1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
|
/* cbrt.c
*
* Cube root
*
*
*
* SYNOPSIS:
*
* double x, y, cbrt();
*
* y = cbrt( x );
*
*
*
* DESCRIPTION:
*
* Returns the cube root of the argument, which may be negative.
*
* Range reduction involves determining the power of 2 of
* the argument. A polynomial of degree 2 applied to the
* mantissa, and multiplication by the cube root of 1, 2, or 4
* approximates the root to within about 0.1%. Then Newton's
* iteration is used three times to converge to an accurate
* result.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,1e308 30000 1.5e-16 5.0e-17
*
*/
/* cbrt.c */
/*
* Cephes Math Library Release 2.2: January, 1991
* Copyright 1984, 1991 by Stephen L. Moshier
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include "mconf.h"
static double CBRT2 = 1.2599210498948731647672;
static double CBRT4 = 1.5874010519681994747517;
static double CBRT2I = 0.79370052598409973737585;
static double CBRT4I = 0.62996052494743658238361;
double cbrt(double x)
{
int e, rem, sign;
double z;
if (!cephes_isfinite(x))
return x;
if (x == 0)
return (x);
if (x > 0)
sign = 1;
else {
sign = -1;
x = -x;
}
z = x;
/* extract power of 2, leaving
* mantissa between 0.5 and 1
*/
x = frexp(x, &e);
/* Approximate cube root of number between .5 and 1,
* peak relative error = 9.2e-6
*/
x = (((-1.3466110473359520655053e-1 * x
+ 5.4664601366395524503440e-1) * x
- 9.5438224771509446525043e-1) * x
+ 1.1399983354717293273738e0) * x + 4.0238979564544752126924e-1;
/* exponent divided by 3 */
if (e >= 0) {
rem = e;
e /= 3;
rem -= 3 * e;
if (rem == 1)
x *= CBRT2;
else if (rem == 2)
x *= CBRT4;
}
/* argument less than 1 */
else {
e = -e;
rem = e;
e /= 3;
rem -= 3 * e;
if (rem == 1)
x *= CBRT2I;
else if (rem == 2)
x *= CBRT4I;
e = -e;
}
/* multiply by power of 2 */
x = ldexp(x, e);
/* Newton iteration */
x -= (x - (z / (x * x))) * 0.33333333333333333333;
x -= (x - (z / (x * x))) * 0.33333333333333333333;
if (sign < 0)
x = -x;
return (x);
}
|