1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/* j1.c
*
* Bessel function of order one
*
*
*
* SYNOPSIS:
*
* double x, y, j1();
*
* y = j1( x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of order one of the argument.
*
* The domain is divided into the intervals [0, 8] and
* (8, infinity). In the first interval a 24 term Chebyshev
* expansion is used. In the second, the asymptotic
* trigonometric representation is employed using two
* rational functions of degree 5/5.
*
*
*
* ACCURACY:
*
* Absolute error:
* arithmetic domain # trials peak rms
* IEEE 0, 30 30000 2.6e-16 1.1e-16
*
*
*/
/* y1.c
*
* Bessel function of second kind of order one
*
*
*
* SYNOPSIS:
*
* double x, y, y1();
*
* y = y1( x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of the second kind of order one
* of the argument.
*
* The domain is divided into the intervals [0, 8] and
* (8, infinity). In the first interval a 25 term Chebyshev
* expansion is used, and a call to j1() is required.
* In the second, the asymptotic trigonometric representation
* is employed using two rational functions of degree 5/5.
*
*
*
* ACCURACY:
*
* Absolute error:
* arithmetic domain # trials peak rms
* IEEE 0, 30 30000 1.0e-15 1.3e-16
*
* (error criterion relative when |y1| > 1).
*
*/
/*
* Cephes Math Library Release 2.8: June, 2000
* Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
*/
/*
* #define PIO4 .78539816339744830962
* #define THPIO4 2.35619449019234492885
* #define SQ2OPI .79788456080286535588
*/
#include "mconf.h"
static double RP[4] = {
-8.99971225705559398224E8,
4.52228297998194034323E11,
-7.27494245221818276015E13,
3.68295732863852883286E15,
};
static double RQ[8] = {
/* 1.00000000000000000000E0, */
6.20836478118054335476E2,
2.56987256757748830383E5,
8.35146791431949253037E7,
2.21511595479792499675E10,
4.74914122079991414898E12,
7.84369607876235854894E14,
8.95222336184627338078E16,
5.32278620332680085395E18,
};
static double PP[7] = {
7.62125616208173112003E-4,
7.31397056940917570436E-2,
1.12719608129684925192E0,
5.11207951146807644818E0,
8.42404590141772420927E0,
5.21451598682361504063E0,
1.00000000000000000254E0,
};
static double PQ[7] = {
5.71323128072548699714E-4,
6.88455908754495404082E-2,
1.10514232634061696926E0,
5.07386386128601488557E0,
8.39985554327604159757E0,
5.20982848682361821619E0,
9.99999999999999997461E-1,
};
static double QP[8] = {
5.10862594750176621635E-2,
4.98213872951233449420E0,
7.58238284132545283818E1,
3.66779609360150777800E2,
7.10856304998926107277E2,
5.97489612400613639965E2,
2.11688757100572135698E2,
2.52070205858023719784E1,
};
static double QQ[7] = {
/* 1.00000000000000000000E0, */
7.42373277035675149943E1,
1.05644886038262816351E3,
4.98641058337653607651E3,
9.56231892404756170795E3,
7.99704160447350683650E3,
2.82619278517639096600E3,
3.36093607810698293419E2,
};
static double YP[6] = {
1.26320474790178026440E9,
-6.47355876379160291031E11,
1.14509511541823727583E14,
-8.12770255501325109621E15,
2.02439475713594898196E17,
-7.78877196265950026825E17,
};
static double YQ[8] = {
/* 1.00000000000000000000E0, */
5.94301592346128195359E2,
2.35564092943068577943E5,
7.34811944459721705660E7,
1.87601316108706159478E10,
3.88231277496238566008E12,
6.20557727146953693363E14,
6.87141087355300489866E16,
3.97270608116560655612E18,
};
static double Z1 = 1.46819706421238932572E1;
static double Z2 = 4.92184563216946036703E1;
extern double THPIO4, SQ2OPI;
double j1(x)
double x;
{
double w, z, p, q, xn;
w = x;
if (x < 0)
return -j1(-x);
if (w <= 5.0) {
z = x * x;
w = polevl(z, RP, 3) / p1evl(z, RQ, 8);
w = w * x * (z - Z1) * (z - Z2);
return (w);
}
w = 5.0 / x;
z = w * w;
p = polevl(z, PP, 6) / polevl(z, PQ, 6);
q = polevl(z, QP, 7) / p1evl(z, QQ, 7);
xn = x - THPIO4;
p = p * cos(xn) - w * q * sin(xn);
return (p * SQ2OPI / sqrt(x));
}
double y1(x)
double x;
{
double w, z, p, q, xn;
if (x <= 5.0) {
if (x == 0.0) {
mtherr("y1", SING);
return -NPY_INFINITY;
}
else if (x <= 0.0) {
mtherr("y1", DOMAIN);
return NPY_NAN;
}
z = x * x;
w = x * (polevl(z, YP, 5) / p1evl(z, YQ, 8));
w += NPY_2_PI * (j1(x) * log(x) - 1.0 / x);
return (w);
}
w = 5.0 / x;
z = w * w;
p = polevl(z, PP, 6) / polevl(z, PQ, 6);
q = polevl(z, QP, 7) / p1evl(z, QQ, 7);
xn = x - THPIO4;
p = p * sin(xn) + w * q * cos(xn);
return (p * SQ2OPI / sqrt(x));
}
|