1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
#
# Tests for the Ellipsoidal Harmonic Function,
# Distributed under the same license as SciPy itself.
#
from __future__ import division, print_function, absolute_import
import warnings
import numpy as np
from numpy.testing import (assert_equal, assert_almost_equal, assert_allclose,
assert_, run_module_suite)
from scipy.special._testutils import assert_func_equal
from scipy.special import ellip_harm, ellip_harm_2, ellip_normal
from scipy.integrate import IntegrationWarning
from numpy import sqrt, pi
def test_ellip_potential():
def change_coefficient(lambda1, mu, nu, h2, k2):
x = sqrt(lambda1**2*mu**2*nu**2/(h2*k2))
y = sqrt((lambda1**2 - h2)*(mu**2 - h2)*(h2 - nu**2)/(h2*(k2 - h2)))
z = sqrt((lambda1**2 - k2)*(k2 - mu**2)*(k2 - nu**2)/(k2*(k2 - h2)))
return x, y, z
def solid_int_ellip(lambda1, mu, nu, n, p, h2, k2):
return (ellip_harm(h2, k2, n, p, lambda1)*ellip_harm(h2, k2, n, p, mu)
* ellip_harm(h2, k2, n, p, nu))
def solid_int_ellip2(lambda1, mu, nu, n, p, h2, k2):
return (ellip_harm_2(h2, k2, n, p, lambda1)
* ellip_harm(h2, k2, n, p, mu)*ellip_harm(h2, k2, n, p, nu))
def summation(lambda1, mu1, nu1, lambda2, mu2, nu2, h2, k2):
tol = 1e-8
sum1 = 0
for n in range(20):
xsum = 0
for p in range(1, 2*n+2):
xsum += (4*pi*(solid_int_ellip(lambda2, mu2, nu2, n, p, h2, k2)
* solid_int_ellip2(lambda1, mu1, nu1, n, p, h2, k2)) /
(ellip_normal(h2, k2, n, p)*(2*n + 1)))
if abs(xsum) < 0.1*tol*abs(sum1):
break
sum1 += xsum
return sum1, xsum
def potential(lambda1, mu1, nu1, lambda2, mu2, nu2, h2, k2):
x1, y1, z1 = change_coefficient(lambda1, mu1, nu1, h2, k2)
x2, y2, z2 = change_coefficient(lambda2, mu2, nu2, h2, k2)
res = sqrt((x2 - x1)**2 + (y2 - y1)**2 + (z2 - z1)**2)
return 1/res
pts = [
(120, sqrt(19), 2, 41, sqrt(17), 2, 15, 25),
(120, sqrt(16), 3.2, 21, sqrt(11), 2.9, 11, 20),
]
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=IntegrationWarning)
for p in pts:
err_msg = repr(p)
exact = potential(*p)
result, last_term = summation(*p)
assert_allclose(exact, result, atol=0, rtol=1e-8, err_msg=err_msg)
assert_(abs(result - exact) < 10*abs(last_term), err_msg)
def test_ellip_norm():
def G01(h2, k2):
return 4*pi
def G11(h2, k2):
return 4*pi*h2*k2/3
def G12(h2, k2):
return 4*pi*h2*(k2 - h2)/3
def G13(h2, k2):
return 4*pi*k2*(k2 - h2)/3
def G22(h2, k2):
res = (2*(h2**4 + k2**4) - 4*h2*k2*(h2**2 + k2**2) + 6*h2**2*k2**2 +
sqrt(h2**2 + k2**2 - h2*k2)*(-2*(h2**3 + k2**3) + 3*h2*k2*(h2 + k2)))
return 16*pi/405*res
def G21(h2, k2):
res = (2*(h2**4 + k2**4) - 4*h2*k2*(h2**2 + k2**2) + 6*h2**2*k2**2
+ sqrt(h2**2 + k2**2 - h2*k2)*(2*(h2**3 + k2**3) - 3*h2*k2*(h2 + k2)))
