1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
SUBROUTINE gaminv(a,x,x0,p,q,ierr)
C ----------------------------------------------------------------------
C INVERSE INCOMPLETE GAMMA RATIO FUNCTION
C
C GIVEN POSITIVE A, AND NONEGATIVE P AND Q WHERE P + Q = 1.
C THEN X IS COMPUTED WHERE P(A,X) = P AND Q(A,X) = Q. SCHRODER
C ITERATION IS EMPLOYED. THE ROUTINE ATTEMPTS TO COMPUTE X
C TO 10 SIGNIFICANT DIGITS IF THIS IS POSSIBLE FOR THE
C PARTICULAR COMPUTER ARITHMETIC BEING USED.
C
C ------------
C
C X IS A VARIABLE. IF P = 0 THEN X IS ASSIGNED THE VALUE 0,
C AND IF Q = 0 THEN X IS SET TO THE LARGEST FLOATING POINT
C NUMBER AVAILABLE. OTHERWISE, GAMINV ATTEMPTS TO OBTAIN
C A SOLUTION FOR P(A,X) = P AND Q(A,X) = Q. IF THE ROUTINE
C IS SUCCESSFUL THEN THE SOLUTION IS STORED IN X.
C
C X0 IS AN OPTIONAL INITIAL APPROXIMATION FOR X. IF THE USER
C DOES NOT WISH TO SUPPLY AN INITIAL APPROXIMATION, THEN SET
C X0 .LE. 0.
C
C IERR IS A VARIABLE THAT REPORTS THE STATUS OF THE RESULTS.
C WHEN THE ROUTINE TERMINATES, IERR HAS ONE OF THE FOLLOWING
C VALUES ...
C
C IERR = 0 THE SOLUTION WAS OBTAINED. ITERATION WAS
C NOT USED.
C IERR.GT.0 THE SOLUTION WAS OBTAINED. IERR ITERATIONS
C WERE PERFORMED.
C IERR = -2 (INPUT ERROR) A .LE. 0
C IERR = -3 NO SOLUTION WAS OBTAINED. THE RATIO Q/A
C IS TOO LARGE.
C IERR = -4 (INPUT ERROR) P + Q .NE. 1
C IERR = -6 20 ITERATIONS WERE PERFORMED. THE MOST
C RECENT VALUE OBTAINED FOR X IS GIVEN.
C THIS CANNOT OCCUR IF X0 .LE. 0.
C IERR = -7 ITERATION FAILED. NO VALUE IS GIVEN FOR X.
C THIS MAY OCCUR WHEN X IS APPROXIMATELY 0.
C IERR = -8 A VALUE FOR X HAS BEEN OBTAINED, BUT THE
C ROUTINE IS NOT CERTAIN OF ITS ACCURACY.
C ITERATION CANNOT BE PERFORMED IN THIS
C CASE. IF X0 .LE. 0, THIS CAN OCCUR ONLY
C WHEN P OR Q IS APPROXIMATELY 0. IF X0 IS
C POSITIVE THEN THIS CAN OCCUR WHEN A IS
C EXCEEDINGLY CLOSE TO X AND A IS EXTREMELY
C LARGE (SAY A .GE. 1.E20).
C ----------------------------------------------------------------------
C WRITTEN BY ALFRED H. MORRIS, JR.
C NAVAL SURFACE WEAPONS CENTER
C DAHLGREN, VIRGINIA
C -------------------
C .. Scalar Arguments ..
DOUBLE PRECISION a,p,q,x,x0
INTEGER ierr
C ..
C .. Local Scalars ..
DOUBLE PRECISION a0,a1,a2,a3,am1,amax,ap1,ap2,ap3,apn,b,b1,b2,b3,
+ b4,c,c1,c2,c3,c4,c5,d,e,e2,eps,g,h,ln10,pn,qg,qn,
+ r,rta,s,s2,sum,t,tol,u,w,xmax,xmin,xn,y,z
INTEGER iop
C ..
