File: gaminv.f

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (355 lines) | stat: -rw-r--r-- 10,511 bytes parent folder | download | duplicates (24)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
      SUBROUTINE gaminv(a,x,x0,p,q,ierr)
C ----------------------------------------------------------------------
C            INVERSE INCOMPLETE GAMMA RATIO FUNCTION
C
C     GIVEN POSITIVE A, AND NONEGATIVE P AND Q WHERE P + Q = 1.
C     THEN X IS COMPUTED WHERE P(A,X) = P AND Q(A,X) = Q. SCHRODER
C     ITERATION IS EMPLOYED. THE ROUTINE ATTEMPTS TO COMPUTE X
C     TO 10 SIGNIFICANT DIGITS IF THIS IS POSSIBLE FOR THE
C     PARTICULAR COMPUTER ARITHMETIC BEING USED.
C
C                      ------------
C
C     X IS A VARIABLE. IF P = 0 THEN X IS ASSIGNED THE VALUE 0,
C     AND IF Q = 0 THEN X IS SET TO THE LARGEST FLOATING POINT
C     NUMBER AVAILABLE. OTHERWISE, GAMINV ATTEMPTS TO OBTAIN
C     A SOLUTION FOR P(A,X) = P AND Q(A,X) = Q. IF THE ROUTINE
C     IS SUCCESSFUL THEN THE SOLUTION IS STORED IN X.
C
C     X0 IS AN OPTIONAL INITIAL APPROXIMATION FOR X. IF THE USER
C     DOES NOT WISH TO SUPPLY AN INITIAL APPROXIMATION, THEN SET
C     X0 .LE. 0.
C
C     IERR IS A VARIABLE THAT REPORTS THE STATUS OF THE RESULTS.
C     WHEN THE ROUTINE TERMINATES, IERR HAS ONE OF THE FOLLOWING
C     VALUES ...
C
C       IERR =  0    THE SOLUTION WAS OBTAINED. ITERATION WAS
C                    NOT USED.
C       IERR.GT.0    THE SOLUTION WAS OBTAINED. IERR ITERATIONS
C                    WERE PERFORMED.
C       IERR = -2    (INPUT ERROR) A .LE. 0
C       IERR = -3    NO SOLUTION WAS OBTAINED. THE RATIO Q/A
C                    IS TOO LARGE.
C       IERR = -4    (INPUT ERROR) P + Q .NE. 1
C       IERR = -6    20 ITERATIONS WERE PERFORMED. THE MOST
C                    RECENT VALUE OBTAINED FOR X IS GIVEN.
C                    THIS CANNOT OCCUR IF X0 .LE. 0.
C       IERR = -7    ITERATION FAILED. NO VALUE IS GIVEN FOR X.
C                    THIS MAY OCCUR WHEN X IS APPROXIMATELY 0.
C       IERR = -8    A VALUE FOR X HAS BEEN OBTAINED, BUT THE
C                    ROUTINE IS NOT CERTAIN OF ITS ACCURACY.
C                    ITERATION CANNOT BE PERFORMED IN THIS
C                    CASE. IF X0 .LE. 0, THIS CAN OCCUR ONLY
C                    WHEN P OR Q IS APPROXIMATELY 0. IF X0 IS
C                    POSITIVE THEN THIS CAN OCCUR WHEN A IS
C                    EXCEEDINGLY CLOSE TO X AND A IS EXTREMELY
C                    LARGE (SAY A .GE. 1.E20).
C ----------------------------------------------------------------------
C     WRITTEN BY ALFRED H. MORRIS, JR.
C        NAVAL SURFACE WEAPONS CENTER
C        DAHLGREN, VIRGINIA
C     -------------------
C     .. Scalar Arguments ..
      DOUBLE PRECISION a,p,q,x,x0
      INTEGER ierr
C     ..
C     .. Local Scalars ..
