File: zeta.c

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (161 lines) | stat: -rw-r--r-- 3,458 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/*                                                     zeta.c
 *
 *     Riemann zeta function of two arguments
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, q, y, zeta();
 *
 * y = zeta( x, q );
 *
 *
 *
 * DESCRIPTION:
 *
 *
 *
 *                 inf.
 *                  -        -x
 *   zeta(x,q)  =   >   (k+q)  
 *                  -
 *                 k=0
 *
 * where x > 1 and q is not a negative integer or zero.
 * The Euler-Maclaurin summation formula is used to obtain
 * the expansion
 *
 *                n         
 *                -       -x
 * zeta(x,q)  =   >  (k+q)  
 *                -         
 *               k=1        
 *
 *           1-x                 inf.  B   x(x+1)...(x+2j)
 *      (n+q)           1         -     2j
 *  +  ---------  -  -------  +   >    --------------------
 *        x-1              x      -                   x+2j+1
 *                   2(n+q)      j=1       (2j)! (n+q)
 *
 * where the B2j are Bernoulli numbers.  Note that (see zetac.c)
 * zeta(x,1) = zetac(x) + 1.
 *
 *
 *
 * ACCURACY:
 *
 *
 *
 * REFERENCE:
 *
 * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
 * Series, and Products, p. 1073; Academic Press, 1980.
 *
 */

/*
 * Cephes Math Library Release 2.0:  April, 1987
 * Copyright 1984, 1987 by Stephen L. Moshier
 * Direct inquiries to 30 Frost Street, Cambridge, MA 02140
 */

#include "mconf.h"
extern double MACHEP;

/* Expansion coefficients
 * for Euler-Maclaurin summation formula
 * (2k)! / B2k
 * where B2k are Bernoulli numbers
 */
static double A[] = {
    12.0,
    -720.0,
    30240.0,
    -1209600.0,
    47900160.0,
    -1.8924375803183791606e9,	/*1.307674368e12/691 */
    7.47242496e10,
    -2.950130727918164224e12,	/*1.067062284288e16/3617 */
    1.1646782814350067249e14,	/*5.109094217170944e18/43867 */
    -4.5979787224074726105e15,	/*8.028576626982912e20/174611 */
    1.8152105401943546773e17,	/*1.5511210043330985984e23/854513 */
    -7.1661652561756670113e18	/*1.6938241367317436694528e27/236364091 */
};

/* 30 Nov 86 -- error in third coefficient fixed */


double zeta(x, q)
double x, q;
{
    int i;
    double a, b, k, s, t, w;

    if (x == 1.0)
	goto retinf;

    if (x < 1.0) {
      domerr:
	mtherr("zeta", DOMAIN);
	return (NPY_NAN);
    }

    if (q <= 0.0) {
	if (q == floor(q)) {
	    mtherr("zeta", SING);
	  retinf:
	    return (NPY_INFINITY);
	}
	if (x != floor(x))
	    goto domerr;	/* because q^-x not defined */
    }

    /* Asymptotic expansion
     * http://dlmf.nist.gov/25.11#E43
     */
    if (q > 1e8) {
        return (1/(x - 1) + 1/(2*q)) * pow(q, 1 - x);
    }

    /* Euler-Maclaurin summation formula */
    
    /* Permit negative q but continue sum until n+q > +9 .
     * This case should be handled by a reflection formula.
     * If q<0 and x is an integer, there is a relation to
     * the polyGamma function.
     */
    s = pow(q, -x);
    a = q;
    i = 0;
    b = 0.0;
    while ((i < 9) || (a <= 9.0)) {
        i += 1;
        a += 1.0;
        b = pow(a, -x);
        s += b;
        if (fabs(b / s) < MACHEP)
            goto done;
    }
    
    w = a;
    s += b * w / (x - 1.0);
    s -= 0.5 * b;
    a = 1.0;
    k = 0.0;
    for (i = 0; i < 12; i++) {
        a *= x + k;
        b /= w;
        t = a * b / A[i];
        s = s + t;
        t = fabs(t / s);
        if (t < MACHEP)
            goto done;
        k += 1.0;
        a *= x + k;
        b /= w;
        k += 1.0;
    }
done:
    return (s);
}