File: cumnor.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (213 lines) | stat: -rw-r--r-- 8,282 bytes parent folder | download | duplicates (24)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
      SUBROUTINE cumnor(arg,result,ccum)
C**********************************************************************
C
C     SUBROUINE CUMNOR(X,RESULT,CCUM)
C
C
C                              Function
C
C
C     Computes the cumulative  of    the  normal   distribution,   i.e.,
C     the integral from -infinity to x of
C          (1/sqrt(2*pi)) exp(-u*u/2) du
C
C     X --> Upper limit of integration.
C                                        X is DOUBLE PRECISION
C
C     RESULT <-- Cumulative normal distribution.
C                                        RESULT is DOUBLE PRECISION
C
C     CCUM <-- Compliment of Cumulative normal distribution.
C                                        CCUM is DOUBLE PRECISION
C
C
C     Renaming of function ANORM from:
C
C     Cody, W.D. (1993). "ALGORITHM 715: SPECFUN - A Portabel FORTRAN
C     Package of Special Function Routines and Test Drivers"
C     acm Transactions on Mathematical Software. 19, 22-32.
C
C     with slight modifications to return ccum and to deal with
C     machine constants.
C
C**********************************************************************
C
C
C Original Comments:
C------------------------------------------------------------------
C
C This function evaluates the normal distribution function:
C
C                              / x
C                     1       |       -t*t/2
C          P(x) = ----------- |      e       dt
C                 sqrt(2 pi)  |
C                             /-oo
C
C   The main computation evaluates near-minimax approximations
C   derived from those in "Rational Chebyshev approximations for
C   the error function" by W. J. Cody, Math. Comp., 1969, 631-637.
C   This transportable program uses rational functions that
C   theoretically approximate the normal distribution function to
C   at least 18 significant decimal digits.  The accuracy achieved
C   depends on the arithmetic system, the compiler, the intrinsic
C   functions, and proper selection of the machine-dependent
C   constants.
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants.
C
C   MIN   = smallest machine representable number.
C
C   EPS   = argument below which anorm(x) may be represented by
C           0.5  and above which  x*x  will not underflow.
C           A conservative value is the largest machine number X
C           such that   1.0 + X = 1.0   to machine precision.
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C  The program returns  ANORM = 0     for  ARG .LE. XLOW.
C
C
C Intrinsic functions required are:
C
C     ABS, AINT, EXP
C
C
C  Author: W. J. Cody
C          Mathematics and Computer Science Division
C          Argonne National Laboratory
C          Argonne, IL 60439
C
C  Latest modification: March 15, 1992
C
C------------------------------------------------------------------
      INTEGER i
      DOUBLE PRECISION a,arg,b,c,d,del,eps,half,p,one,q,result,sixten,
     +                 temp,sqrpi,thrsh,root32,x,xden,xnum,y,xsq,zero,
     +                 min,ccum
      DIMENSION a(5),b(4),c(9),d(8),p(6),q(5)
C------------------------------------------------------------------
C  External Function
C------------------------------------------------------------------
      DOUBLE PRECISION spmpar
      EXTERNAL spmpar
C------------------------------------------------------------------
C  Mathematical constants
C
C  SQRPI = 1 / sqrt(2*pi), ROOT32 = sqrt(32), and
C  THRSH is the argument for which anorm = 0.75.
