File: orthogonal.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (1664 lines) | stat: -rwxr-xr-x 49,683 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
"""
A collection of functions to find the weights and abscissas for
Gaussian Quadrature.

These calculations are done by finding the eigenvalues of a
tridiagonal matrix whose entries are dependent on the coefficients
in the recursion formula for the orthogonal polynomials with the
corresponding weighting function over the interval.

Many recursion relations for orthogonal polynomials are given:

.. math::

    a1n f_{n+1} (x) = (a2n + a3n x ) f_n (x) - a4n f_{n-1} (x)

The recursion relation of interest is

.. math::

    P_{n+1} (x) = (x - A_n) P_n (x) - B_n P_{n-1} (x)

where :math:`P` has a different normalization than :math:`f`.

The coefficients can be found as:

.. math::

    A_n = -a2n / a3n
    \\qquad
    B_n = ( a4n / a3n \\sqrt{h_n-1 / h_n})^2

where

.. math::

    h_n = \\int_a^b w(x) f_n(x)^2

assume:

.. math::

    P_0 (x) = 1
    \\qquad
    P_{-1} (x) == 0

For the mathematical background, see [golub.welsch-1969-mathcomp]_ and
[abramowitz.stegun-1965]_.

Functions::

  gen_roots_and_weights  -- Generic roots and weights.
  j_roots                -- Jacobi
  js_roots               -- Shifted Jacobi
  la_roots               -- Generalized Laguerre
  h_roots                -- Hermite
  he_roots               -- Hermite (unit-variance)
  cg_roots               -- Ultraspherical (Gegenbauer)
  t_roots                -- Chebyshev of the first kind
  u_roots                -- Chebyshev of the second kind
  c_roots                -- Chebyshev of the first kind ([-2,2] interval)
  s_roots                -- Chebyshev of the second kind ([-2,2] interval)
  ts_roots               -- Shifted Chebyshev of the first kind.
  us_roots               -- Shifted Chebyshev of the second kind.
  p_roots                -- Legendre
  ps_roots               -- Shifted Legendre
  l_roots                -- Laguerre


.. [golub.welsch-1969-mathcomp]
   Golub, Gene H, and John H Welsch. 1969. Calculation of Gauss
   Quadrature Rules. *Mathematics of Computation* 23, 221-230+s1--s10.

.. [abramowitz.stegun-1965]
   Abramowitz, Milton, and Irene A Stegun. (1965) *Handbook of
   Mathematical Functions: with Formulas, Graphs, and Mathematical
   Tables*. Gaithersburg, MD: National Bureau of Standards.
   http://www.math.sfu.ca/~cbm/aands/

.. [townsend.trogdon.olver-2014]
   Townsend, A. and Trogdon, T. and Olver, S. (2014)
   *Fast computation of Gauss quadrature nodes and
   weights on the whole real line*. ArXiv 1410.5286.

.. [townsend.trogdon.olver-2015]
   Townsend, A. and Trogdon, T. and Olver, S. (2015)
   *Fast computation of Gauss quadrature nodes and
   weights on the whole real line*.
   IMA Journal of Numerical Analysis
   doi: 10.1093/imanum/drv002
"""
#
# Author:  Travis Oliphant 2000
# Updated Sep. 2003 (fixed bugs --- tested to be accurate)

from __future__ import division, print_function, absolute_import

# Scipy imports.
import numpy as np
from numpy import (any, exp, inf, pi, sqrt, floor, sin, cos, around,
                   int, hstack, arccos, arange)
from scipy import linalg
from scipy.special import airy

# Local imports.
from . import _ufuncs as cephes
_gam = cephes.gamma
from . import specfun

__all__ = ['legendre', 'chebyt', 'chebyu', 'chebyc', 'chebys',
           'jacobi', 'laguerre', 'genlaguerre', 'hermite', 'hermitenorm',
           'gegenbauer', 'sh_legendre', 'sh_chebyt', 'sh_chebyu', 'sh_jacobi',
           'p_roots', 'ps_roots', 'j_roots', 'js_roots', 'l_roots', 'la_roots',
           'he_roots', 'ts_roots', 'us_roots', 's_roots',
           't_roots', 'u_roots', 'c_roots', 'cg_roots', 'h_roots',
           'eval_legendre', 'eval_chebyt', 'eval_chebyu', 'eval_chebyc',
           'eval_chebys', 'eval_jacobi', 'eval_laguerre', 'eval_genlaguerre',
           'eval_hermite', 'eval_hermitenorm', 'eval_gegenbauer',
           'eval_sh_legendre', 'eval_sh_chebyt', 'eval_sh_chebyu',
           'eval_sh_jacobi', 'poch', 'binom']


# For backward compatibility
poch = cephes.poch


class orthopoly1d(np.poly1d):

    def __init__(self, roots, weights=None, hn=1.0, kn=1.0, wfunc=None,
                 limits=None, monic=False, eval_func=None):
        np.poly1d.__init__(self, roots, r=1)
        equiv_weights = [weights[k] / wfunc(roots[k]) for
                         k in range(len(roots))]
        self.__dict__['weights'] = np.array(list(zip(roots,
                                                     weights, equiv_weights)))
        self.__dict__['weight_func'] = wfunc
        self.__dict__['limits'] = limits
        mu = sqrt(hn)
        if monic:
            evf = eval_func
            if evf:
                eval_func = lambda x: evf(x) / kn
            mu = mu / abs(kn)
            kn = 1.0
        self.__dict__['normcoef'] = mu
        self.__dict__['coeffs'] *= kn

        # Note: eval_func will be discarded on arithmetic
        self.__dict__['_eval_func'] = eval_func

    def __call__(self, v):
        if self._eval_func and not isinstance(v, np.poly1d):
            return self._eval_func(v)
        else:
            return np.poly1d.__call__(self, v)

    def _scale(self, p):
        if p == 1.0:
            return
        self.__dict__['coeffs'] *= p
        evf = self.__dict__['_eval_func']
        if evf:
            self.__dict__['_eval_func'] = lambda x: evf(x) * p
        self.__dict__['normcoef'] *= p


def _gen_roots_and_weights(n, mu0, an_func, bn_func, f, df, symmetrize, mu):
    """[x,w] = gen_roots_and_weights(n,an_func,sqrt_bn_func,mu)

    Returns the roots (x) of an nth order orthogonal polynomial,
    and weights (w) to use in appropriate Gaussian quadrature with that
    orthogonal polynomial.

