1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/* i1.c
*
* Modified Bessel function of order one
*
*
*
* SYNOPSIS:
*
* double x, y, i1();
*
* y = i1( x );
*
*
*
* DESCRIPTION:
*
* Returns modified Bessel function of order one of the
* argument.
*
* The function is defined as i1(x) = -i j1( ix ).
*
* The range is partitioned into the two intervals [0,8] and
* (8, infinity). Chebyshev polynomial expansions are employed
* in each interval.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0, 30 30000 1.9e-15 2.1e-16
*
*
*/
/* i1e.c
*
* Modified Bessel function of order one,
* exponentially scaled
*
*
*
* SYNOPSIS:
*
* double x, y, i1e();
*
* y = i1e( x );
*
*
*
* DESCRIPTION:
*
* Returns exponentially scaled modified Bessel function
* of order one of the argument.
*
* The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0, 30 30000 2.0e-15 2.0e-16
* See i1().
*
*/
/* i1.c 2 */
/*
* Cephes Math Library Release 2.8: June, 2000
* Copyright 1985, 1987, 2000 by Stephen L. Moshier
*/
#include "mconf.h"
/* Chebyshev coefficients for exp(-x) I1(x) / x
* in the interval [0,8].
*
* lim(x->0){ exp(-x) I1(x) / x } = 1/2.
*/
static double A[] = {
2.77791411276104639959E-18,
-2.11142121435816608115E-17,
1.55363195773620046921E-16,
-1.10559694773538630805E-15,
7.60068429473540693410E-15,
-5.04218550472791168711E-14,
3.22379336594557470981E-13,
-1.98397439776494371520E-12,
1.17361862988909016308E-11,
-6.66348972350202774223E-11,
3.62559028155211703701E-10,
-1.88724975172282928790E-9,
9.38153738649577178388E-9,
-4.44505912879632808065E-8,
2.00329475355213526229E-7,
-8.56872026469545474066E-7,
3.47025130813767847674E-6,
-1.32731636560394358279E-5,
4.78156510755005422638E-5,
-1.61760815825896745588E-4,
5.12285956168575772895E-4,
-1.51357245063125314899E-3,
4.15642294431288815669E-3,
-1.05640848946261981558E-2,
2.47264490306265168283E-2,
-5.29459812080949914269E-2,
1.02643658689847095384E-1,
-1.76416518357834055153E-1,
2.52587186443633654823E-1
};
/* Chebyshev coefficients for exp(-x) sqrt(x) I1(x)
* in the inverted interval [8,infinity].
*
* lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi).
*/
static double B[] = {
7.51729631084210481353E-18,
4.41434832307170791151E-18,
-4.65030536848935832153E-17,
-3.20952592199342395980E-17,
2.96262899764595013876E-16,
3.30820231092092828324E-16,
-1.88035477551078244854E-15,
-3.81440307243700780478E-15,
1.04202769841288027642E-14,
4.27244001671195135429E-14,
-2.10154184277266431302E-14,
-4.08355111109219731823E-13,
-7.19855177624590851209E-13,
2.03562854414708950722E-12,
1.41258074366137813316E-11,
3.25260358301548823856E-11,
-1.89749581235054123450E-11,
-5.58974346219658380687E-10,
-3.83538038596423702205E-9,
-2.63146884688951950684E-8,
-2.51223623787020892529E-7,
-3.88256480887769039346E-6,
-1.10588938762623716291E-4,
-9.76109749136146840777E-3,
7.78576235018280120474E-1
};
double i1(x)
double x;
{
double y, z;
z = fabs(x);
if (z <= 8.0) {
y = (z / 2.0) - 2.0;
z = chbevl(y, A, 29) * z * exp(z);
}
else {
z = exp(z) * chbevl(32.0 / z - 2.0, B, 25) / sqrt(z);
}
if (x < 0.0)
z = -z;
return (z);
}
/* i1e() */
double i1e(x)
double x;
{
double y, z;
z = fabs(x);
if (z <= 8.0) {
y = (z / 2.0) - 2.0;
z = chbevl(y, A, 29) * z;
}
else {
z = chbevl(32.0 / z - 2.0, B, 25) / sqrt(z);
}
if (x < 0.0)
z = -z;
return (z);
}
|