1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
|
/* polevl.c
* p1evl.c
*
* Evaluate polynomial
*
*
*
* SYNOPSIS:
*
* int N;
* double x, y, coef[N+1], polevl[];
*
* y = polevl( x, coef, N );
*
*
*
* DESCRIPTION:
*
* Evaluates polynomial of degree N:
*
* 2 N
* y = C + C x + C x +...+ C x
* 0 1 2 N
*
* Coefficients are stored in reverse order:
*
* coef[0] = C , ..., coef[N] = C .
* N 0
*
* The function p1evl() assumes that coef[N] = 1.0 and is
* omitted from the array. Its calling arguments are
* otherwise the same as polevl().
*
*
* SPEED:
*
* In the interest of speed, there are no checks for out
* of bounds arithmetic. This routine is used by most of
* the functions in the library. Depending on available
* equipment features, the user may wish to rewrite the
* program in microcode or assembly language.
*
*/
/*
* Cephes Math Library Release 2.1: December, 1988
* Copyright 1984, 1987, 1988 by Stephen L. Moshier
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#ifndef CEPHES_POLEV
#define CEPHES_POLEV
#include "protos.h"
#include <numpy/npy_common.h>
static NPY_INLINE double polevl(double x, double coef[], int N)
{
double ans;
int i;
double *p;
p = coef;
ans = *p++;
i = N;
do
ans = ans * x + *p++;
while (--i);
return (ans);
}
/* p1evl() */
/* N
* Evaluate polynomial when coefficient of x is 1.0.
* Otherwise same as polevl.
*/
static NPY_INLINE double p1evl(double x, double coef[], int N)
{
double ans;
double *p;
int i;
p = coef;
ans = x + *p++;
i = N - 1;
do
ans = ans * x + *p++;
while (--i);
return (ans);
}
#endif
|