    The polynomials have the recurrence relation
          P_n+1(x) = (x - A_n) P_n(x) - B_n P_n-1(x)

    an_func(n)          should return A_n
    sqrt_bn_func(n)     should return sqrt(B_n)
    mu ( = h_0 )        is the integral of the weight over the orthogonal
                        interval
    """
    k = np.arange(n, dtype='d')
    c = np.zeros((2, n))
    c[0,1:] = bn_func(k[1:])
    c[1,:] = an_func(k)
    x = linalg.eigvals_banded(c, overwrite_a_band=True)

    # improve roots by one application of Newton's method
    y = f(n, x)
    dy = df(n, x)
    x -= y/dy

    fm = f(n-1, x)
    fm /= np.abs(fm).max()
    dy /= np.abs(dy).max()
    w = 1.0 / (fm * dy)

    if symmetrize:
        w = (w + w[::-1]) / 2
        x = (x - x[::-1]) / 2

    w *= mu0 / w.sum()

    if mu:
        return x, w, mu0
    else:
        return x, w

# Jacobi Polynomials 1               P^(alpha,beta)_n(x)


def j_roots(n, alpha, beta, mu=False):
    r"""Gauss-Jacobi quadrature.

    Computes the sample points and weights for Gauss-Jacobi quadrature. The
    sample points are the roots of the n-th degree Jacobi polynomial,
    :math:`P^{\alpha, \beta}_n(x)`.  These sample points and weights
    correctly integrate polynomials of degree :math:`2n - 1` or less over the
    interval :math:`[-1, 1]` with weight function
    :math:`f(x) = (1 - x)^{\alpha} (1 + x)^{\beta}`.

    Parameters
    ----------
    n : int
        quadrature order
    alpha : float
        alpha must be > -1
    beta : float
        beta must be > 0
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    """
    m = int(n)
    if n < 1 or n != m:
        raise ValueError("n must be a positive integer.")
    if alpha <= -1 or beta <= -1:
        raise ValueError("alpha and beta must be greater than -1.")

    if alpha == 0.0 and beta == 0.0:
        return p_roots(m, mu)
    if alpha == beta:
        return cg_roots(m, alpha+0.5, mu)

    mu0 = 2.0**(alpha+beta+1)*cephes.beta(alpha+1, beta+1)
    a = alpha
    b = beta
    if a + b == 0.0:
        an_func = lambda k: np.where(k == 0, (b-a)/(2+a+b), 0.0)
    else:
        an_func = lambda k: np.where(k == 0, (b-a)/(2+a+b),
                  (b*b - a*a) / ((2.0*k+a+b)*(2.0*k+a+b+2)))

    bn_func = lambda k: 2.0 / (2.0*k+a+b)*np.sqrt((k+a)*(k+b) / (2*k+a+b+1)) \
              * np.where(k == 1, 1.0, np.sqrt(k*(k+a+b) / (2.0*k+a+b-1)))

    f = lambda n, x: cephes.eval_jacobi(n, a, b, x)
    df = lambda n, x: 0.5 * (n + a + b + 1) \
                      * cephes.eval_jacobi(n-1, a+1, b+1, x)
    return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, False, mu)


def jacobi(n, alpha, beta, monic=False):
    """Returns the nth order Jacobi polynomial, P^(alpha,beta)_n(x)
    orthogonal over [-1,1] with weighting function
    (1-x)**alpha (1+x)**beta with alpha,beta > -1.
    """
    if n < 0:
        raise ValueError("n must be nonnegative.")

    wfunc = lambda x: (1 - x)**alpha * (1 + x)**beta
    if n == 0:
        return orthopoly1d([], [], 1.0, 1.0, wfunc, (-1, 1), monic,
                           eval_func=np.ones_like)
    x, w, mu = j_roots(n, alpha, beta, mu=True)
    ab1 = alpha + beta + 1.0
    hn = 2**ab1 / (2 * n + ab1) * _gam(n + alpha + 1)
    hn *= _gam(n + beta + 1.0) / _gam(n + 1) / _gam(n + ab1)
    kn = _gam(2 * n + ab1) / 2.0**n / _gam(n + 1) / _gam(n + ab1)
    # here kn = coefficient on x^n term
    p = orthopoly1d(x, w, hn, kn, wfunc, (-1, 1), monic,
                    lambda x: eval_jacobi(n, alpha, beta, x))
    return p

# Jacobi Polynomials shifted         G_n(p,q,x)


def js_roots(n, p1, q1, mu=False):
    """Gauss-Jacobi (shifted) quadrature.

    Computes the sample points and weights for Gauss-Jacobi (shifted)
    quadrature. The sample points are the roots of the n-th degree shifted
    Jacobi polynomial, :math:`G^{p,q}_n(x)`.  These sample points and weights
    correctly integrate polynomials of degree :math:`2n - 1` or less over the
    interval :math:`[0, 1]` with weight function
    :math:`f(x) = (1 - x)^{p-q} x^{q-1}`

    Parameters
    ----------
    n : int
        quadrature order
    p1 : float
        (p1 - q1) must be > -1
    q1 : float
        q1 must be > 0
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    """
    if (p1-q1) <= -1 or q1 <= 0:
        raise ValueError("(p - q) must be greater than -1, and q must be greater than 0.")
    x, w, m = j_roots(n, p1-q1, q1-1, True)
    x = (x + 1) / 2
    scale = 2.0**p1
    w /= scale
    m /= scale
    if mu:
        return x, w, m
    else:
        return x, w

def sh_jacobi(n, p, q, monic=False):
    """Returns the nth order Jacobi polynomial, G_n(p,q,x)
    orthogonal over [0,1] with weighting function
    (1-x)**(p-q) (x)**(q-1) with p>q-1 and q > 0.
    """
    if n < 0:
        raise ValueError("n must be nonnegative.")

    wfunc = lambda x: (1.0 - x)**(p - q) * (x)**(q - 1.)
    if n == 0:
        return orthopoly1d([], [], 1.0, 1.0, wfunc, (-1, 1), monic,
                           eval_func=np.ones_like)
    n1 = n
    x, w, mu0 = js_roots(n1, p, q, mu=True)
    hn = _gam(n + 1) * _gam(n + q) * _gam(n + p) * _gam(n + p - q + 1)
    hn /= (2 * n + p) * (_gam(2 * n + p)**2)
    # kn = 1.0 in standard form so monic is redundant.  Kept for compatibility.
    kn = 1.0
    pp = orthopoly1d(x, w, hn, kn, wfunc=wfunc, limits=(0, 1), monic=monic,
                     eval_func=lambda x: eval_sh_jacobi(n, p, q, x))
    return pp

# Generalized Laguerre               L^(alpha)_n(x)


def la_roots(n, alpha, mu=False):
    r"""Gauss-generalized Laguerre quadrature.