C .. Local Arrays ..
DOUBLE PRECISION amin(2),bmin(2),dmin(2),emin(2),eps0(2)
C ..
C .. External Functions ..
DOUBLE PRECISION alnrel,gamln,gamln1,gamma,rcomp,spmpar
EXTERNAL alnrel,gamln,gamln1,gamma,rcomp,spmpar
C ..
C .. External Subroutines ..
EXTERNAL gratio
C ..
C .. Intrinsic Functions ..
INTRINSIC abs,dble,dlog,dmax1,exp,sqrt
C ..
C .. Data statements ..
C -------------------
C LN10 = LN(10)
C C = EULER CONSTANT
C -------------------
C -------------------
C -------------------
C -------------------
DATA ln10/2.302585D0/
DATA c/.577215664901533D0/
DATA a0/3.31125922108741D0/,a1/11.6616720288968D0/,
+ a2/4.28342155967104D0/,a3/.213623493715853D0/
DATA b1/6.61053765625462D0/,b2/6.40691597760039D0/,
+ b3/1.27364489782223D0/,b4/.036117081018842D0/
DATA eps0(1)/1.D-10/,eps0(2)/1.D-08/
DATA amin(1)/500.0D0/,amin(2)/100.0D0/
DATA bmin(1)/1.D-28/,bmin(2)/1.D-13/
DATA dmin(1)/1.D-06/,dmin(2)/1.D-04/
DATA emin(1)/2.D-03/,emin(2)/6.D-03/
DATA tol/1.D-5/
C ..
C .. Executable Statements ..
C -------------------
C ****** E, XMIN, AND XMAX ARE MACHINE DEPENDENT CONSTANTS.
C E IS THE SMALLEST NUMBER FOR WHICH 1.0 + E .GT. 1.0.
C XMIN IS THE SMALLEST POSITIVE NUMBER AND XMAX IS THE
C LARGEST POSITIVE NUMBER.
C
e = spmpar(1)
xmin = spmpar(2)
xmax = spmpar(3)
C -------------------
x = 0.0D0
IF (a.LE.0.0D0) GO TO 300
t = dble(p) + dble(q) - 1.D0
IF (abs(t).GT.e) GO TO 320
C
ierr = 0
IF (p.EQ.0.0D0) RETURN
IF (q.EQ.0.0D0) GO TO 270
IF (a.EQ.1.0D0) GO TO 280
C
e2 = 2.0D0*e
amax = 0.4D-10/ (e*e)
iop = 1
IF (e.GT.1.D-10) iop = 2
eps = eps0(iop)
xn = x0
IF (x0.GT.0.0D0) GO TO 160
C
C SELECTION OF THE INITIAL APPROXIMATION XN OF X
C WHEN A .LT. 1
C
IF (a.GT.1.0D0) GO TO 80
g = gamma(a+1.0D0)
qg = q*g
IF (qg.EQ.0.0D0) GO TO 360
b = qg/a
IF (qg.GT.0.6D0*a) GO TO 40
IF (a.GE.0.30D0 .OR. b.LT.0.35D0) GO TO 10
t = exp(- (b+c))
u = t*exp(t)
xn = t*exp(u)
GO TO 160
C
10 IF (b.GE.0.45D0) GO TO 40
IF (b.EQ.0.0D0) GO TO 360
y = -dlog(b)
s = 0.5D0 + (0.5D0-a)
z = dlog(y)
t = y - s*z
IF (b.LT.0.15D0) GO TO 20
xn = y - s*dlog(t) - dlog(1.0D0+s/ (t+1.0D0))
GO TO 220
