO 50
   40 dfd2 = dg(i)/2.0D0
C
C
C     Adjust chi-square for two fewer degrees of freedom.
C     The adjusted value ends up in PTERM.
C
C
      adj = adj*dfd2/chid2
      sumadj = sumadj + adj
      pterm = pcent + sumadj
C
C
C     Adjust poisson weight for J decreased by one
C
C
      wt = wt* (i/xnonc)
      term = wt*pterm
      sum = sum + term
      i = i - 1
      GO TO 30

   50 sumadj = centaj
C***********************************************************************
C
C     Now sum forward from the central term towards infinity.
C     Quit when either
C     (1) the term gets small relative to the sum, or
C
C***********************************************************************
      adj = centaj
      wt = centwt
      i = icent
C
      GO TO 70

   60 IF (qsmall(term)) GO TO 80
C
C
C     Update weights for next higher J
C
C
   70 wt = wt* (xnonc/ (i+1))
C
C
C     Calculate PTERM and add term to sum
C
C
      pterm = pcent - sumadj
      term = wt*pterm
      sum = sum + term
C
C
C     Update adjustment term for DF for next iteration
C
C
      i = i + 1
      dfd2 = dg(i)/2.0D0
      adj = adj*chid2/dfd2
      sumadj = sumadj + adj
      GO TO 60

   80 cum = sum
      ccum = 0.5D0 + (0.5D0-cum)
C
      RETURN

      END