1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
|
/* iv.c
*
* Modified Bessel function of noninteger order
*
*
*
* SYNOPSIS:
*
* double v, x, y, iv();
*
* y = iv( v, x );
*
*
*
* DESCRIPTION:
*
* Returns modified Bessel function of order v of the
* argument. If x is negative, v must be integer valued.
*
*/
/* iv.c */
/* Modified Bessel function of noninteger order */
/* If x < 0, then v must be an integer. */
/*
* Parts of the code are copyright:
*
* Cephes Math Library Release 2.8: June, 2000
* Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
*
* And other parts:
*
* Copyright (c) 2006 Xiaogang Zhang
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0.
*
* Boost Software License - Version 1.0 - August 17th, 2003
*
* Permission is hereby granted, free of charge, to any person or
* organization obtaining a copy of the software and accompanying
* documentation covered by this license (the "Software") to use, reproduce,
* display, distribute, execute, and transmit the Software, and to prepare
* derivative works of the Software, and to permit third-parties to whom the
* Software is furnished to do so, all subject to the following:
*
* The copyright notices in the Software and this entire statement,
* including the above license grant, this restriction and the following
* disclaimer, must be included in all copies of the Software, in whole or
* in part, and all derivative works of the Software, unless such copies or
* derivative works are solely in the form of machine-executable object code
* generated by a source language processor.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
* NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE
* DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY,
* WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* And the rest are:
*
* Copyright (C) 2009 Pauli Virtanen
* Distributed under the same license as Scipy.
*
*/
#include "mconf.h"
#include <float.h>
#include <stdlib.h>
extern double MACHEP;
static double iv_asymptotic(double v, double x);
void ikv_asymptotic_uniform(double v, double x, double *Iv, double *Kv);
void ikv_temme(double v, double x, double *Iv, double *Kv);
double iv(double v, double x)
{
int sign;
double t, ax, res;
/* If v is a negative integer, invoke symmetry */
t = floor(v);
if (v < 0.0) {
if (t == v) {
v = -v; /* symmetry */
t = -t;
}
}
/* If x is negative, require v to be an integer */
sign = 1;
if (x < 0.0) {
if (t != v) {
mtherr("iv", DOMAIN);
return (NPY_NAN);
}
if (v != 2.0 * floor(v / 2.0)) {
sign = -1;
}
}
/* Avoid logarithm singularity */
if (x == 0.0) {
if (v == 0.0) {
return 1.0;
}
if (v < 0.0) {
mtherr("iv", OVERFLOW);
return NPY_INFINITY;
}
else
return 0.0;
}
ax = fabs(x);
if (fabs(v) > 50) {
/*
* Uniform asymptotic expansion for large orders.
*
* This appears to overflow slightly later than the Boost
* implementation of Temme's method.
*/
ikv_asymptotic_uniform(v, ax, &res, NULL);
}
else {
/* Otherwise: Temme's method */
ikv_temme(v, ax, &res, NULL);
}
res *= sign;
return res;
}
/*
* Compute Iv from (AMS5 9.7.1), asymptotic expansion for large |z|
* Iv ~ exp(x)/sqrt(2 pi x) ( 1 + (4*v*v-1)/8x + (4*v*v-1)(4*v*v-9)/8x/2! + ...)