return 16*pi/405*res
def G23(h2, k2):
return 4*pi*h2**2*k2*(k2 - h2)/15
def G24(h2, k2):
return 4*pi*h2*k2**2*(k2 - h2)/15
def G25(h2, k2):
return 4*pi*h2*k2*(k2 - h2)**2/15
def G32(h2, k2):
res = (16*(h2**4 + k2**4) - 36*h2*k2*(h2**2 + k2**2) + 46*h2**2*k2**2
+ sqrt(4*(h2**2 + k2**2) - 7*h2*k2)*(-8*(h2**3 + k2**3) +
11*h2*k2*(h2 + k2)))
return 16*pi/13125*k2*h2*res
def G31(h2, k2):
res = (16*(h2**4 + k2**4) - 36*h2*k2*(h2**2 + k2**2) + 46*h2**2*k2**2
+ sqrt(4*(h2**2 + k2**2) - 7*h2*k2)*(8*(h2**3 + k2**3) -
11*h2*k2*(h2 + k2)))
return 16*pi/13125*h2*k2*res
def G34(h2, k2):
res = (6*h2**4 + 16*k2**4 - 12*h2**3*k2 - 28*h2*k2**3 + 34*h2**2*k2**2
+ sqrt(h2**2 + 4*k2**2 - h2*k2)*(-6*h2**3 - 8*k2**3 + 9*h2**2*k2 +
13*h2*k2**2))
return 16*pi/13125*h2*(k2 - h2)*res
def G33(h2, k2):
res = (6*h2**4 + 16*k2**4 - 12*h2**3*k2 - 28*h2*k2**3 + 34*h2**2*k2**2
+ sqrt(h2**2 + 4*k2**2 - h2*k2)*(6*h2**3 + 8*k2**3 - 9*h2**2*k2 -
13*h2*k2**2))
return 16*pi/13125*h2*(k2 - h2)*res
def G36(h2, k2):
res = (16*h2**4 + 6*k2**4 - 28*h2**3*k2 - 12*h2*k2**3 + 34*h2**2*k2**2
+ sqrt(4*h2**2 + k2**2 - h2*k2)*(-8*h2**3 - 6*k2**3 + 13*h2**2*k2 +
9*h2*k2**2))
return 16*pi/13125*k2*(k2 - h2)*res
def G35(h2, k2):
res = (16*h2**4 + 6*k2**4 - 28*h2**3*k2 - 12*h2*k2**3 + 34*h2**2*k2**2
+ sqrt(4*h2**2 + k2**2 - h2*k2)*(8*h2**3 + 6*k2**3 - 13*h2**2*k2 -
9*h2*k2**2))
return 16*pi/13125*k2*(k2 - h2)*res
def G37(h2, k2):
return 4*pi*h2**2*k2**2*(k2 - h2)**2/105
known_funcs = {(0, 1): G01, (1, 1): G11, (1, 2): G12, (1, 3): G13,
(2, 1): G21, (2, 2): G22, (2, 3): G23, (2, 4): G24,
(2, 5): G25, (3, 1): G31, (3, 2): G32, (3, 3): G33,
(3, 4): G34, (3, 5): G35, (3, 6): G36, (3, 7): G37}
def _ellip_norm(n, p, h2, k2):
func = known_funcs[n, p]
return func(h2, k2)
_ellip_norm = np.vectorize(_ellip_norm)
def ellip_normal_known(h2, k2, n, p):
return _ellip_norm(n, p, h2, k2)
# generate both large and small h2 < k2 pairs
np.random.seed(1234)
h2 = np.random.pareto(0.5, size=1)
k2 = h2 * (1 + np.random.pareto(0.5, size=h2.size))
points = []
for n in range(4):
for p in range(1, 2*n+2):
points.append((h2, k2, n*np.ones(h2.size), p*np.ones(h2.size)))
points = np.array(points)
with warnings.catch_warnings(record=True): # occurrence of roundoff ...
assert_func_equal(ellip_normal, ellip_normal_known, points, rtol=1e-12)
def test_ellip_harm_2():
def I1(h2, k2, s):
res = (ellip_harm_2(h2, k2, 1, 1, s)/(3 * ellip_harm(h2, k2, 1, 1, s))
+ ellip_harm_2(h2, k2, 1, 2, s)/(3 * ellip_harm(h2, k2, 1, 2, s)) +
ellip_harm_2(h2, k2, 1, 3, s)/(3 * ellip_harm(h2, k2, 1, 3, s)))
return res
with warnings.catch_warnings(record=True): # occurrence of roundoff ...