    Computes the sample points and weights for Gauss-generalized Laguerre
    quadrature. The sample points are the roots of the n-th degree generalized
    Laguerre polynomial, :math:`L^{\alpha}_n(x)`.  These sample points and
    weights correctly integrate polynomials of degree :math:`2n - 1` or less
    over the interval :math:`[0, \infty]` with weight function
    :math:`f(x) = x^{\alpha} e^{-x}`.

    Parameters
    ----------
    n : int
        quadrature order
    alpha : float
        alpha must be > -1
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    """
    m = int(n)
    if n < 1 or n != m:
        raise ValueError("n must be a positive integer.")
    if alpha < -1:
        raise ValueError("alpha must be greater than -1.")

    mu0 = cephes.gamma(alpha + 1)

    if m == 1:
        x = np.array([alpha+1.0], 'd')
        w = np.array([mu0], 'd')
        if mu:
            return x, w, mu0
        else:
            return x, w

    an_func = lambda k: 2 * k + alpha + 1
    bn_func = lambda k: -np.sqrt(k * (k + alpha))
    f = lambda n, x: cephes.eval_genlaguerre(n, alpha, x)
    df = lambda n, x: (n*cephes.eval_genlaguerre(n, alpha, x)
                     - (n + alpha)*cephes.eval_genlaguerre(n-1, alpha, x))/x
    return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, False, mu)


def genlaguerre(n, alpha, monic=False):
    """Returns the nth order generalized (associated) Laguerre polynomial,
    L^(alpha)_n(x), orthogonal over [0,inf) with weighting function
    exp(-x) x**alpha with alpha > -1
    """
    if any(alpha <= -1):
        raise ValueError("alpha must be > -1")
    if n < 0:
        raise ValueError("n must be nonnegative.")

    if n == 0:
        n1 = n + 1
    else:
        n1 = n
    x, w, mu0 = la_roots(n1, alpha, mu=True)
    wfunc = lambda x: exp(-x) * x**alpha
    if n == 0:
        x, w = [], []
    hn = _gam(n + alpha + 1) / _gam(n + 1)
    kn = (-1)**n / _gam(n + 1)
    p = orthopoly1d(x, w, hn, kn, wfunc, (0, inf), monic,
                    lambda x: eval_genlaguerre(n, alpha, x))
    return p

# Laguerre                      L_n(x)


def l_roots(n, mu=False):
    r"""Gauss-Laguerre quadrature.

    Computes the sample points and weights for Gauss-Laguerre quadrature.
    The sample points are the roots of the n-th degree Laguerre polynomial,
    :math:`L_n(x)`.  These sample points and weights correctly integrate
    polynomials of degree :math:`2n - 1` or less over the interval
    :math:`[0, \infty]` with weight function :math:`f(x) = e^{-x}`.

    Parameters
    ----------
    n : int
        quadrature order
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    numpy.polynomial.laguerre.laggauss
    """
    return la_roots(n, 0.0, mu=mu)


def laguerre(n, monic=False):
    """Return the nth order Laguerre polynoimal, L_n(x), orthogonal over
    [0,inf) with weighting function exp(-x)
    """
    if n < 0:
        raise ValueError("n must be nonnegative.")

    if n == 0:
        n1 = n + 1
    else:
        n1 = n
    x, w, mu0 = l_roots(n1, mu=True)
    if n == 0:
        x, w = [], []
    hn = 1.0
    kn = (-1)**n / _gam(n + 1)
    p = orthopoly1d(x, w, hn, kn, lambda x: exp(-x), (0, inf), monic,
                    lambda x: eval_laguerre(n, x))
    return p

# Hermite  1                         H_n(x)


def h_roots(n, mu=False):
    r"""Gauss-Hermite (physicst's) quadrature.

    Computes the sample points and weights for Gauss-Hermite quadrature.
    The sample points are the roots of the n-th degree Hermite polynomial,
    :math:`H_n(x)`.  These sample points and weights correctly integrate
    polynomials of degree :math:`2n - 1` or less over the interval
    :math:`[-\infty, \infty]` with weight function :math:`f(x) = e^{-x^2}`.

    Parameters
    ----------
    n : int
        quadrature order
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    Notes
    -----
    For small n up to 150 a modified version of the Golub-Welsch
    algorithm is used. Nodes are computed from the eigenvalue
    problem and improved by one step of a Newton iteration.
    The weights are computed from the well-known analytical formula.

    For n larger than 150 an optimal asymptotic algorithm is applied
    which computes nodes and weights in a numerically stable manner.
    The algorithm has linear runtime making computation for very
    large n (several thousand or more) feasible.

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    numpy.polynomial.hermite.hermgauss
    he_roots

    References
    ----------
    .. [townsend.trogdon.olver-2014]
       Townsend, A. and Trogdon, T. and Olver, S. (2014)
       *Fast computation of Gauss quadrature nodes and
       weights on the whole real line*. ArXiv 1410.5286.

    .. [townsend.trogdon.olver-2015]
       Townsend, A. and Trogdon, T. and Olver, S. (2015)
       *Fast computation of Gauss quadrature nodes and
       weights on the whole real line*.
       IMA Journal of Numerical Analysis
       doi: 10.1093/imanum/drv002
    """
    m = int(n)
    if n < 1 or n != m:
        raise ValueError("n must be a positive integer.")

    mu0 = np.sqrt(np.pi)
    if n <= 150:
        an_func = lambda k: 0.0*k
        bn_func = lambda k: np.sqrt(k/2.0)
        f = cephes.eval_hermite
        df = lambda n, x: 2.0 * n * cephes.eval_hermite(n-1, x)
        return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
    else:
        nodes, weights = _h_roots_asy(m)
        if mu:
            return nodes, weights, mu0
        else:
            return nodes, weights


def _compute_tauk(n, k, maxit=5):
    """Helper function for Tricomi initial guesses

    For details, see formula 3.1 in lemma 3.1 in the
    original paper.

    Parameters
    ----------
    n : int
        Quadrature order
    k : ndarray of type int
        Index of roots :math:`\tau_k` to compute
    maxit : int
        Number of Newton maxit performed, the default
        value of 5 is sufficient.

    Returns
    -------
    tauk : ndarray
        Roots of equation 3.1

    See Also
    --------
    initial_nodes_a
    h_roots_asy
    """
    a = n % 2 - 0.5
    c = (4.0*floor(n/2.0) - 4.0*k + 3.0)*pi / (4.0*floor(n/2.0) + 2.0*a + 2.0)
    f = lambda x: x - sin(x) - c
    df = lambda x: 1.0 - cos(x)
    xi = 0.5*pi
    for i in range(maxit):
        xi = xi - f(xi)/df(xi)
    return xi


def _initial_nodes_a(n, k):
    """Tricomi initial guesses

    Computes an initial approximation to the square of the `k`-th
    (positive) root :math:`x_k` of the Hermite polynomial :math:`H_n`
    of order :math:`n`. The formula is the one from lemma 3.1 in the
    original paper. The guesses are accurate except in the region
    near :math:`\sqrt{2n + 1}`.