*/
static double iv_asymptotic(double v, double x)
{
double mu;
double sum, term, prefactor, factor;
int k;
prefactor = exp(x) / sqrt(2 * NPY_PI * x);
if (prefactor == NPY_INFINITY) {
return prefactor;
}
mu = 4 * v * v;
sum = 1.0;
term = 1.0;
k = 1;
do {
factor = (mu - (2 * k - 1) * (2 * k - 1)) / (8 * x) / k;
if (k > 100) {
/* didn't converge */
mtherr("iv(iv_asymptotic)", TLOSS);
break;
}
term *= -factor;
sum += term;
++k;
} while (fabs(term) > MACHEP * fabs(sum));
return sum * prefactor;
}
/*
* Uniform asymptotic expansion factors, (AMS5 9.3.9; AMS5 9.3.10)
*
* Computed with:
* --------------------
import numpy as np
t = np.poly1d([1,0])
def up1(p):
return .5*t*t*(1-t*t)*p.deriv() + 1/8. * ((1-5*t*t)*p).integ()
us = [np.poly1d([1])]
for k in range(10):
us.append(up1(us[-1]))
n = us[-1].order
for p in us:
print "{" + ", ".join(["0"]*(n-p.order) + map(repr, p)) + "},"
print "N_UFACTORS", len(us)
print "N_UFACTOR_TERMS", us[-1].order + 1
* --------------------
*/
#define N_UFACTORS 11
#define N_UFACTOR_TERMS 31
static const double asymptotic_ufactors[N_UFACTORS][N_UFACTOR_TERMS] = {
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, -0.20833333333333334, 0.0, 0.125, 0.0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0.3342013888888889, 0.0, -0.40104166666666669, 0.0, 0.0703125, 0.0,
0.0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-1.0258125964506173, 0.0, 1.8464626736111112, 0.0,
-0.89121093750000002, 0.0, 0.0732421875, 0.0, 0.0, 0.0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
4.6695844234262474, 0.0, -11.207002616222995, 0.0, 8.78912353515625,
0.0, -2.3640869140624998, 0.0, 0.112152099609375, 0.0, 0.0, 0.0, 0.0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -28.212072558200244, 0.0,
84.636217674600744, 0.0, -91.818241543240035, 0.0, 42.534998745388457,
0.0, -7.3687943594796312, 0.0, 0.22710800170898438, 0.0, 0.0, 0.0,
0.0, 0.0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 212.5701300392171, 0.0,
-765.25246814118157, 0.0, 1059.9904525279999, 0.0,
-699.57962737613275, 0.0, 218.19051174421159, 0.0,
-26.491430486951554, 0.0, 0.57250142097473145, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, -1919.4576623184068, 0.0,
8061.7221817373083, 0.0, -13586.550006434136, 0.0, 11655.393336864536,
0.0, -5305.6469786134048, 0.0, 1200.9029132163525, 0.0,
-108.09091978839464, 0.0, 1.7277275025844574, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0},
{0, 0, 0, 0, 0, 0, 20204.291330966149, 0.0, -96980.598388637503, 0.0,
192547.0012325315, 0.0, -203400.17728041555, 0.0, 122200.46498301747,
0.0, -41192.654968897557, 0.0, 7109.5143024893641, 0.0,
-493.915304773088, 0.0, 6.074042001273483, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0},
{0, 0, 0, -242919.18790055133, 0.0, 1311763.6146629769, 0.0,
-2998015.9185381061, 0.0, 3763271.2976564039, 0.0,
-2813563.2265865342, 0.0, 1268365.2733216248, 0.0,