      DOUBLE PRECISION a0,a1,a2,a3,am1,amax,ap1,ap2,ap3,apn,b,b1,b2,b3,
     +                 b4,c,c1,c2,c3,c4,c5,d,e,e2,eps,g,h,ln10,pn,qg,qn,
     +                 r,rta,s,s2,sum,t,tol,u,w,xmax,xmin,xn,y,z
      INTEGER iop
C     ..
C     .. Local Arrays ..
      DOUBLE PRECISION amin(2),bmin(2),dmin(2),emin(2),eps0(2)
C     ..
C     .. External Functions ..
      DOUBLE PRECISION alnrel,gamln,gamln1,gamma,rcomp,spmpar
      EXTERNAL alnrel,gamln,gamln1,gamma,rcomp,spmpar
C     ..
C     .. External Subroutines ..
      EXTERNAL gratio
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC abs,dble,dlog,dmax1,exp,sqrt
C     ..
C     .. Data statements ..
C     -------------------
C     LN10 = LN(10)
C     C = EULER CONSTANT
C     -------------------
C     -------------------
C     -------------------
C     -------------------
      DATA ln10/2.302585D0/
      DATA c/.577215664901533D0/
      DATA a0/3.31125922108741D0/,a1/11.6616720288968D0/,
     +     a2/4.28342155967104D0/,a3/.213623493715853D0/
      DATA b1/6.61053765625462D0/,b2/6.40691597760039D0/,
     +     b3/1.27364489782223D0/,b4/.036117081018842D0/
      DATA eps0(1)/1.D-10/,eps0(2)/1.D-08/
      DATA amin(1)/500.0D0/,amin(2)/100.0D0/
      DATA bmin(1)/1.D-28/,bmin(2)/1.D-13/
      DATA dmin(1)/1.D-06/,dmin(2)/1.D-04/
      DATA emin(1)/2.D-03/,emin(2)/6.D-03/
      DATA tol/1.D-5/
C     ..
C     .. Executable Statements ..
C     -------------------
C     ****** E, XMIN, AND XMAX ARE MACHINE DEPENDENT CONSTANTS.
C            E IS THE SMALLEST NUMBER FOR WHICH 1.0 + E .GT. 1.0.
C            XMIN IS THE SMALLEST POSITIVE NUMBER AND XMAX IS THE
C            LARGEST POSITIVE NUMBER.
C
      e = spmpar(1)
      xmin = spmpar(2)
      xmax = spmpar(3)
C     -------------------
      x = 0.0D0
      IF (a.LE.0.0D0) GO TO 300
      t = dble(p) + dble(q) - 1.D0
      IF (abs(t).GT.e) GO TO 320
C
      ierr = 0
      IF (p.EQ.0.0D0) RETURN
      IF (q.EQ.0.0D0) GO TO 270
      IF (a.EQ.1.0D0) GO TO 280
C
      e2 = 2.0D0*e
      amax = 0.4D-10/ (e*e)
      iop = 1
      IF (e.GT.1.D-10) iop = 2
      eps = eps0(iop)
      xn = x0
      IF (x0.GT.0.0D0) GO TO 160
C
C        SELECTION OF THE INITIAL APPROXIMATION XN OF X
C                       WHEN A .LT. 1
C
      IF (a.GT.1.0D0) GO TO 80
      g = gamma(a+1.0D0)
      qg = q*g
      IF (qg.EQ.0.0D0) GO TO 360
      b = qg/a
      IF (qg.GT.0.6D0*a) GO TO 40
      IF (a.GE.0.30D0 .OR. b.LT.0.35D0) GO TO 10
      t = exp(- (b+c))
      u = t*exp(t)
      xn = t*exp(u)
      GO TO 160
C
   10 IF (b.GE.0.45D0) GO TO 40
      IF (b.EQ.0.0D0) GO TO 360
      y = -dlog(b)
      s = 0.5D0 + (0.5D0-a)
      z = dlog(y)
      t = y - s*z
      IF (b.LT.0.15D0) GO TO 20
      xn = y - s*dlog(t) - dlog(1.0D0+s/ (t+1.0D0))
      GO TO 220