20 IF (b.LE.0.01D0) GO TO 30
u = ((t+2.0D0* (3.0D0-a))*t+ (2.0D0-a)* (3.0D0-a))/
+ ((t+ (5.0D0-a))*t+2.0D0)
xn = y - s*dlog(t) - dlog(u)
GO TO 220
30 c1 = -s*z
c2 = -s* (1.0D0+c1)
c3 = s* ((0.5D0*c1+ (2.0D0-a))*c1+ (2.5D0-1.5D0*a))
c4 = -s* (((c1/3.0D0+ (2.5D0-1.5D0*a))*c1+ ((a-6.0D0)*a+7.0D0))*
+ c1+ ((11.0D0*a-46)*a+47.0D0)/6.0D0)
c5 = -s* ((((-c1/4.0D0+ (11.0D0*a-17.0D0)/6.0D0)*c1+ ((-3.0D0*a+
+ 13.0D0)*a-13.0D0))*c1+0.5D0* (((2.0D0*a-25.0D0)*a+72.0D0)*a-
+ 61.0D0))*c1+ (((25.0D0*a-195.0D0)*a+477.0D0)*a-379.0D0)/
+ 12.0D0)
xn = ((((c5/y+c4)/y+c3)/y+c2)/y+c1) + y
IF (a.GT.1.0D0) GO TO 220
IF (b.GT.bmin(iop)) GO TO 220
x = xn
RETURN
C
40 IF (b*q.GT.1.D-8) GO TO 50
xn = exp(- (q/a+c))
GO TO 70
50 IF (p.LE.0.9D0) GO TO 60
xn = exp((alnrel(-q)+gamln1(a))/a)
GO TO 70
60 xn = exp(dlog(p*g)/a)
70 IF (xn.EQ.0.0D0) GO TO 310
t = 0.5D0 + (0.5D0-xn/ (a+1.0D0))
xn = xn/t
GO TO 160
C
C SELECTION OF THE INITIAL APPROXIMATION XN OF X
C WHEN A .GT. 1
C
80 IF (q.LE.0.5D0) GO TO 90
w = dlog(p)
GO TO 100
90 w = dlog(q)
100 t = sqrt(-2.0D0*w)
s = t - (((a3*t+a2)*t+a1)*t+a0)/ ((((b4*t+b3)*t+b2)*t+b1)*t+1.0D0)
IF (q.GT.0.5D0) s = -s
C
rta = sqrt(a)
s2 = s*s
xn = a + s*rta + (s2-1.0D0)/3.0D0 + s* (s2-7.0D0)/ (36.0D0*rta) -
+ ((3.0D0*s2+7.0D0)*s2-16.0D0)/ (810.0D0*a) +
+ s* ((9.0D0*s2+256.0D0)*s2-433.0D0)/ (38880.0D0*a*rta)
xn = dmax1(xn,0.0D0)
IF (a.LT.amin(iop)) GO TO 110
x = xn
d = 0.5D0 + (0.5D0-x/a)
IF (abs(d).LE.dmin(iop)) RETURN
C
110 IF (p.LE.0.5D0) GO TO 130
IF (xn.LT.3.0D0*a) GO TO 220
y = - (w+gamln(a))
d = dmax1(2.0D0,a* (a-1.0D0))
IF (y.LT.ln10*d) GO TO 120
s = 1.0D0 - a
z = dlog(y)
GO TO 30
120 t = a - 1.0D0
xn = y + t*dlog(xn) - alnrel(-t/ (xn+1.0D0))
xn = y + t*dlog(xn) - alnrel(-t/ (xn+1.0D0))
GO TO 220
C
130 ap1 = a + 1.0D0
IF (xn.GT.0.70D0*ap1) GO TO 170
w = w + gamln(ap1)
IF (xn.GT.0.15D0*ap1) GO TO 140
ap2 = a + 2.0D0
ap3 = a + 3.0D0
x = exp((w+x)/a)
x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+x/ap2)))/a)
x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+x/ap2)))/a)
x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+ (x/ap2)* (1.0D0+