-331645.17248456361, 0.0, 45218.768981362737, 0.0,
-2499.8304818112092, 0.0, 24.380529699556064, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0},
{3284469.8530720375, 0.0, -19706819.11843222, 0.0, 50952602.492664628,
0.0, -74105148.211532637, 0.0, 66344512.274729028, 0.0,
-37567176.660763353, 0.0, 13288767.166421819, 0.0,
-2785618.1280864552, 0.0, 308186.40461266245, 0.0,
-13886.089753717039, 0.0, 110.01714026924674, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0}
};
/*
* Compute Iv, Kv from (AMS5 9.7.7 + 9.7.8), asymptotic expansion for large v
*/
void ikv_asymptotic_uniform(double v, double x,
double *i_value, double *k_value)
{
double i_prefactor, k_prefactor;
double t, t2, eta, z;
double i_sum, k_sum, term, divisor;
int k, n;
int sign = 1;
if (v < 0) {
/* Negative v; compute I_{-v} and K_{-v} and use (AMS 9.6.2) */
sign = -1;
v = -v;
}
z = x / v;
t = 1 / sqrt(1 + z * z);
t2 = t * t;
eta = sqrt(1 + z * z) + log(z / (1 + 1 / t));
i_prefactor = sqrt(t / (2 * NPY_PI * v)) * exp(v * eta);
i_sum = 1.0;
k_prefactor = sqrt(NPY_PI * t / (2 * v)) * exp(-v * eta);
k_sum = 1.0;
divisor = v;
for (n = 1; n < N_UFACTORS; ++n) {
/*
* Evaluate u_k(t) with Horner's scheme;
* (using the knowledge about which coefficients are zero)
*/
term = 0;
for (k = N_UFACTOR_TERMS - 1 - 3 * n;
k < N_UFACTOR_TERMS - n; k += 2) {
term *= t2;
term += asymptotic_ufactors[n][k];
}
for (k = 1; k < n; k += 2) {
term *= t2;
}
if (n % 2 == 1) {
term *= t;
}
/* Sum terms */
term /= divisor;
i_sum += term;
k_sum += (n % 2 == 0) ? term : -term;
/* Check convergence */
if (fabs(term) < MACHEP) {
break;
}
divisor *= v;
}
if (fabs(term) > 1e-3 * fabs(i_sum)) {
/* Didn't converge */
mtherr("ikv_asymptotic_uniform", TLOSS);
}
if (fabs(term) > MACHEP * fabs(i_sum)) {
/* Some precision lost */
mtherr("ikv_asymptotic_uniform", PLOSS);
}
if (k_value != NULL) {
/* symmetric in v */
*k_value = k_prefactor * k_sum;
}
if (i_value != NULL) {
if (sign == 1) {
*i_value = i_prefactor * i_sum;
}
else {
/* (AMS 9.6.2) */
*i_value = (i_prefactor * i_sum
+ (2 / NPY_PI) * sin(NPY_PI * v) * k_prefactor * k_sum);
}
}
}
/*
* The following code originates from the Boost C++ library,
* from file `boost/math/special_functions/detail/bessel_ik.hpp`,
* converted from C++ to C.
*/
#ifdef DEBUG
#define BOOST_ASSERT(a) assert(a)
#else
#define BOOST_ASSERT(a)
#endif
/*
* Modified Bessel functions of the first and second kind of fractional order
*
* Calculate K(v, x) and K(v+1, x) by method analogous to
* Temme, Journal of Computational Physics, vol 21, 343 (1976)
*/
static int temme_ik_series(double v, double x, double *K, double *K1)
{
double f, h, p, q, coef, sum, sum1, tolerance;
double a, b, c, d, sigma, gamma1, gamma2;
unsigned long k;
double gp;
double gm;
/*
* |x| <= 2, Temme series converge rapidly
* |x| > 2, the larger the |x|, the slower the convergence