    Parameters
    ----------
    n : int
        Quadrature order
    k : ndarray of type int
        Index of roots to compute

    Returns
    -------
    xksq : ndarray
        Square of the approximate roots

    See Also
    --------
    initial_nodes
    h_roots_asy
    """
    tauk = _compute_tauk(n, k)
    sigk = cos(0.5*tauk)**2
    a = n % 2 - 0.5
    nu = 4.0*floor(n/2.0) + 2.0*a + 2.0
    # Initial approximation of Hermite roots (square)
    xksq = nu*sigk - 1.0/(3.0*nu) * (5.0/(4.0*(1.0-sigk)**2) - 1.0/(1.0-sigk) - 0.25)
    return xksq


def _initial_nodes_b(n, k):
    """Gatteschi initial guesses

    Computes an initial approximation to the square of the `k`-th
    (positive) root :math:`x_k` of the Hermite polynomial :math:`H_n`
    of order :math:`n`. The formula is the one from lemma 3.2 in the
    original paper. The guesses are accurate in the region just
    below :math:`\sqrt{2n + 1}`.

    Parameters
    ----------
    n : int
        Quadrature order
    k : ndarray of type int
        Index of roots to compute

    Returns
    -------
    xksq : ndarray
        Square of the approximate root

    See Also
    --------
    initial_nodes
    h_roots_asy
    """
    a = n % 2 - 0.5
    nu = 4.0*floor(n/2.0) + 2.0*a + 2.0
    # Airy roots by approximation
    ak = specfun.airyzo(k.max(), 1)[0][::-1]
    # Initial approximation of Hermite roots (square)
    xksq = (nu +
            2.0**(2.0/3.0) * ak * nu**(1.0/3.0) +
            1.0/5.0 * 2.0**(4.0/3.0) * ak**2 * nu**(-1.0/3.0) +
            (9.0/140.0 - 12.0/175.0 * ak**3) * nu**(-1.0) +
            (16.0/1575.0 * ak + 92.0/7875.0 * ak**4) * 2.0**(2.0/3.0) * nu**(-5.0/3.0) -
            (15152.0/3031875.0 * ak**5 + 1088.0/121275.0 * ak**2) * 2.0**(1.0/3.0) * nu**(-7.0/3.0))
    return xksq


def _initial_nodes(n):
    """Initial guesses for the Hermite roots

    Computes an initial approximation to the non-negative
    roots :math:`x_k` of the Hermite polynomial :math:`H_n`
    of order :math:`n`. The Tricomi and Gatteschi initial
    guesses are used in the region where they are accurate.

    Parameters
    ----------
    n : int
        Quadrature order

    Returns
    -------
    xk : ndarray
        Approximate roots

    See Also
    --------
    h_roots_asy
    """
    # Turnover point
    # linear polynomial fit to error of 10, 25, 40, ..., 1000 point rules
    fit = 0.49082003*n - 4.37859653
    turnover = around(fit).astype(int)
    # Compute all approximations
    ia = arange(1, int(floor(n*0.5)+1))
    ib = ia[::-1]
    xasq = _initial_nodes_a(n, ia[:turnover+1])
    xbsq = _initial_nodes_b(n, ib[turnover+1:])
    # Combine
    iv = sqrt(hstack([xasq, xbsq]))
    # Central node is always zero
    if n % 2 == 1:
        iv = hstack([0.0, iv])
    return iv


def _pbcf(n, theta):
    """Asymptotic series expansion of parabolic cylinder function

    The implementation is based on sections 3.2 and 3.3 from the
    original paper. Compared to the published version this code
    adds one more term to the asymptotic series. The detailed
    formulas can be found at [parabolic-asymptotics]_. The evaluation
    is done in a transformed variable :math:`\theta := \arccos(t)`
    where :math:`t := x / \mu` and :math:`\mu := \sqrt{2n + 1}`.

    Parameters
    ----------
    n : int
        Quadrature order
    theta : ndarray
        Transformed position variable

    Returns
    -------
    U : ndarray
        Value of the parabolic cylinder function :math:`U(a, \theta)`.
    Ud : ndarray
        Value of the derivative :math:`U^{\prime}(a, \theta)` of
        the parabolic cylinder function.