   20 IF (b.LE.0.01D0) GO TO 30
      u = ((t+2.0D0* (3.0D0-a))*t+ (2.0D0-a)* (3.0D0-a))/
     +    ((t+ (5.0D0-a))*t+2.0D0)
      xn = y - s*dlog(t) - dlog(u)
      GO TO 220

   30 c1 = -s*z
      c2 = -s* (1.0D0+c1)
      c3 = s* ((0.5D0*c1+ (2.0D0-a))*c1+ (2.5D0-1.5D0*a))
      c4 = -s* (((c1/3.0D0+ (2.5D0-1.5D0*a))*c1+ ((a-6.0D0)*a+7.0D0))*
     +     c1+ ((11.0D0*a-46)*a+47.0D0)/6.0D0)
      c5 = -s* ((((-c1/4.0D0+ (11.0D0*a-17.0D0)/6.0D0)*c1+ ((-3.0D0*a+
     +     13.0D0)*a-13.0D0))*c1+0.5D0* (((2.0D0*a-25.0D0)*a+72.0D0)*a-
     +     61.0D0))*c1+ (((25.0D0*a-195.0D0)*a+477.0D0)*a-379.0D0)/
     +     12.0D0)
      xn = ((((c5/y+c4)/y+c3)/y+c2)/y+c1) + y
      IF (a.GT.1.0D0) GO TO 220
      IF (b.GT.bmin(iop)) GO TO 220
      x = xn
      RETURN
C
   40 IF (b*q.GT.1.D-8) GO TO 50
      xn = exp(- (q/a+c))
      GO TO 70

   50 IF (p.LE.0.9D0) GO TO 60
      xn = exp((alnrel(-q)+gamln1(a))/a)
      GO TO 70

   60 xn = exp(dlog(p*g)/a)
   70 IF (xn.EQ.0.0D0) GO TO 310
      t = 0.5D0 + (0.5D0-xn/ (a+1.0D0))
      xn = xn/t
      GO TO 160
C
C        SELECTION OF THE INITIAL APPROXIMATION XN OF X
C                       WHEN A .GT. 1
C
   80 IF (q.LE.0.5D0) GO TO 90
      w = dlog(p)
      GO TO 100

   90 w = dlog(q)
  100 t = sqrt(-2.0D0*w)
      s = t - (((a3*t+a2)*t+a1)*t+a0)/ ((((b4*t+b3)*t+b2)*t+b1)*t+1.0D0)
      IF (q.GT.0.5D0) s = -s
C
      rta = sqrt(a)
      s2 = s*s
      xn = a + s*rta + (s2-1.0D0)/3.0D0 + s* (s2-7.0D0)/ (36.0D0*rta) -
     +     ((3.0D0*s2+7.0D0)*s2-16.0D0)/ (810.0D0*a) +
     +     s* ((9.0D0*s2+256.0D0)*s2-433.0D0)/ (38880.0D0*a*rta)
      xn = dmax1(xn,0.0D0)
      IF (a.LT.amin(iop)) GO TO 110
      x = xn
      d = 0.5D0 + (0.5D0-x/a)
      IF (abs(d).LE.dmin(iop)) RETURN
C
  110 IF (p.LE.0.5D0) GO TO 130
      IF (xn.LT.3.0D0*a) GO TO 220
      y = - (w+gamln(a))
      d = dmax1(2.0D0,a* (a-1.0D0))
      IF (y.LT.ln10*d) GO TO 120
      s = 1.0D0 - a
      z = dlog(y)
      GO TO 30

