1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/* nbdtr.c
*
* Negative binomial distribution
*
*
*
* SYNOPSIS:
*
* int k, n;
* double p, y, nbdtr();
*
* y = nbdtr( k, n, p );
*
* DESCRIPTION:
*
* Returns the sum of the terms 0 through k of the negative
* binomial distribution:
*
* k
* -- ( n+j-1 ) n j
* > ( ) p (1-p)
* -- ( j )
* j=0
*
* In a sequence of Bernoulli trials, this is the probability
* that k or fewer failures precede the nth success.
*
* The terms are not computed individually; instead the incomplete
* beta integral is employed, according to the formula
*
* y = nbdtr( k, n, p ) = incbet( n, k+1, p ).
*
* The arguments must be positive, with p ranging from 0 to 1.
*
* ACCURACY:
*
* Tested at random points (a,b,p), with p between 0 and 1.
*
* a,b Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,100 100000 1.7e-13 8.8e-15
* See also incbet.c.
*
*/
/* nbdtrc.c
*
* Complemented negative binomial distribution
*
*
*
* SYNOPSIS:
*
* int k, n;
* double p, y, nbdtrc();
*
* y = nbdtrc( k, n, p );
*
* DESCRIPTION:
*
* Returns the sum of the terms k+1 to infinity of the negative
* binomial distribution:
*
* inf
* -- ( n+j-1 ) n j
* > ( ) p (1-p)
* -- ( j )
* j=k+1
*
* The terms are not computed individually; instead the incomplete
* beta integral is employed, according to the formula
*
* y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).
*
* The arguments must be positive, with p ranging from 0 to 1.
*
* ACCURACY:
*
* Tested at random points (a,b,p), with p between 0 and 1.
*
* a,b Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,100 100000 1.7e-13 8.8e-15
* See also incbet.c.
*/
/* nbdtrc
*
* Complemented negative binomial distribution
*
*
*
* SYNOPSIS:
*
* int k, n;
* double p, y, nbdtrc();
*
* y = nbdtrc( k, n, p );
*
* DESCRIPTION:
*
* Returns the sum of the terms k+1 to infinity of the negative
* binomial distribution:
*
* inf
* -- ( n+j-1 ) n j
* > ( ) p (1-p)
* -- ( j )
* j=k+1
*
* The terms are not computed individually; instead the incomplete
* beta integral is employed, according to the formula
*
* y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).
*
* The arguments must be positive, with p ranging from 0 to 1.
*
* ACCURACY:
*
* See incbet.c.
*/
/* nbdtri
*
* Functional inverse of negative binomial distribution
*
*
*
* SYNOPSIS:
*
* int k, n;
* double p, y, nbdtri();
*
* p = nbdtri( k, n, y );
*
* DESCRIPTION:
*
* Finds the argument p such that nbdtr(k,n,p) is equal to y.
*
* ACCURACY:
*
* Tested at random points (a,b,y), with y between 0 and 1.
*
* a,b Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,100 100000 1.5e-14 8.5e-16
* See also incbi.c.
*/
/*
* Cephes Math Library Release 2.3: March, 1995
* Copyright 1984, 1987, 1995 by Stephen L. Moshier
*/
#include "mconf.h"
double nbdtrc(k, n, p)
int k, n;
double p;
{
double dk, dn;
if ((p < 0.0) || (p > 1.0))
goto domerr;
if (k < 0) {
domerr:
mtherr("nbdtr", DOMAIN);
return (NPY_NAN);
}
dk = k + 1;
dn = n;
return (incbet(dk, dn, 1.0 - p));
}
double nbdtr(k, n, p)
int k, n;
double p;
{
double dk, dn;
if ((p < 0.0) || (p > 1.0))
goto domerr;
if (k < 0) {
domerr:
mtherr("nbdtr", DOMAIN);
return (NPY_NAN);
}
dk = k + 1;
dn = n;
return (incbet(dn, dk, p));
}
double nbdtri(k, n, p)
int k, n;
double p;
{
double dk, dn, w;
if ((p < 0.0) || (p > 1.0))
goto domerr;
if (k < 0) {
domerr:
mtherr("nbdtri", DOMAIN);
return (NPY_NAN);
}
dk = k + 1;
dn = n;
w = incbi(dn, dk, p);
return (w);
}
|