*/
BOOST_ASSERT(fabs(x) <= 2);
BOOST_ASSERT(fabs(v) <= 0.5f);
gp = gamma(v + 1) - 1;
gm = gamma(-v + 1) - 1;
a = log(x / 2);
b = exp(v * a);
sigma = -a * v;
c = fabs(v) < MACHEP ? 1 : sin(NPY_PI * v) / (v * NPY_PI);
d = fabs(sigma) < MACHEP ? 1 : sinh(sigma) / sigma;
gamma1 = fabs(v) < MACHEP ? -NPY_EULER : (0.5f / v) * (gp - gm) * c;
gamma2 = (2 + gp + gm) * c / 2;
/* initial values */
p = (gp + 1) / (2 * b);
q = (1 + gm) * b / 2;
f = (cosh(sigma) * gamma1 + d * (-a) * gamma2) / c;
h = p;
coef = 1;
sum = coef * f;
sum1 = coef * h;
/* series summation */
tolerance = MACHEP;
for (k = 1; k < MAXITER; k++) {
f = (k * f + p + q) / (k * k - v * v);
p /= k - v;
q /= k + v;
h = p - k * f;
coef *= x * x / (4 * k);
sum += coef * f;
sum1 += coef * h;
if (fabs(coef * f) < fabs(sum) * tolerance) {
break;
}
}
if (k == MAXITER) {
mtherr("ikv_temme(temme_ik_series)", TLOSS);
}
*K = sum;
*K1 = 2 * sum1 / x;
return 0;
}
/* Evaluate continued fraction fv = I_(v+1) / I_v, derived from
* Abramowitz and Stegun, Handbook of Mathematical Functions, 1972, 9.1.73 */
static int CF1_ik(double v, double x, double *fv)
{
double C, D, f, a, b, delta, tiny, tolerance;
unsigned long k;
/*
* |x| <= |v|, CF1_ik converges rapidly
* |x| > |v|, CF1_ik needs O(|x|) iterations to converge
*/
/*
* modified Lentz's method, see
* Lentz, Applied Optics, vol 15, 668 (1976)
*/
tolerance = 2 * MACHEP;
tiny = 1 / sqrt(DBL_MAX);
C = f = tiny; /* b0 = 0, replace with tiny */
D = 0;
for (k = 1; k < MAXITER; k++) {
a = 1;
b = 2 * (v + k) / x;
C = b + a / C;
D = b + a * D;
if (C == 0) {
C = tiny;
}
if (D == 0) {
D = tiny;
}
D = 1 / D;
delta = C * D;
f *= delta;
if (fabs(delta - 1) <= tolerance) {
break;
}
}
if (k == MAXITER) {
mtherr("ikv_temme(CF1_ik)", TLOSS);
}
*fv = f;
return 0;
}
/*
* Calculate K(v, x) and K(v+1, x) by evaluating continued fraction
* z1 / z0 = U(v+1.5, 2v+1, 2x) / U(v+0.5, 2v+1, 2x), see
* Thompson and Barnett, Computer Physics Communications, vol 47, 245 (1987)
*/
static int CF2_ik(double v, double x, double *Kv, double *Kv1)
{
double S, C, Q, D, f, a, b, q, delta, tolerance, current, prev;
unsigned long k;
/*
* |x| >= |v|, CF2_ik converges rapidly
* |x| -> 0, CF2_ik fails to converge
*/
BOOST_ASSERT(fabs(x) > 1);
/*
* Steed's algorithm, see Thompson and Barnett,
* Journal of Computational Physics, vol 64, 490 (1986)
*/
tolerance = MACHEP;
a = v * v - 0.25f;
b = 2 * (x + 1); /* b1 */
D = 1 / b; /* D1 = 1 / b1 */
f = delta = D; /* f1 = delta1 = D1, coincidence */
prev = 0; /* q0 */
current = 1; /* q1 */
Q = C = -a; /* Q1 = C1 because q1 = 1 */
S = 1 + Q * delta; /* S1 */
for (k = 2; k < MAXITER; k++) { /* starting from 2 */
/* continued fraction f = z1 / z0 */
a -= 2 * (k - 1);
b += 2;
D = 1 / (b + a * D);
delta *= b * D - 1;
f += delta;
/* series summation S = 1 + \sum_{n=1}^{\infty} C_n * z_n / z_0 */
q = (prev - (b - 2) * current) / a;