C------------------------------------------------------------------
      DATA one,half,zero,sixten/1.0D0,0.5D0,0.0D0,1.60D0/,
     +     sqrpi/3.9894228040143267794D-1/,thrsh/0.66291D0/,
     +     root32/5.656854248D0/
C------------------------------------------------------------------
C  Coefficients for approximation in first interval
C------------------------------------------------------------------
      DATA a/2.2352520354606839287D00,1.6102823106855587881D02,
     +     1.0676894854603709582D03,1.8154981253343561249D04,
     +     6.5682337918207449113D-2/
      DATA b/4.7202581904688241870D01,9.7609855173777669322D02,
     +     1.0260932208618978205D04,4.5507789335026729956D04/
C------------------------------------------------------------------
C  Coefficients for approximation in second interval
C------------------------------------------------------------------
      DATA c/3.9894151208813466764D-1,8.8831497943883759412D00,
     +     9.3506656132177855979D01,5.9727027639480026226D02,
     +     2.4945375852903726711D03,6.8481904505362823326D03,
     +     1.1602651437647350124D04,9.8427148383839780218D03,
     +     1.0765576773720192317D-8/
      DATA d/2.2266688044328115691D01,2.3538790178262499861D02,
     +     1.5193775994075548050D03,6.4855582982667607550D03,
     +     1.8615571640885098091D04,3.4900952721145977266D04,
     +     3.8912003286093271411D04,1.9685429676859990727D04/
C------------------------------------------------------------------
C  Coefficients for approximation in third interval
C------------------------------------------------------------------
      DATA p/2.1589853405795699D-1,1.274011611602473639D-1,
     +     2.2235277870649807D-2,1.421619193227893466D-3,
     +     2.9112874951168792D-5,2.307344176494017303D-2/
      DATA q/1.28426009614491121D00,4.68238212480865118D-1,
     +     6.59881378689285515D-2,3.78239633202758244D-3,
     +     7.29751555083966205D-5/
C------------------------------------------------------------------
C  Machine dependent constants
C------------------------------------------------------------------
      eps = spmpar(1)*0.5D0
      min = spmpar(2)
C------------------------------------------------------------------
      x = arg
      y = abs(x)
      IF (y.LE.thrsh) THEN
C------------------------------------------------------------------
C  Evaluate  anorm  for  |X| <= 0.66291
C------------------------------------------------------------------
          xsq = zero
          IF (y.GT.eps) xsq = x*x
          xnum = a(5)*xsq
          xden = xsq
          DO 10 i = 1,3
              xnum = (xnum+a(i))*xsq
              xden = (xden+b(i))*xsq
   10     CONTINUE
          result = x* (xnum+a(4))/ (xden+b(4))
          temp = result
          result = half + temp
          ccum = half - temp
C------------------------------------------------------------------
C  Evaluate  anorm  for 0.66291 <= |X| <= sqrt(32)
C------------------------------------------------------------------
      ELSE IF (y.LE.root32) THEN
          xnum = c(9)*y
          xden = y
          DO 20 i = 1,7
              xnum = (xnum+c(i))*y
              xden = (xden+d(i))*y
   20     CONTINUE
          result = (xnum+c(8))/ (xden+d(8))
          xsq = aint(y*sixten)/sixten
          del = (y-xsq)* (y+xsq)
          result = exp(-xsq*xsq*half)*exp(-del*half)*result
          ccum = one - result
          IF (x.GT.zero) THEN
              temp = result
              result = ccum
              ccum = temp
          END IF
C------------------------------------------------------------------
C  Evaluate  anorm  for |X| > sqrt(32)
C------------------------------------------------------------------
      ELSE
          result = zero
          xsq = one/ (x*x)
          xnum = p(6)*xsq
          xden = xsq
          DO 30 i = 1,4
              xnum = (xnum+p(i))*xsq
              xden = (xden+q(i))*xsq
   30     CONTINUE
          result = xsq* (xnum+p(5))/ (xden+q(5))
          result = (sqrpi-result)/y
          xsq = aint(x*sixten)/sixten
          del = (x-xsq)* (x+xsq)
          result = exp(-xsq*xsq*half)*exp(-del*half)*result
          ccum = one - result
          IF (x.GT.zero) THEN
              temp = result
              result = ccum
              ccum = temp
          END IF

      END IF

      IF (result.LT.min) result = 0.0D0
      IF (ccum.LT.min) ccum = 0.0D0
C------------------------------------------------------------------
C  Fix up for negative argument, erf, etc.
C------------------------------------------------------------------
C----------Last card of ANORM ----------
      END