    See Also
    --------
    h_roots_asy

    References
    ----------
    .. [parabolic-asymptotics]
       http://dlmf.nist.gov/12.10#vii
    """
    st = sin(theta)
    ct = cos(theta)
    # http://dlmf.nist.gov/12.10#vii
    mu = 2.0*n + 1.0
    # http://dlmf.nist.gov/12.10#E23
    eta = 0.5*theta - 0.5*st*ct
    # http://dlmf.nist.gov/12.10#E39
    zeta = -(3.0*eta/2.0) ** (2.0/3.0)
    # http://dlmf.nist.gov/12.10#E40
    phi = (-zeta / st**2) ** (0.25)
    # Coefficients
    # http://dlmf.nist.gov/12.10#E43
    a0 = 1.0
    a1 = 0.10416666666666666667
    a2 = 0.08355034722222222222
    a3 = 0.12822657455632716049
    a4 = 0.29184902646414046425
    a5 = 0.88162726744375765242
    b0 = 1.0
    b1 = -0.14583333333333333333
    b2 = -0.09874131944444444444
    b3 = -0.14331205391589506173
    b4 = -0.31722720267841354810
    b5 = -0.94242914795712024914
    # Polynomials
    # http://dlmf.nist.gov/12.10#E9
    # http://dlmf.nist.gov/12.10#E10
    ctp = ct ** arange(16).reshape((-1,1))
    u0 = 1.0
    u1 = (1.0*ctp[3,:] - 6.0*ct) / 24.0
    u2 = (-9.0*ctp[4,:] + 249.0*ctp[2,:] + 145.0) / 1152.0
    u3 = (-4042.0*ctp[9,:] + 18189.0*ctp[7,:] - 28287.0*ctp[5,:] - 151995.0*ctp[3,:] - 259290.0*ct) / 414720.0
    u4 = (72756.0*ctp[10,:] - 321339.0*ctp[8,:] - 154982.0*ctp[6,:] + 50938215.0*ctp[4,:] + 122602962.0*ctp[2,:] + 12773113.0) / 39813120.0
    u5 = (82393456.0*ctp[15,:] - 617950920.0*ctp[13,:] + 1994971575.0*ctp[11,:] - 3630137104.0*ctp[9,:] + 4433574213.0*ctp[7,:]
          - 37370295816.0*ctp[5,:] - 119582875013.0*ctp[3,:] - 34009066266.0*ct) / 6688604160.0
    v0 = 1.0
    v1 = (1.0*ctp[3,:] + 6.0*ct) / 24.0
    v2 = (15.0*ctp[4,:] - 327.0*ctp[2,:] - 143.0) / 1152.0
    v3 = (-4042.0*ctp[9,:] + 18189.0*ctp[7,:] - 36387.0*ctp[5,:] + 238425.0*ctp[3,:] + 259290.0*ct) / 414720.0
    v4 = (-121260.0*ctp[10,:] + 551733.0*ctp[8,:] - 151958.0*ctp[6,:] - 57484425.0*ctp[4,:] - 132752238.0*ctp[2,:] - 12118727) / 39813120.0
    v5 = (82393456.0*ctp[15,:] - 617950920.0*ctp[13,:] + 2025529095.0*ctp[11,:] - 3750839308.0*ctp[9,:] + 3832454253.0*ctp[7,:]
          + 35213253348.0*ctp[5,:] + 130919230435.0*ctp[3,:] + 34009066266*ct) / 6688604160.0
    # Airy Evaluation (Bi and Bip unused)
    Ai, Aip, Bi, Bip = airy(mu**(4.0/6.0) * zeta)
    # Prefactor for U
    P = 2.0*sqrt(pi) * mu**(1.0/6.0) * phi
    # Terms for U
    # http://dlmf.nist.gov/12.10#E42
    phip = phi ** arange(6, 31, 6).reshape((-1,1))
    A0 = b0*u0
    A1 = (b2*u0 + phip[0,:]*b1*u1 + phip[1,:]*b0*u2) / zeta**3
    A2 = (b4*u0 + phip[0,:]*b3*u1 + phip[1,:]*b2*u2 + phip[2,:]*b1*u3 + phip[3,:]*b0*u4) / zeta**6
    B0 = -(a1*u0 + phip[0,:]*a0*u1) / zeta**2
    B1 = -(a3*u0 + phip[0,:]*a2*u1 + phip[1,:]*a1*u2 + phip[2,:]*a0*u3) / zeta**5
    B2 = -(a5*u0 + phip[0,:]*a4*u1 + phip[1,:]*a3*u2 + phip[2,:]*a2*u3 + phip[3,:]*a1*u4 + phip[4,:]*a0*u5) / zeta**8
    # U
    # http://dlmf.nist.gov/12.10#E35
    U = P * (Ai * (A0 + A1/mu**2.0 + A2/mu**4.0) +
             Aip * (B0 + B1/mu**2.0 + B2/mu**4.0) / mu**(8.0/6.0))
    # Prefactor for derivative of U
    Pd = sqrt(2.0*pi) * mu**(2.0/6.0) / phi
    # Terms for derivative of U
    # http://dlmf.nist.gov/12.10#E46
    C0 = -(b1*v0 + phip[0,:]*b0*v1) / zeta
    C1 = -(b3*v0 + phip[0,:]*b2*v1 + phip[1,:]*b1*v2 + phip[2,:]*b0*v3) / zeta**4
    C2 = -(b5*v0 + phip[0,:]*b4*v1 + phip[1,:]*b3*v2 + phip[2,:]*b2*v3 + phip[3,:]*b1*v4 + phip[4,:]*b0*v5) / zeta**7
    D0 = a0*v0
    D1 = (a2*v0 + phip[0,:]*a1*v1 + phip[1,:]*a0*v2) / zeta**3
    D2 = (a4*v0 + phip[0,:]*a3*v1 + phip[1,:]*a2*v2 + phip[2,:]*a1*v3 + phip[3,:]*a0*v4) / zeta**6
    # Derivative of U
    # http://dlmf.nist.gov/12.10#E36
    Ud = Pd * (Ai * (C0 + C1/mu**2.0 + C2/mu**4.0) / mu**(4.0/6.0) +
               Aip * (D0 + D1/mu**2.0 + D2/mu**4.0))
    return U, Ud


def _newton(n, x_initial, maxit=5):
    """Newton iteration for polishing the asymptotic approximation
    to the zeros of the Hermite polynomials.

    Parameters
    ----------
    n : int
        Quadrature order
    x_initial : ndarray
        Initial guesses for the roots
    maxit : int
        Maximal number of Newton iterations.
        The default 5 is sufficient, usually
        only one or two steps are needed.

    Returns
    -------
    nodes : ndarray
        Quadrature nodes
    weights : ndarray
        Quadrature weights

    See Also
    --------
    h_roots_asy
    """
    # Variable transformation
    mu = sqrt(2.0*n + 1.0)
    t = x_initial / mu
    theta = arccos(t)
    # Newton iteration
    for i in range(maxit):
        u, ud = _pbcf(n, theta)
        dtheta = u / (sqrt(2.0) * mu * sin(theta) * ud)
        theta = theta + dtheta
        if max(abs(dtheta)) < 1e-14:
            break
    # Undo variable transformation
    x = mu * cos(theta)
    # Central node is always zero
    if n % 2 == 1:
        x[0] = 0.0
    # Compute weights
    w = exp(-x**2) / (2.0*ud**2)
    return x, w


def _h_roots_asy(n):
    r"""Gauss-Hermite (physicst's) quadrature for large n.

    Computes the sample points and weights for Gauss-Hermite quadrature.
    The sample points are the roots of the n-th degree Hermite polynomial,
    :math:`H_n(x)`.  These sample points and weights correctly integrate
    polynomials of degree :math:`2n - 1` or less over the interval
    :math:`[-\infty, \infty]` with weight function :math:`f(x) = e^{-x^2}`.

    This method relies on asymptotic expansions which work best for n > 150.
    The algorithm has linear runtime making computation for very large n
    feasible.

    Parameters
    ----------
    n : int
        quadrature order

    Returns
    -------
    nodes : ndarray
        Quadrature nodes
    weights : ndarray
        Quadrature weights

    See Also
    --------
    h_roots

    References
    ----------
    .. [townsend.trogdon.olver-2014]
       Townsend, A. and Trogdon, T. and Olver, S. (2014)
       *Fast computation of Gauss quadrature nodes and
       weights on the whole real line*. ArXiv 1410.5286.

