File: cbrt.c

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (117 lines) | stat: -rw-r--r-- 2,323 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/*                                                     cbrt.c
 *
 *     Cube root
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, cbrt();
 *
 * y = cbrt( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the cube root of the argument, which may be negative.
 *
 * Range reduction involves determining the power of 2 of
 * the argument.  A polynomial of degree 2 applied to the
 * mantissa, and multiplication by the cube root of 1, 2, or 4
 * approximates the root to within about 0.1%.  Then Newton's
 * iteration is used three times to converge to an accurate
 * result.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE       0,1e308     30000      1.5e-16     5.0e-17
 *
 */
/*							cbrt.c  */

/*
 * Cephes Math Library Release 2.2:  January, 1991
 * Copyright 1984, 1991 by Stephen L. Moshier
 * Direct inquiries to 30 Frost Street, Cambridge, MA 02140
 */


#include "mconf.h"

static double CBRT2 = 1.2599210498948731647672;
static double CBRT4 = 1.5874010519681994747517;
static double CBRT2I = 0.79370052598409973737585;
static double CBRT4I = 0.62996052494743658238361;

double cbrt(double x)
{
    int e, rem, sign;
    double z;

    if (!cephes_isfinite(x))
	return x;
    if (x == 0)
	return (x);
    if (x > 0)
	sign = 1;
    else {
	sign = -1;
	x = -x;
    }

    z = x;
    /* extract power of 2, leaving
     * mantissa between 0.5 and 1
     */
    x = frexp(x, &e);

    /* Approximate cube root of number between .5 and 1,
     * peak relative error = 9.2e-6
     */
    x = (((-1.3466110473359520655053e-1 * x
	   + 5.4664601366395524503440e-1) * x
	  - 9.5438224771509446525043e-1) * x
	 + 1.1399983354717293273738e0) * x + 4.0238979564544752126924e-1;

    /* exponent divided by 3 */
    if (e >= 0) {
	rem = e;
	e /= 3;
	rem -= 3 * e;
	if (rem == 1)
	    x *= CBRT2;
	else if (rem == 2)
	    x *= CBRT4;
    }


    /* argument less than 1 */

    else {
	e = -e;
	rem = e;
	e /= 3;
	rem -= 3 * e;
	if (rem == 1)
	    x *= CBRT2I;
	else if (rem == 2)
	    x *= CBRT4I;
	e = -e;
    }

    /* multiply by power of 2 */
    x = ldexp(x, e);

    /* Newton iteration */
    x -= (x - (z / (x * x))) * 0.33333333333333333333;
    x -= (x - (z / (x * x))) * 0.33333333333333333333;

    if (sign < 0)
	x = -x;
    return (x);
}