  120 t = a - 1.0D0
      xn = y + t*dlog(xn) - alnrel(-t/ (xn+1.0D0))
      xn = y + t*dlog(xn) - alnrel(-t/ (xn+1.0D0))
      GO TO 220
C
  130 ap1 = a + 1.0D0
      IF (xn.GT.0.70D0*ap1) GO TO 170
      w = w + gamln(ap1)
      IF (xn.GT.0.15D0*ap1) GO TO 140
      ap2 = a + 2.0D0
      ap3 = a + 3.0D0
      x = exp((w+x)/a)
      x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+x/ap2)))/a)
      x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+x/ap2)))/a)
      x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+ (x/ap2)* (1.0D0+
     +    x/ap3))))/a)
      xn = x
      IF (xn.GT.1.D-2*ap1) GO TO 140
      IF (xn.LE.emin(iop)*ap1) RETURN
      GO TO 170
C
  140 apn = ap1
      t = xn/apn
      sum = 1.0D0 + t
  150 apn = apn + 1.0D0
      t = t* (xn/apn)
      sum = sum + t
      IF (t.GT.1.D-4) GO TO 150
      t = w - dlog(sum)
      xn = exp((xn+t)/a)
      xn = xn* (1.0D0- (a*dlog(xn)-xn-t)/ (a-xn))
      GO TO 170
C
C                 SCHRODER ITERATION USING P
C
  160 IF (p.GT.0.5D0) GO TO 220
  170 IF (p.LE.1.D10*xmin) GO TO 350
      am1 = (a-0.5D0) - 0.5D0
  180 IF (a.LE.amax) GO TO 190
      d = 0.5D0 + (0.5D0-xn/a)
      IF (abs(d).LE.e2) GO TO 350
C
  190 IF (ierr.GE.20) GO TO 330
      ierr = ierr + 1
      CALL gratio(a,xn,pn,qn,0)
      IF (pn.EQ.0.0D0 .OR. qn.EQ.0.0D0) GO TO 350
      r = rcomp(a,xn)
      IF (r.EQ.0.0D0) GO TO 350
      t = (pn-p)/r
      w = 0.5D0* (am1-xn)
      IF (abs(t).LE.0.1D0 .AND. abs(w*t).LE.0.1D0) GO TO 200
      x = xn* (1.0D0-t)
      IF (x.LE.0.0D0) GO TO 340
      d = abs(t)
      GO TO 210
C
  200 h = t* (1.0D0+w*t)
      x = xn* (1.0D0-h)
      IF (x.LE.0.0D0) GO TO 340
      IF (abs(w).GE.1.0D0 .AND. abs(w)*t*t.LE.eps) RETURN
      d = abs(h)
  210 xn = x
      IF (d.GT.tol) GO TO 180
      IF (d.LE.eps) RETURN
      IF (abs(p-pn).LE.tol*p) RETURN
      GO TO 180
C
C                 SCHRODER ITERATION USING Q
C
  220 IF (q.LE.1.D10*xmin) GO TO 350
      am1 = (a-0.5D0) - 0.5D0
  230 IF (a.LE.amax) GO TO 240
      d = 0.5D0 + (0.5D0-xn/a)
      IF (abs(d).LE.e2) GO TO 350
C
  240 IF (ierr.GE.20) GO TO 330
      ierr = ierr + 1
      CALL gratio(a,xn,pn,qn,0)
      IF (pn.EQ.0.0D0 .OR. qn.EQ.0.0D0) GO TO 350
      r = rcomp(a,xn)
      IF (r.EQ.0.0D0) GO TO 350
      t = (q-qn)/r
      w = 0.5D0* (am1-xn)
      IF (abs(t).LE.0.1D0 .AND. abs(w*t).LE.0.1D0) GO TO 250
      x = xn* (1.0D0-t)
      IF (x.LE.0.0D0) GO TO 340
      d = abs(t)
      GO TO 260
C
  250 h = t* (1.0D0+w*t)
      x = xn* (1.0D0-h)
      IF (x.LE.0.0D0) GO TO 340
      IF (abs(w).GE.1.0D0 .AND. abs(w)*t*t.LE.eps) RETURN
      d = abs(h)
  260 xn = x
      IF (d.GT.tol) GO TO 230
      IF (d.LE.eps) RETURN
      IF (abs(q-qn).LE.tol*q) RETURN
      GO TO 230
C
C                       SPECIAL CASES
C
  270 x = xmax
      RETURN
C
  280 IF (q.LT.0.9D0) GO TO 290
      x = -alnrel(-p)
      RETURN

  290 x = -dlog(q)
      RETURN
C
C                       ERROR RETURN
C
  300 ierr = -2
      RETURN
C
  310 ierr = -3
      RETURN
C
  320 ierr = -4
      RETURN
C
  330 ierr = -6
      RETURN
C
  340 ierr = -7
      RETURN
C
  350 x = xn
      ierr = -8
      RETURN
C
  360 x = xmax
      ierr = -8
      RETURN

      END