    .. [townsend.trogdon.olver-2015]
       Townsend, A. and Trogdon, T. and Olver, S. (2015)
       *Fast computation of Gauss quadrature nodes and
       weights on the whole real line*.
       IMA Journal of Numerical Analysis
       doi: 10.1093/imanum/drv002
    """
    iv = _initial_nodes(n)
    nodes, weights = _newton(n, iv)
    # Combine with negative parts
    if n % 2 == 0:
        nodes = hstack([-nodes[::-1], nodes])
        weights = hstack([weights[::-1], weights])
    else:
        nodes = hstack([-nodes[-1:0:-1], nodes])
        weights = hstack([weights[-1:0:-1], weights])
    # Scale weights
    weights *= sqrt(pi) / sum(weights)
    return nodes, weights


def hermite(n, monic=False):
    """Return the nth order Hermite polynomial, H_n(x), orthogonal over
    (-inf,inf) with weighting function exp(-x**2)
    """
    if n < 0:
        raise ValueError("n must be nonnegative.")

    if n == 0:
        n1 = n + 1
    else:
        n1 = n
    x, w, mu0 = h_roots(n1, mu=True)
    wfunc = lambda x: exp(-x * x)
    if n == 0:
        x, w = [], []
    hn = 2**n * _gam(n + 1) * sqrt(pi)
    kn = 2**n
    p = orthopoly1d(x, w, hn, kn, wfunc, (-inf, inf), monic,
                    lambda x: eval_hermite(n, x))
    return p

# Hermite  2                         He_n(x)


def he_roots(n, mu=False):
    r"""Gauss-Hermite (statistician's) quadrature.

    Computes the sample points and weights for Gauss-Hermite quadrature.
    The sample points are the roots of the n-th degree Hermite polynomial,
    :math:`He_n(x)`.  These sample points and weights correctly integrate
    polynomials of degree :math:`2n - 1` or less over the interval
    :math:`[-\infty, \infty]` with weight function :math:`f(x) = e^{-(x/2)^2}`.

    Parameters
    ----------
    n : int
        quadrature order
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    Notes
    -----
    For small n up to 150 a modified version of the Golub-Welsch
    algorithm is used. Nodes are computed from the eigenvalue
    problem and improved by one step of a Newton iteration.
    The weights are computed from the well-known analytical formula.

    For n larger than 150 an optimal asymptotic algorithm is used
    which computes nodes and weights in a numerical stable manner.
    The algorithm has linear runtime making computation for very
    large n (several thousand or more) feasible.

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    numpy.polynomial.hermite_e.hermegauss
    """
    m = int(n)
    if n < 1 or n != m:
        raise ValueError("n must be a positive integer.")

    mu0 = np.sqrt(2.0*np.pi)
    if n <= 150:
        an_func = lambda k: 0.0*k
        bn_func = lambda k: np.sqrt(k)
        f = cephes.eval_hermitenorm
        df = lambda n, x: n * cephes.eval_hermitenorm(n-1, x)
        return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)
    else:
        nodes, weights = _h_roots_asy(m)
        # Transform
        nodes *= sqrt(2)
        weights *= sqrt(2)
        if mu:
            return nodes, weights, mu0
        else:
            return nodes, weights


def hermitenorm(n, monic=False):
    """Return the nth order normalized Hermite polynomial, He_n(x), orthogonal
    over (-inf,inf) with weighting function exp(-(x/2)**2)
    """
    if n < 0:
        raise ValueError("n must be nonnegative.")

    if n == 0:
        n1 = n + 1
    else:
        n1 = n
    x, w, mu0 = he_roots(n1, mu=True)
    wfunc = lambda x: exp(-x * x / 2.0)
    if n == 0:
        x, w = [], []
    hn = sqrt(2 * pi) * _gam(n + 1)
    kn = 1.0
    p = orthopoly1d(x, w, hn, kn, wfunc=wfunc, limits=(-inf, inf), monic=monic,
                    eval_func=lambda x: eval_hermitenorm(n, x))
    return p

# The remainder of the polynomials can be derived from the ones above.

# Ultraspherical (Gegenbauer)        C^(alpha)_n(x)


def cg_roots(n, alpha, mu=False):
    r"""Gauss-Gegenbauer quadrature.

    Computes the sample points and weights for Gauss-Gegenbauer quadrature.
    The sample points are the roots of the n-th degree Gegenbauer polynomial,
    :math:`C^{\alpha}_n(x)`.  These sample points and weights correctly
    integrate polynomials of degree :math:`2n - 1` or less over the interval
    :math:`[-1, 1]` with weight function
    :math:`f(x) = (1 - x^2)^{\alpha - 1/2}`.

    Parameters
    ----------
    n : int
        quadrature order
    alpha : float
        alpha must be > -0.5
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    """
    m = int(n)
    if n < 1 or n != m:
        raise ValueError("n must be a positive integer.")
    if alpha < -0.5:
        raise ValueError("alpha must be greater than -0.5.")
    elif alpha == 0.0:
        # C(n,0,x) == 0 uniformly, however, as alpha->0, C(n,alpha,x)->T(n,x)
        # strictly, we should just error out here, since the roots are not
        # really defined, but we used to return something useful, so let's
        # keep doing so.
        return t_roots(n, mu)

    mu0 = np.sqrt(np.pi) * cephes.gamma(alpha + 0.5) / cephes.gamma(alpha + 1)
    an_func = lambda k: 0.0 * k
    bn_func = lambda k: np.sqrt(k * (k + 2 * alpha - 1)
                        / (4 * (k + alpha) * (k + alpha - 1)))
    f = lambda n, x: cephes.eval_gegenbauer(n, alpha, x)
    df = lambda n, x: (-n*x*cephes.eval_gegenbauer(n, alpha, x)
         + (n + 2*alpha - 1)*cephes.eval_gegenbauer(n-1, alpha, x))/(1-x**2)
    return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)


def gegenbauer(n, alpha, monic=False):
    """Return the nth order Gegenbauer (ultraspherical) polynomial,
    C^(alpha)_n(x), orthogonal over [-1,1] with weighting function
    (1-x**2)**(alpha-1/2) with alpha > -1/2
    """
    base = jacobi(n, alpha - 0.5, alpha - 0.5, monic=monic)
    if monic:
        return base
    #  Abrahmowitz and Stegan 22.5.20
    factor = (_gam(2*alpha + n) * _gam(alpha + 0.5) /
              _gam(2*alpha) / _gam(alpha + 0.5 + n))
    base._scale(factor)
    base.__dict__['_eval_func'] = lambda x: eval_gegenbauer(float(n), alpha, x)
    return base

# Chebyshev of the first kind: T_n(x) =
#     n! sqrt(pi) / _gam(n+1./2)* P^(-1/2,-1/2)_n(x)
# Computed anew.


def t_roots(n, mu=False):
    r"""Gauss-Chebyshev (first kind) quadrature.

    Computes the sample points and weights for Gauss-Chebyshev quadrature.
    The sample points are the roots of the n-th degree Chebyshev polynomial of
    the first kind, :math:`T_n(x)`.  These sample points and weights correctly
    integrate polynomials of degree :math:`2n - 1` or less over the interval
    :math:`[-1, 1]` with weight function :math:`f(x) = 1/\sqrt{1 - x^2}`.

