File: shichi.c

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (307 lines) | stat: -rw-r--r-- 7,081 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/*                                                     shichi.c
 *
 *     Hyperbolic sine and cosine integrals
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, Chi, Shi, shichi();
 *
 * shichi( x, &Chi, &Shi );
 *
 *
 * DESCRIPTION:
 *
 * Approximates the integrals
 *
 *                            x
 *                            -
 *                           | |   cosh t - 1
 *   Chi(x) = eul + ln x +   |    -----------  dt,
 *                         | |          t
 *                          -
 *                          0
 *
 *               x
 *               -
 *              | |  sinh t
 *   Shi(x) =   |    ------  dt
 *            | |       t
 *             -
 *             0
 *
 * where eul = 0.57721566490153286061 is Euler's constant.
 * The integrals are evaluated by power series for x < 8
 * and by Chebyshev expansions for x between 8 and 88.
 * For large x, both functions approach exp(x)/2x.
 * Arguments greater than 88 in magnitude return NPY_INFINITY.
 *
 *
 * ACCURACY:
 *
 * Test interval 0 to 88.
 *                      Relative error:
 * arithmetic   function  # trials      peak         rms
 *    IEEE         Shi      30000       6.9e-16     1.6e-16
 *        Absolute error, except relative when |Chi| > 1:
 *    IEEE         Chi      30000       8.4e-16     1.4e-16
 */

/*
 * Cephes Math Library Release 2.0:  April, 1987
 * Copyright 1984, 1987 by Stephen L. Moshier
 * Direct inquiries to 30 Frost Street, Cambridge, MA 02140
 */


#include "mconf.h"

/* x exp(-x) shi(x), inverted interval 8 to 18 */
static double S1[] = {
    1.83889230173399459482E-17,
    -9.55485532279655569575E-17,
    2.04326105980879882648E-16,
    1.09896949074905343022E-15,
    -1.31313534344092599234E-14,
    5.93976226264314278932E-14,
    -3.47197010497749154755E-14,
    -1.40059764613117131000E-12,
    9.49044626224223543299E-12,
    -1.61596181145435454033E-11,
    -1.77899784436430310321E-10,
    1.35455469767246947469E-9,
    -1.03257121792819495123E-9,
    -3.56699611114982536845E-8,
    1.44818877384267342057E-7,
    7.82018215184051295296E-7,
    -5.39919118403805073710E-6,
    -3.12458202168959833422E-5,
    8.90136741950727517826E-5,
    2.02558474743846862168E-3,
    2.96064440855633256972E-2,
    1.11847751047257036625E0
};

/* x exp(-x) shi(x), inverted interval 18 to 88 */
static double S2[] = {
    -1.05311574154850938805E-17,
    2.62446095596355225821E-17,
    8.82090135625368160657E-17,
    -3.38459811878103047136E-16,
    -8.30608026366935789136E-16,
    3.93397875437050071776E-15,
    1.01765565969729044505E-14,
    -4.21128170307640802703E-14,
    -1.60818204519802480035E-13,
    3.34714954175994481761E-13,
    2.72600352129153073807E-12,
    1.66894954752839083608E-12,
    -3.49278141024730899554E-11,
    -1.58580661666482709598E-10,
    -1.79289437183355633342E-10,
    1.76281629144264523277E-9,
    1.69050228879421288846E-8,
    1.25391771228487041649E-7,
    1.16229947068677338732E-6,
    1.61038260117376323993E-5,
    3.49810375601053973070E-4,
    1.28478065259647610779E-2,
    1.03665722588798326712E0
};

/* x exp(-x) chin(x), inverted interval 8 to 18 */
static double C1[] = {
    -8.12435385225864036372E-18,
    2.17586413290339214377E-17,
    5.22624394924072204667E-17,
    -9.48812110591690559363E-16,
    5.35546311647465209166E-15,
    -1.21009970113732918701E-14,
    -6.00865178553447437951E-14,
    7.16339649156028587775E-13,
    -2.93496072607599856104E-12,
    -1.40359438136491256904E-12,
    8.76302288609054966081E-11,
    -4.40092476213282340617E-10,
    -1.87992075640569295479E-10,
    1.31458150989474594064E-8,
    -4.75513930924765465590E-8,
    -2.21775018801848880741E-7,
    1.94635531373272490962E-6,
    4.33505889257316408893E-6,
    -6.13387001076494349496E-5,
    -3.13085477492997465138E-4,
    4.97164789823116062801E-4,
    2.64347496031374526641E-2,
    1.11446150876699213025E0
};

