1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
/* dawsn.c
*
* Dawson's Integral
*
*
*
* SYNOPSIS:
*
* double x, y, dawsn();
*
* y = dawsn( x );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
* x
* -
* 2 | | 2
* dawsn(x) = exp( -x ) | exp( t ) dt
* | |
* -
* 0
*
* Three different rational approximations are employed, for
* the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,10 10000 6.9e-16 1.0e-16
*
*
*/
/* dawsn.c */
/*
* Cephes Math Library Release 2.1: January, 1989
* Copyright 1984, 1987, 1989 by Stephen L. Moshier
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include "mconf.h"
/* Dawson's integral, interval 0 to 3.25 */
static double AN[10] = {
1.13681498971755972054E-11,
8.49262267667473811108E-10,
1.94434204175553054283E-8,
9.53151741254484363489E-7,
3.07828309874913200438E-6,
3.52513368520288738649E-4,
-8.50149846724410912031E-4,
4.22618223005546594270E-2,
-9.17480371773452345351E-2,
9.99999999999999994612E-1,
};
static double AD[11] = {
2.40372073066762605484E-11,
1.48864681368493396752E-9,
5.21265281010541664570E-8,
1.27258478273186970203E-6,
2.32490249820789513991E-5,
3.25524741826057911661E-4,
3.48805814657162590916E-3,
2.79448531198828973716E-2,
1.58874241960120565368E-1,
5.74918629489320327824E-1,
1.00000000000000000539E0,
};
/* interval 3.25 to 6.25 */
static double BN[11] = {
5.08955156417900903354E-1,
-2.44754418142697847934E-1,
9.41512335303534411857E-2,
-2.18711255142039025206E-2,
3.66207612329569181322E-3,
-4.23209114460388756528E-4,
3.59641304793896631888E-5,
-2.14640351719968974225E-6,
9.10010780076391431042E-8,
-2.40274520828250956942E-9,
3.59233385440928410398E-11,
};
static double BD[10] = {
/* 1.00000000000000000000E0, */
-6.31839869873368190192E-1,
2.36706788228248691528E-1,
-5.31806367003223277662E-2,
8.48041718586295374409E-3,
-9.47996768486665330168E-4,
7.81025592944552338085E-5,
-4.55875153252442634831E-6,
1.89100358111421846170E-7,
-4.91324691331920606875E-9,
7.18466403235734541950E-11,
};
/* 6.25 to infinity */
static double CN[5] = {
-5.90592860534773254987E-1,
6.29235242724368800674E-1,
-1.72858975380388136411E-1,
1.64837047825189632310E-2,
-4.86827613020462700845E-4,
};
static double CD[5] = {
/* 1.00000000000000000000E0, */
-2.69820057197544900361E0,
1.73270799045947845857E0,
-3.93708582281939493482E-1,
3.44278924041233391079E-2,
-9.73655226040941223894E-4,
};
extern double MACHEP;
double dawsn(xx)
double xx;
{
double x, y;
int sign;
sign = 1;
if (xx < 0.0) {
sign = -1;
xx = -xx;
}
if (xx < 3.25) {
x = xx * xx;
y = xx * polevl(x, AN, 9) / polevl(x, AD, 10);
return (sign * y);
}
x = 1.0 / (xx * xx);
if (xx < 6.25) {
y = 1.0 / xx + x * polevl(x, BN, 10) / (p1evl(x, BD, 10) * xx);
return (sign * 0.5 * y);
}
if (xx > 1.0e9)
return ((sign * 0.5) / xx);
/* 6.25 to infinity */
y = 1.0 / xx + x * polevl(x, CN, 4) / (p1evl(x, CD, 5) * xx);
return (sign * 0.5 * y);
}
|