+ x/ap3))))/a)
xn = x
IF (xn.GT.1.D-2*ap1) GO TO 140
IF (xn.LE.emin(iop)*ap1) RETURN
GO TO 170
C
140 apn = ap1
t = xn/apn
sum = 1.0D0 + t
150 apn = apn + 1.0D0
t = t* (xn/apn)
sum = sum + t
IF (t.GT.1.D-4) GO TO 150
t = w - dlog(sum)
xn = exp((xn+t)/a)
xn = xn* (1.0D0- (a*dlog(xn)-xn-t)/ (a-xn))
GO TO 170
C
C SCHRODER ITERATION USING P
C
160 IF (p.GT.0.5D0) GO TO 220
170 IF (p.LE.1.D10*xmin) GO TO 350
am1 = (a-0.5D0) - 0.5D0
180 IF (a.LE.amax) GO TO 190
d = 0.5D0 + (0.5D0-xn/a)
IF (abs(d).LE.e2) GO TO 350
C
190 IF (ierr.GE.20) GO TO 330
ierr = ierr + 1
CALL gratio(a,xn,pn,qn,0)
IF (pn.EQ.0.0D0 .OR. qn.EQ.0.0D0) GO TO 350
r = rcomp(a,xn)
IF (r.EQ.0.0D0) GO TO 350
t = (pn-p)/r
w = 0.5D0* (am1-xn)
IF (abs(t).LE.0.1D0 .AND. abs(w*t).LE.0.1D0) GO TO 200
x = xn* (1.0D0-t)
IF (x.LE.0.0D0) GO TO 340
d = abs(t)
GO TO 210
C
200 h = t* (1.0D0+w*t)
x = xn* (1.0D0-h)
IF (x.LE.0.0D0) GO TO 340
IF (abs(w).GE.1.0D0 .AND. abs(w)*t*t.LE.eps) RETURN
d = abs(h)
210 xn = x
IF (d.GT.tol) GO TO 180
IF (d.LE.eps) RETURN
IF (abs(p-pn).LE.tol*p) RETURN
GO TO 180
C
C SCHRODER ITERATION USING Q
C
220 IF (q.LE.1.D10*xmin) GO TO 350
am1 = (a-0.5D0) - 0.5D0
230 IF (a.LE.amax) GO TO 240
d = 0.5D0 + (0.5D0-xn/a)
IF (abs(d).LE.e2) GO TO 350
C
240 IF (ierr.GE.20) GO TO 330
ierr = ierr + 1
CALL gratio(a,xn,pn,qn,0)
IF (pn.EQ.0.0D0 .OR. qn.EQ.0.0D0) GO TO 350
r = rcomp(a,xn)
IF (r.EQ.0.0D0) GO TO 350
t = (q-qn)/r
w = 0.5D0* (am1-xn)
IF (abs(t).LE.0.1D0 .AND. abs(w*t).LE.0.1D0) GO TO 250
x = xn* (1.0D0-t)
IF (x.LE.0.0D0) GO TO 340
d = abs(t)
GO TO 260
C
250 h = t* (1.0D0+w*t)
x = xn* (1.0D0-h)
IF (x.LE.0.0D0) GO TO 340
IF (abs(w).GE.1.0D0 .AND. abs(w)*t*t.LE.eps) RETURN
d = abs(h)
260 xn = x
IF (d.GT.tol) GO TO 230
IF (d.LE.eps) RETURN
IF (abs(q-qn).LE.tol*q) RETURN
GO TO 230
C
C SPECIAL CASES
C
270 x = xmax
RETURN
C
280 IF (q.LT.0.9D0) GO TO 290
x = -alnrel(-p)
RETURN
290 x = -dlog(q)
RETURN
C
C ERROR RETURN
C
300 ierr = -2
RETURN
C
310 ierr = -3
RETURN
C
320 ierr = -4
RETURN
C
330 ierr = -6
RETURN
C
340 ierr = -7
RETURN
C
350 x = xn
ierr = -8
RETURN
C
360 x = xmax
ierr = -8
RETURN
END
|