/* x exp(-x) chin(x), inverted interval 18 to 88 */
static double C2[] = {
    8.06913408255155572081E-18,
    -2.08074168180148170312E-17,
    -5.98111329658272336816E-17,
    2.68533951085945765591E-16,
    4.52313941698904694774E-16,
    -3.10734917335299464535E-15,
    -4.42823207332531972288E-15,
    3.49639695410806959872E-14,
    6.63406731718911586609E-14,
    -3.71902448093119218395E-13,
    -1.27135418132338309016E-12,
    2.74851141935315395333E-12,
    2.33781843985453438400E-11,
    2.71436006377612442764E-11,
    -2.56600180000355990529E-10,
    -1.61021375163803438552E-9,
    -4.72543064876271773512E-9,
    -3.00095178028681682282E-9,
    7.79387474390914922337E-8,
    1.06942765566401507066E-6,
    1.59503164802313196374E-5,
    3.49592575153777996871E-4,
    1.28475387530065247392E-2,
    1.03665693917934275131E0
};

static double hyp3f0(double a1, double a2, double a3, double z);

/* Sine and cosine integrals */

extern double MACHEP;

int shichi(x, si, ci)
double x;
double *si, *ci;
{
    double k, z, c, s, a, b;
    short sign;

    if (x < 0.0) {
	sign = -1;
	x = -x;
    }
    else
	sign = 0;


    if (x == 0.0) {
	*si = 0.0;
	*ci = -NPY_INFINITY;
	return (0);
    }

    if (x >= 8.0)
	goto chb;

    if (x >= 88.0)
	goto asymp;

    z = x * x;

    /*     Direct power series expansion   */
    a = 1.0;
    s = 1.0;
    c = 0.0;
    k = 2.0;

    do {
	a *= z / k;
	c += a / k;
	k += 1.0;
	a /= k;
	s += a / k;
	k += 1.0;
    }
    while (fabs(a / s) > MACHEP);

    s *= x;
    goto done;


chb:
    /* Chebyshev series expansions */
    if (x < 18.0) {
	a = (576.0 / x - 52.0) / 10.0;
	k = exp(x) / x;
	s = k * chbevl(a, S1, 22);
	c = k * chbevl(a, C1, 23);
	goto done;
    }

    if (x <= 88.0) {
	a = (6336.0 / x - 212.0) / 70.0;
	k = exp(x) / x;
	s = k * chbevl(a, S2, 23);
	c = k * chbevl(a, C2, 24);
	goto done;
    }

asymp:
    if (x > 1000) {
        *si = NPY_INFINITY;
        *ci = NPY_INFINITY;
    }
    else {
        /* Asymptotic expansions
         * http://functions.wolfram.com/GammaBetaErf/CoshIntegral/06/02/
         * http://functions.wolfram.com/GammaBetaErf/SinhIntegral/06/02/0001/
         */
        a = hyp3f0(0.5, 1, 1, 4.0/(x*x));
        b = hyp3f0(1, 1, 1.5, 4.0/(x*x));
        *si = cosh(x)/x * a + sinh(x)/(x*x) * b;
        *ci = sinh(x)/x * a + cosh(x)/(x*x) * b;
    }
    if (sign) {
        *si = -*si;
    }
    return 0;

done:
    if (sign)
	s = -s;

    *si = s;

    *ci = NPY_EULER + log(x) + c;
    return (0);
}


/*
 * Evaluate 3F0(a1, a2, a3; z)
 *
 * The series is only asymptotic, so this requires z large enough.
 */
static double hyp3f0(double a1, double a2, double a3, double z)
{
    int n, maxiter;
    double err, sum, term, m;

    m = pow(z, -1.0/3);
    if (m < 50) {
        maxiter = m;
    }
    else {
        maxiter = 50;
    }

    term = 1.0;
    sum = term;
    for (n = 0; n < maxiter; ++n) {
        term *= (a1 + n) * (a2 + n) * (a3 + n) * z / (n + 1);
        sum += term;
        if (fabs(term) < 1e-13 * fabs(sum) || term == 0) {
            break;
        }
    }

    err = fabs(term);

    if (err > 1e-13 * fabs(sum)) {
        return NPY_NAN;
    }

    return sum;
}