prev = current;
current = q; /* forward recurrence for q */
C *= -a / k;
Q += C * q;
S += Q * delta;
/* S converges slower than f */
if (fabs(Q * delta) < fabs(S) * tolerance) {
break;
}
}
if (k == MAXITER) {
mtherr("ikv_temme(CF2_ik)", TLOSS);
}
*Kv = sqrt(NPY_PI / (2 * x)) * exp(-x) / S;
*Kv1 = *Kv * (0.5f + v + x + (v * v - 0.25f) * f) / x;
return 0;
}
/* Flags for what to compute */
enum {
need_i = 0x1,
need_k = 0x2
};
/*
* Compute I(v, x) and K(v, x) simultaneously by Temme's method, see
* Temme, Journal of Computational Physics, vol 19, 324 (1975)
*/
void ikv_temme(double v, double x, double *Iv_p, double *Kv_p)
{
/* Kv1 = K_(v+1), fv = I_(v+1) / I_v */
/* Ku1 = K_(u+1), fu = I_(u+1) / I_u */
double u, Iv, Kv, Kv1, Ku, Ku1, fv;
double W, current, prev, next;
int reflect = 0;
unsigned n, k;
int kind;
kind = 0;
if (Iv_p != NULL) {
kind |= need_i;
}
if (Kv_p != NULL) {
kind |= need_k;
}
if (v < 0) {
reflect = 1;
v = -v; /* v is non-negative from here */
kind |= need_k;
}
n = round(v);
u = v - n; /* -1/2 <= u < 1/2 */
if (x < 0) {
if (Iv_p != NULL)
*Iv_p = NPY_NAN;
if (Kv_p != NULL)
*Kv_p = NPY_NAN;
mtherr("ikv_temme", DOMAIN);
return;
}
if (x == 0) {
Iv = (v == 0) ? 1 : 0;
if (kind & need_k) {
mtherr("ikv_temme", OVERFLOW);
Kv = NPY_INFINITY;
}
else {
Kv = NPY_NAN; /* any value will do */
}
if (reflect && (kind & need_i)) {
double z = (u + n % 2);
Iv = sin(NPY_PI * z) == 0 ? Iv : NPY_INFINITY;
if (Iv == NPY_INFINITY || Iv == -NPY_INFINITY) {
mtherr("ikv_temme", OVERFLOW);
}
}
if (Iv_p != NULL) {
*Iv_p = Iv;
}
if (Kv_p != NULL) {
*Kv_p = Kv;
}
return;
}
/* x is positive until reflection */
W = 1 / x; /* Wronskian */
if (x <= 2) { /* x in (0, 2] */
temme_ik_series(u, x, &Ku, &Ku1); /* Temme series */
}
else { /* x in (2, \infty) */
CF2_ik(u, x, &Ku, &Ku1); /* continued fraction CF2_ik */
}
prev = Ku;
current = Ku1;
for (k = 1; k <= n; k++) { /* forward recurrence for K */
next = 2 * (u + k) * current / x + prev;
prev = current;
current = next;
}
Kv = prev;
Kv1 = current;
if (kind & need_i) {
double lim = (4 * v * v + 10) / (8 * x);
lim *= lim;
lim *= lim;
lim /= 24;
if ((lim < MACHEP * 10) && (x > 100)) {
/*
* x is huge compared to v, CF1 may be very slow
* to converge so use asymptotic expansion for large
* x case instead. Note that the asymptotic expansion
* isn't very accurate - so it's deliberately very hard
* to get here - probably we're going to overflow:
*/
Iv = iv_asymptotic(v, x);
}
else {
CF1_ik(v, x, &fv); /* continued fraction CF1_ik */
Iv = W / (Kv * fv + Kv1); /* Wronskian relation */
}
}
else {
Iv = NPY_NAN; /* any value will do */
}
if (reflect) {
double z = (u + n % 2);
if (Iv_p != NULL) {
*Iv_p = Iv + (2 / NPY_PI) * sin(NPY_PI * z) * Kv; /* reflection formula */
}
if (Kv_p != NULL) {
*Kv_p = Kv;
}
}
else {
if (Iv_p != NULL) {
*Iv_p = Iv;
}
if (Kv_p != NULL) {
*Kv_p = Kv;
}
}
return;
}
|