1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/* File altered for inclusion in cephes module for Python:
* Main loop commented out.... */
/* Travis Oliphant Nov. 1998 */
/* Re Kolmogorov statistics, here is Birnbaum and Tingey's formula for the
* distribution of D+, the maximum of all positive deviations between a
* theoretical distribution function P(x) and an empirical one Sn(x)
* from n samples.
*
* +
* D = sup [P(x) - S (x)]
* n -inf < x < inf n
*
*
* [n(1-e)]
* + - v-1 n-v
* Pr{D > e} = > C e (e + v/n) (1 - e - v/n)
* n - n v
* v=0
*
* [n(1-e)] is the largest integer not exceeding n(1-e).
* nCv is the number of combinations of n things taken v at a time. */
#include "mconf.h"
extern double MAXLOG;
/* Exact Smirnov statistic, for one-sided test. */
double smirnov(int n, double e)
{
int v, nn;
double evn, omevn, p, t, c, lgamnp1;
/* This comparison should assure returning NaN whenever
* e is NaN itself. In original || form it would proceed */
if (!(n > 0 && e >= 0.0 && e <= 1.0))
return (NPY_NAN);
if (e == 0.0)
return 1.0;
nn = (int) (floor((double) n * (1.0 - e)));
p = 0.0;
if (n < 1013) {
c = 1.0;
for (v = 0; v <= nn; v++) {
evn = e + ((double) v) / n;
p += c * pow(evn, (double) (v - 1))
* pow(1.0 - evn, (double) (n - v));
/* Next combinatorial term; worst case error = 4e-15. */
c *= ((double) (n - v)) / (v + 1);
}
}
else {
lgamnp1 = lgam((double) (n + 1));
for (v = 0; v <= nn; v++) {
evn = e + ((double) v) / n;
omevn = 1.0 - evn;
if (fabs(omevn) > 0.0) {
t = lgamnp1 - lgam((double) (v + 1))
- lgam((double) (n - v + 1))
+ (v - 1) * log(evn)
+ (n - v) * log(omevn);
if (t > -MAXLOG)
p += exp(t);
}
}
}
return (p * e);
}
/* Kolmogorov's limiting distribution of two-sided test, returns
* probability that sqrt(n) * max deviation > y,
* or that max deviation > y/sqrt(n).
* The approximation is useful for the tail of the distribution
* when n is large. */
double kolmogorov(double y)
{
double p, t, r, sign, x;
if (y < 1.1e-16)
return 1.0;
x = -2.0 * y * y;
sign = 1.0;
p = 0.0;
r = 1.0;
do {
t = exp(x * r * r);
p += sign * t;
if (t == 0.0)
break;
r += 1.0;
sign = -sign;
}
while ((t / p) > 1.1e-16);
return (p + p);
}
/* Functional inverse of Smirnov distribution
* finds e such that smirnov(n,e) = p. */
double smirnovi(int n, double p)
{
double e, t, dpde;
int iterations;
if (!(p > 0.0 && p <= 1.0)) {
mtherr("smirnovi", DOMAIN);
return (NPY_NAN);
}
/* Start with approximation p = exp(-2 n e^2). */
e = sqrt(-log(p) / (2.0 * n));
iterations = 0;
do {
/* Use approximate derivative in Newton iteration. */
t = -2.0 * n * e;
dpde = 2.0 * t * exp(t * e);
if (fabs(dpde) > 0.0)
t = (p - smirnov(n, e)) / dpde;
else {
mtherr("smirnovi", UNDERFLOW);
return 0.0;
}
e = e + t;
if (e >= 1.0 || e <= 0.0) {
mtherr("smirnovi", OVERFLOW);
return 0.0;
}
if (++iterations > MAXITER) {
mtherr("smirnovi", TOOMANY);
return (e);
}
}
while (fabs(t / e) > 1e-10);
return (e);
}
/* Functional inverse of Kolmogorov statistic for two-sided test.
* Finds y such that kolmogorov(y) = p.
* If e = smirnovi (n,p), then kolmogi(2 * p) / sqrt(n) should
* be close to e. */
double kolmogi(double p)
{
double y, t, dpdy;
int iterations;
if (!(p > 0.0 && p <= 1.0)) {
mtherr("kolmogi", DOMAIN);
return (NPY_NAN);
}
if ((1.0 - p) < 1e-16)
return 0.0;
/* Start with approximation p = 2 exp(-2 y^2). */
y = sqrt(-0.5 * log(0.5 * p));
iterations = 0;
do {
/* Use approximate derivative in Newton iteration. */
t = -2.0 * y;
dpdy = 4.0 * t * exp(t * y);
if (fabs(dpdy) > 0.0)
t = (p - kolmogorov(y)) / dpdy;
else {
mtherr("kolmogi", UNDERFLOW);
return 0.0;
}
y = y + t;
if (++iterations > MAXITER) {
mtherr("kolmogi", TOOMANY);
return (y);
}
}
while (fabs(t / y) > 1.0e-10);
return (y);
}
/* Type in a number. */
/* void
* getnum (s, px)
* char *s;
* double *px;
* {
* char str[30];
*
* printf (" %s (%.15e) ? ", s, *px);
* gets (str);
* if (str[0] == '\0' || str[0] == '\n')
* return;
* sscanf (str, "%lf", px);
* printf ("%.15e\n", *px);
* }
*/
/* Type in values, get answers. */
/*
* void
* main ()
* {
* int n;
* double e, p, ps, pk, ek, y;
*
* n = 5;
* e = 0.0;
* p = 0.1;
* loop:
* ps = n;
* getnum ("n", &ps);
* n = ps;
* if (n <= 0)
* {
* printf ("? Operator error.\n");
* goto loop;
* }
*/
/*
* getnum ("e", &e);
* ps = smirnov (n, e);
* y = sqrt ((double) n) * e;
* printf ("y = %.4e\n", y);
* pk = kolmogorov (y);
* printf ("Smirnov = %.15e, Kolmogorov/2 = %.15e\n", ps, pk / 2.0);
*/
/*
* getnum ("p", &p);
* e = smirnovi (n, p);
* printf ("Smirnov e = %.15e\n", e);
* y = kolmogi (2.0 * p);
* ek = y / sqrt ((double) n);
* printf ("Kolmogorov e = %.15e\n", ek);
* goto loop;
* }
*/
|