File: dawsn.c

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (161 lines) | stat: -rw-r--r-- 3,596 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/*                                                     dawsn.c
 *
 *     Dawson's Integral
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, dawsn();
 *
 * y = dawsn( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Approximates the integral
 *
 *                             x
 *                             -
 *                      2     | |        2
 *  dawsn(x)  =  exp( -x  )   |    exp( t  ) dt
 *                          | |
 *                           -
 *                           0
 *
 * Three different rational approximations are employed, for
 * the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0,10        10000       6.9e-16     1.0e-16
 *
 *
 */

/*                                                     dawsn.c */


/*
 * Cephes Math Library Release 2.1:  January, 1989
 * Copyright 1984, 1987, 1989 by Stephen L. Moshier
 * Direct inquiries to 30 Frost Street, Cambridge, MA 02140
 */

#include "mconf.h"
/* Dawson's integral, interval 0 to 3.25 */
static double AN[10] = {
    1.13681498971755972054E-11,
    8.49262267667473811108E-10,
    1.94434204175553054283E-8,
    9.53151741254484363489E-7,
    3.07828309874913200438E-6,
    3.52513368520288738649E-4,
    -8.50149846724410912031E-4,
    4.22618223005546594270E-2,
    -9.17480371773452345351E-2,
    9.99999999999999994612E-1,
};

static double AD[11] = {
    2.40372073066762605484E-11,
    1.48864681368493396752E-9,
    5.21265281010541664570E-8,
    1.27258478273186970203E-6,
    2.32490249820789513991E-5,
    3.25524741826057911661E-4,
    3.48805814657162590916E-3,
    2.79448531198828973716E-2,
    1.58874241960120565368E-1,
    5.74918629489320327824E-1,
    1.00000000000000000539E0,
};

/* interval 3.25 to 6.25 */
static double BN[11] = {
    5.08955156417900903354E-1,
    -2.44754418142697847934E-1,
    9.41512335303534411857E-2,
    -2.18711255142039025206E-2,
    3.66207612329569181322E-3,
    -4.23209114460388756528E-4,
    3.59641304793896631888E-5,
    -2.14640351719968974225E-6,
    9.10010780076391431042E-8,
    -2.40274520828250956942E-9,
    3.59233385440928410398E-11,
};

static double BD[10] = {
    /*  1.00000000000000000000E0, */
    -6.31839869873368190192E-1,
    2.36706788228248691528E-1,
    -5.31806367003223277662E-2,
    8.48041718586295374409E-3,
    -9.47996768486665330168E-4,
    7.81025592944552338085E-5,
    -4.55875153252442634831E-6,
    1.89100358111421846170E-7,
    -4.91324691331920606875E-9,
    7.18466403235734541950E-11,
};

/* 6.25 to infinity */
static double CN[5] = {
    -5.90592860534773254987E-1,
    6.29235242724368800674E-1,
    -1.72858975380388136411E-1,
    1.64837047825189632310E-2,
    -4.86827613020462700845E-4,
};

static double CD[5] = {
    /* 1.00000000000000000000E0, */
    -2.69820057197544900361E0,
    1.73270799045947845857E0,
    -3.93708582281939493482E-1,
    3.44278924041233391079E-2,
    -9.73655226040941223894E-4,
};

extern double MACHEP;

double dawsn(xx)
double xx;
{
    double x, y;
    int sign;


    sign = 1;
    if (xx < 0.0) {
	sign = -1;
	xx = -xx;
    }

    if (xx < 3.25) {
	x = xx * xx;
	y = xx * polevl(x, AN, 9) / polevl(x, AD, 10);
	return (sign * y);
    }


    x = 1.0 / (xx * xx);

    if (xx < 6.25) {
	y = 1.0 / xx + x * polevl(x, BN, 10) / (p1evl(x, BD, 10) * xx);
	return (sign * 0.5 * y);
    }


    if (xx > 1.0e9)
	return ((sign * 0.5) / xx);

    /* 6.25 to infinity */
    y = 1.0 / xx + x * polevl(x, CN, 4) / (p1evl(x, CD, 5) * xx);
    return (sign * 0.5 * y);
}