assert_almost_equal(I1(5, 8, 10), 1/(10*sqrt((100-5)*(100-8))))
# Values produced by code from arXiv:1204.0267
assert_almost_equal(ellip_harm_2(5, 8, 2, 1, 10), 0.00108056853382)
assert_almost_equal(ellip_harm_2(5, 8, 2, 2, 10), 0.00105820513809)
assert_almost_equal(ellip_harm_2(5, 8, 2, 3, 10), 0.00106058384743)
assert_almost_equal(ellip_harm_2(5, 8, 2, 4, 10), 0.00106774492306)
assert_almost_equal(ellip_harm_2(5, 8, 2, 5, 10), 0.00107976356454)
def test_ellip_harm():
def E01(h2, k2, s):
return 1
def E11(h2, k2, s):
return s
def E12(h2, k2, s):
return sqrt(abs(s*s - h2))
def E13(h2, k2, s):
return sqrt(abs(s*s - k2))
def E21(h2, k2, s):
return s*s - 1/3*((h2 + k2) + sqrt(abs((h2 + k2)*(h2 + k2)-3*h2*k2)))
def E22(h2, k2, s):
return s*s - 1/3*((h2 + k2) - sqrt(abs((h2 + k2)*(h2 + k2)-3*h2*k2)))
def E23(h2, k2, s):
return s * sqrt(abs(s*s - h2))
def E24(h2, k2, s):
return s * sqrt(abs(s*s - k2))
def E25(h2, k2, s):
return sqrt(abs((s*s - h2)*(s*s - k2)))
def E31(h2, k2, s):
return s*s*s - (s/5)*(2*(h2 + k2) + sqrt(4*(h2 + k2)*(h2 + k2) -
15*h2*k2))
def E32(h2, k2, s):
return s*s*s - (s/5)*(2*(h2 + k2) - sqrt(4*(h2 + k2)*(h2 + k2) -
15*h2*k2))
def E33(h2, k2, s):
return sqrt(abs(s*s - h2))*(s*s - 1/5*((h2 + 2*k2) + sqrt(abs((h2 +
2*k2)*(h2 + 2*k2) - 5*h2*k2))))
def E34(h2, k2, s):
return sqrt(abs(s*s - h2))*(s*s - 1/5*((h2 + 2*k2) - sqrt(abs((h2 +
2*k2)*(h2 + 2*k2) - 5*h2*k2))))
def E35(h2, k2, s):
return sqrt(abs(s*s - k2))*(s*s - 1/5*((2*h2 + k2) + sqrt(abs((2*h2
+ k2)*(2*h2 + k2) - 5*h2*k2))))
def E36(h2, k2, s):
return sqrt(abs(s*s - k2))*(s*s - 1/5*((2*h2 + k2) - sqrt(abs((2*h2
+ k2)*(2*h2 + k2) - 5*h2*k2))))
def E37(h2, k2, s):
return s * sqrt(abs((s*s - h2)*(s*s - k2)))
assert_equal(ellip_harm(5, 8, 1, 2, 2.5, 1, 1),
ellip_harm(5, 8, 1, 2, 2.5))
known_funcs = {(0, 1): E01, (1, 1): E11, (1, 2): E12, (1, 3): E13,
(2, 1): E21, (2, 2): E22, (2, 3): E23, (2, 4): E24,
(2, 5): E25, (3, 1): E31, (3, 2): E32, (3, 3): E33,
(3, 4): E34, (3, 5): E35, (3, 6): E36, (3, 7): E37}
point_ref = []
def ellip_harm_known(h2, k2, n, p, s):
for i in range(h2.size):
func = known_funcs[(int(n[i]), int(p[i]))]
point_ref.append(func(h2[i], k2[i], s[i]))
return point_ref
np.random.seed(1234)
h2 = np.random.pareto(0.5, size=30)
k2 = h2*(1 + np.random.pareto(0.5, size=h2.size))
s = np.random.pareto(0.5, size=h2.size)
points = []
for i in range(h2.size):
for n in range(4):
for p in range(1, 2*n+2):
points.append((h2[i], k2[i], n, p, s[i]))
points = np.array(points)
assert_func_equal(ellip_harm, ellip_harm_known, points, rtol=1e-12)
if __name__ == "__main__":
run_module_suite()
|