    Parameters
    ----------
    n : int
        quadrature order
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    numpy.polynomial.chebyshev.chebgauss
    """
    m = int(n)
    if n < 1 or n != m:
        raise ValueError('n must be a positive integer.')
    x = np.cos(np.arange(2 * m - 1, 0, -2) * pi / (2 * m))
    w = np.empty_like(x)
    w.fill(pi/m)
    if mu:
        return x, w, pi
    else:
        return x, w


def chebyt(n, monic=False):
    """Return nth order Chebyshev polynomial of first kind, Tn(x).  Orthogonal
    over [-1,1] with weight function (1-x**2)**(-1/2).
    """
    if n < 0:
        raise ValueError("n must be nonnegative.")

    wfunc = lambda x: 1.0 / sqrt(1 - x * x)
    if n == 0:
        return orthopoly1d([], [], pi, 1.0, wfunc, (-1, 1), monic,
                           lambda x: eval_chebyt(n, x))
    n1 = n
    x, w, mu = t_roots(n1, mu=True)
    hn = pi / 2
    kn = 2**(n - 1)
    p = orthopoly1d(x, w, hn, kn, wfunc, (-1, 1), monic,
                    lambda x: eval_chebyt(n, x))
    return p

# Chebyshev of the second kind
#    U_n(x) = (n+1)! sqrt(pi) / (2*_gam(n+3./2)) * P^(1/2,1/2)_n(x)


def u_roots(n, mu=False):
    r"""Gauss-Chebyshev (second kind) quadrature.

    Computes the sample points and weights for Gauss-Chebyshev quadrature.
    The sample points are the roots of the n-th degree Chebyshev polynomial of
    the second kind, :math:`U_n(x)`.  These sample points and weights correctly
    integrate polynomials of degree :math:`2n - 1` or less over the interval
    :math:`[-1, 1]` with weight function :math:`f(x) = \sqrt{1 - x^2}`.

    Parameters
    ----------
    n : int
        quadrature order
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    """
    m = int(n)
    if n < 1 or n != m:
        raise ValueError('n must be a positive integer.')
    t = np.arange(m, 0, -1) * pi / (m + 1)
    x = np.cos(t)
    w = pi * np.sin(t)**2 / (m + 1)
    if mu:
        return x, w, pi / 2
    else:
        return x, w


def chebyu(n, monic=False):
    """Return nth order Chebyshev polynomial of second kind, Un(x).  Orthogonal
    over [-1,1] with weight function (1-x**2)**(1/2).
    """
    base = jacobi(n, 0.5, 0.5, monic=monic)
    if monic:
        return base
    factor = sqrt(pi) / 2.0 * _gam(n + 2) / _gam(n + 1.5)
    base._scale(factor)
    return base

# Chebyshev of the first kind        C_n(x)


def c_roots(n, mu=False):
    r"""Gauss-Chebyshev (first kind) quadrature.

    Computes the sample points and weights for Gauss-Chebyshev quadrature.
    The sample points are the roots of the n-th degree Chebyshev polynomial of
    the first kind, :math:`C_n(x)`.  These sample points and weights correctly
    integrate polynomials of degree :math:`2n - 1` or less over the interval
    :math:`[-2, 2]` with weight function :math:`f(x) = 1/\sqrt{1 - (x/2)^2}`.

    Parameters
    ----------
    n : int
        quadrature order
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    """
    x, w, m = t_roots(n, True)
    x *= 2
    w *= 2
    m *= 2
    if mu:
        return x, w, m
    else:
        return x, w


def chebyc(n, monic=False):
    """Return n-th order Chebyshev polynomial of first kind, :math:`C_n(x)`. 
    Orthogonal over :math:`[-2, 2]` with weight function
    :math:`f(x) = 1/\sqrt{1 - (x/2)^2}`
    """
    if n < 0:
        raise ValueError("n must be nonnegative.")

    if n == 0:
        n1 = n + 1
    else:
        n1 = n
    x, w, mu0 = c_roots(n1, mu=True)
    if n == 0:
        x, w = [], []
    hn = 4 * pi * ((n == 0) + 1)
    kn = 1.0
    p = orthopoly1d(x, w, hn, kn,
                    wfunc=lambda x: 1.0 / sqrt(1 - x * x / 4.0),
                    limits=(-2, 2), monic=monic)
    if not monic:
        p._scale(2.0 / p(2))
        p.__dict__['_eval_func'] = lambda x: eval_chebyc(n, x)
    return p

# Chebyshev of the second kind       S_n(x)


def s_roots(n, mu=False):
    r"""Gauss-Chebyshev (second kind) quadrature.

    Computes the sample points and weights for Gauss-Chebyshev quadrature.
    The sample points are the roots of the n-th degree Chebyshev polynomial of
    the second kind, :math:`S_n(x)`.  These sample points and weights correctly
    integrate polynomials of degree :math:`2n - 1` or less over the interval
    :math:`[-2, 2]` with weight function :math:`f(x) = \sqrt{1 - (x/2)^2}`.

    Parameters
    ----------
    n : int
        quadrature order
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    """
    x, w, m = u_roots(n, True)
    x *= 2
    w *= 2
    m *= 2
    if mu:
        return x, w, m
    else:
        return x, w


def chebys(n, monic=False):
    r"""Return nth order Chebyshev polynomial of second kind, :math:`S_n(x)`.
    Orthogonal over :math:`[-2, 2]` with weight function
    :math:`f(x) = \sqrt{1 - (x/2)^2}`.
    """
    if n < 0:
        raise ValueError("n must be nonnegative.")

    if n == 0:
        n1 = n + 1
    else:
        n1 = n
    x, w, mu0 = s_roots(n1, mu=True)
    if n == 0:
        x, w = [], []
    hn = pi
    kn = 1.0
    p = orthopoly1d(x, w, hn, kn,
                    wfunc=lambda x: sqrt(1 - x * x / 4.0),
                    limits=(-2, 2), monic=monic)
    if not monic:
        factor = (n + 1.0) / p(2)
        p._scale(factor)
        p.__dict__['_eval_func'] = lambda x: eval_chebys(n, x)
    return p

# Shifted Chebyshev of the first kind     T^*_n(x)


def ts_roots(n, mu=False):
    r"""Gauss-Chebyshev (first kind, shifted) quadrature.

    Computes the sample points and weights for Gauss-Chebyshev quadrature.
    The sample points are the roots of the n-th degree shifted Chebyshev
    polynomial of the first kind, :math:`T_n(x)`.  These sample points and
    weights correctly integrate polynomials of degree :math:`2n - 1` or less
    over the interval :math:`[0, 1]` with weight function
    :math:`f(x) = 1/\sqrt{x - x^2}`.

    Parameters
    ----------
    n : int
        quadrature order
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    """
    xw = t_roots(n, mu)
    return ((xw[0] + 1) / 2,) + xw[1:]


def sh_chebyt(n, monic=False):
    """Return nth order shifted Chebyshev polynomial of first kind, Tn(x).
    Orthogonal over [0,1] with weight function (x-x**2)**(-1/2).
    """
    base = sh_jacobi(n, 0.0, 0.5, monic=monic)
    if monic:
        return base
    if n > 0:
        factor = 4**n / 2.0
    else:
        factor = 1.0
    base._scale(factor)
    return base


# Shifted Chebyshev of the second kind    U^*_n(x)
def us_roots(n, mu=False):
    r"""Gauss-Chebyshev (second kind, shifted) quadrature.

    Computes the sample points and weights for Gauss-Chebyshev quadrature.
    The sample points are the roots of the n-th degree shifted Chebyshev
    polynomial of the second kind, :math:`U_n(x)`.  These sample points and
    weights correctly integrate polynomials of degree :math:`2n - 1` or less
    over the interval :math:`[0, 1]` with weight function
    :math:`f(x) = \sqrt{x - x^2}`.

    Parameters
    ----------
    n : int
        quadrature order
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    """
    x, w, m = u_roots(n, True)
    x = (x + 1) / 2
    m_us = cephes.beta(1.5, 1.5)
    w *= m_us / m
    if mu:
        return x, w, m_us
    else:
        return x, w


def sh_chebyu(n, monic=False):
    """Return nth order shifted Chebyshev polynomial of second kind, Un(x).
    Orthogonal over [0,1] with weight function (x-x**2)**(1/2).
    """
    base = sh_jacobi(n, 2.0, 1.5, monic=monic)
    if monic:
        return base
    factor = 4**n
    base._scale(factor)
    return base

# Legendre


def p_roots(n, mu=False):
    r"""Gauss-Legendre quadrature.

    Computes the sample points and weights for Gauss-Legendre quadrature.
    The sample points are the roots of the n-th degree Legendre polynomial
    :math:`P_n(x)`.  These sample points and weights correctly integrate
    polynomials of degree :math:`2n - 1` or less over the interval
    :math:`[-1, 1]` with weight function :math:`f(x) = 1.0`.

    Parameters
    ----------
    n : int
        quadrature order
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    numpy.polynomial.legendre.leggauss
    """
    m = int(n)
    if n < 1 or n != m:
        raise ValueError("n must be a positive integer.")

    mu0 = 2.0
    an_func = lambda k: 0.0 * k
    bn_func = lambda k: k * np.sqrt(1.0 / (4 * k * k - 1))
    f = cephes.eval_legendre
    df = lambda n, x: (-n*x*cephes.eval_legendre(n, x)
                     + n*cephes.eval_legendre(n-1, x))/(1-x**2)
    return _gen_roots_and_weights(m, mu0, an_func, bn_func, f, df, True, mu)


def legendre(n, monic=False):
    """
    Legendre polynomial coefficients

    Returns the nth-order Legendre polynomial, P_n(x), orthogonal over
    [-1, 1] with weight function 1.

    Parameters
    ----------
    n
        Order of the polynomial
    monic : bool, optional
        If True, output is a monic polynomial (normalized so the leading
        coefficient is 1).  Default is False.

    Returns
    -------
    P : orthopoly1d
        The Legendre polynomial object

    Examples
    --------
    Generate the 3rd-order Legendre polynomial 1/2*(5x^3 + 0x^2 - 3x + 0):

    >>> from scipy.special import legendre
    >>> legendre(3)
    poly1d([ 2.5,  0. , -1.5,  0. ])

    """
    if n < 0:
        raise ValueError("n must be nonnegative.")

    if n == 0:
        n1 = n + 1
    else:
        n1 = n
    x, w, mu0 = p_roots(n1, mu=True)
    if n == 0:
        x, w = [], []
    hn = 2.0 / (2 * n + 1)
    kn = _gam(2 * n + 1) / _gam(n + 1)**2 / 2.0**n
    p = orthopoly1d(x, w, hn, kn, wfunc=lambda x: 1.0, limits=(-1, 1),
                    monic=monic, eval_func=lambda x: eval_legendre(n, x))
    return p

# Shifted Legendre              P^*_n(x)


def ps_roots(n, mu=False):
    r"""Gauss-Legendre (shifted) quadrature.

    Computes the sample points and weights for Gauss-Legendre quadrature.
    The sample points are the roots of the n-th degree shifted Legendre
    polynomial :math:`P^*_n(x)`.  These sample points and weights correctly
    integrate polynomials of degree :math:`2n - 1` or less over the interval
    :math:`[0, 1]` with weight function :math:`f(x) = 1.0`.

    Parameters
    ----------
    n : int
        quadrature order
    mu : bool, optional
        If True, return the sum of the weights, optional.

    Returns
    -------
    x : ndarray
        Sample points
    w : ndarray
        Weights
    mu : float
        Sum of the weights

    See Also
    --------
    scipy.integrate.quadrature
    scipy.integrate.fixed_quad
    """
    x, w = p_roots(n)
    x = (x + 1) / 2
    w /= 2
    if mu:
        return x, w, 1.0
    else:
        return x, w

def sh_legendre(n, monic=False):
    """Returns the nth order shifted Legendre polynomial, P^*_n(x), orthogonal
    over [0,1] with weighting function 1.
    """
    if n < 0:
        raise ValueError("n must be nonnegative.")

    wfunc = lambda x: 0.0 * x + 1.0
    if n == 0:
        return orthopoly1d([], [], 1.0, 1.0, wfunc, (0, 1), monic,
                           lambda x: eval_sh_legendre(n, x))
    x, w, mu0 = ps_roots(n, mu=True)
    hn = 1.0 / (2 * n + 1.0)
    kn = _gam(2 * n + 1) / _gam(n + 1)**2
    p = orthopoly1d(x, w, hn, kn, wfunc, limits=(0, 1), monic=monic,
                    eval_func=lambda x: eval_sh_legendre(n, x))
    return p

# -----------------------------------------------------------------------------
# Vectorized functions for evaluation
# -----------------------------------------------------------------------------
from ._ufuncs import (binom, eval_jacobi, eval_sh_jacobi, eval_gegenbauer,
                      eval_chebyt, eval_chebyu, eval_chebys, eval_chebyc,
                      eval_sh_chebyt, eval_sh_chebyu, eval_legendre,
                      eval_sh_legendre, eval_genlaguerre, eval_laguerre,
                      eval_hermite, eval_hermitenorm)