File: test_ellip_harm.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (274 lines) | stat: -rw-r--r-- 9,413 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#
# Tests for the Ellipsoidal Harmonic Function,
# Distributed under the same license as SciPy itself.
#

from __future__ import division, print_function, absolute_import

import warnings

import numpy as np
from numpy.testing import (assert_equal, assert_almost_equal, assert_allclose,
                           assert_, run_module_suite)
from scipy.special._testutils import assert_func_equal
from scipy.special import ellip_harm, ellip_harm_2, ellip_normal
from scipy.integrate import IntegrationWarning
from numpy import sqrt, pi


def test_ellip_potential():
    def change_coefficient(lambda1, mu, nu, h2, k2):
        x = sqrt(lambda1**2*mu**2*nu**2/(h2*k2))
        y = sqrt((lambda1**2 - h2)*(mu**2 - h2)*(h2 - nu**2)/(h2*(k2 - h2)))
        z = sqrt((lambda1**2 - k2)*(k2 - mu**2)*(k2 - nu**2)/(k2*(k2 - h2)))
        return x, y, z

    def solid_int_ellip(lambda1, mu, nu, n, p, h2, k2):
        return (ellip_harm(h2, k2, n, p, lambda1)*ellip_harm(h2, k2, n, p, mu)
               * ellip_harm(h2, k2, n, p, nu))

    def solid_int_ellip2(lambda1, mu, nu, n, p, h2, k2):
        return (ellip_harm_2(h2, k2, n, p, lambda1)
                * ellip_harm(h2, k2, n, p, mu)*ellip_harm(h2, k2, n, p, nu))

    def summation(lambda1, mu1, nu1, lambda2, mu2, nu2, h2, k2):
        tol = 1e-8
        sum1 = 0
        for n in range(20):
            xsum = 0
            for p in range(1, 2*n+2):
                xsum += (4*pi*(solid_int_ellip(lambda2, mu2, nu2, n, p, h2, k2)
                    * solid_int_ellip2(lambda1, mu1, nu1, n, p, h2, k2)) /
                    (ellip_normal(h2, k2, n, p)*(2*n + 1)))
            if abs(xsum) < 0.1*tol*abs(sum1):
                break
            sum1 += xsum
        return sum1, xsum

    def potential(lambda1, mu1, nu1, lambda2, mu2, nu2, h2, k2):
        x1, y1, z1 = change_coefficient(lambda1, mu1, nu1, h2, k2)
        x2, y2, z2 = change_coefficient(lambda2, mu2, nu2, h2, k2)
        res = sqrt((x2 - x1)**2 + (y2 - y1)**2 + (z2 - z1)**2)
        return 1/res

    pts = [
        (120, sqrt(19), 2, 41, sqrt(17), 2, 15, 25),
        (120, sqrt(16), 3.2, 21, sqrt(11), 2.9, 11, 20),
       ]

    with warnings.catch_warnings():
        warnings.simplefilter("ignore", category=IntegrationWarning)

        for p in pts:
            err_msg = repr(p)
            exact = potential(*p)
            result, last_term = summation(*p)
            assert_allclose(exact, result, atol=0, rtol=1e-8, err_msg=err_msg)
            assert_(abs(result - exact) < 10*abs(last_term), err_msg)


def test_ellip_norm():

    def G01(h2, k2):
        return 4*pi

    def G11(h2, k2):
        return 4*pi*h2*k2/3

    def G12(h2, k2):
        return 4*pi*h2*(k2 - h2)/3

    def G13(h2, k2):
        return 4*pi*k2*(k2 - h2)/3

    def G22(h2, k2):
        res = (2*(h2**4 + k2**4) - 4*h2*k2*(h2**2 + k2**2) + 6*h2**2*k2**2 +
        sqrt(h2**2 + k2**2 - h2*k2)*(-2*(h2**3 + k2**3) + 3*h2*k2*(h2 + k2)))
        return 16*pi/405*res

    def G21(h2, k2):
        res = (2*(h2**4 + k2**4) - 4*h2*k2*(h2**2 + k2**2) + 6*h2**2*k2**2
        + sqrt(h2**2 + k2**2 - h2*k2)*(2*(h2**3 + k2**3) - 3*h2*k2*(h2 + k2)))
        return 16*pi/405*res

    def G23(h2, k2):
        return 4*pi*h2**2*k2*(k2 - h2)/15

    def G24(h2, k2):
        return 4*pi*h2*k2**2*(k2 - h2)/15

    def G25(h2, k2):
        return 4*pi*h2*k2*(k2 - h2)**2/15

    def G32(h2, k2):
        res = (16*(h2**4 + k2**4) - 36*h2*k2*(h2**2 + k2**2) + 46*h2**2*k2**2
        + sqrt(4*(h2**2 + k2**2) - 7*h2*k2)*(-8*(h2**3 + k2**3) +
        11*h2*k2*(h2 + k2)))
        return 16*pi/13125*k2*h2*res

    def G31(h2, k2):
        res = (16*(h2**4 + k2**4) - 36*h2*k2*(h2**2 + k2**2) + 46*h2**2*k2**2
        + sqrt(4*(h2**2 + k2**2) - 7*h2*k2)*(8*(h2**3 + k2**3) -
        11*h2*k2*(h2 + k2)))
        return 16*pi/13125*h2*k2*res

    def G34(h2, k2):
        res = (6*h2**4 + 16*k2**4 - 12*h2**3*k2 - 28*h2*k2**3 + 34*h2**2*k2**2
        + sqrt(h2**2 + 4*k2**2 - h2*k2)*(-6*h2**3 - 8*k2**3 + 9*h2**2*k2 +
                                            13*h2*k2**2))
        return 16*pi/13125*h2*(k2 - h2)*res

    def G33(h2, k2):
        res = (6*h2**4 + 16*k2**4 - 12*h2**3*k2 - 28*h2*k2**3 + 34*h2**2*k2**2
        + sqrt(h2**2 + 4*k2**2 - h2*k2)*(6*h2**3 + 8*k2**3 - 9*h2**2*k2 -
        13*h2*k2**2))
        return 16*pi/13125*h2*(k2 - h2)*res

    def G36(h2, k2):
        res = (16*h2**4 + 6*k2**4 - 28*h2**3*k2 - 12*h2*k2**3 + 34*h2**2*k2**2
        + sqrt(4*h2**2 + k2**2 - h2*k2)*(-8*h2**3 - 6*k2**3 + 13*h2**2*k2 +
        9*h2*k2**2))
        return 16*pi/13125*k2*(k2 - h2)*res

    def G35(h2, k2):
        res = (16*h2**4 + 6*k2**4 - 28*h2**3*k2 - 12*h2*k2**3 + 34*h2**2*k2**2
        + sqrt(4*h2**2 + k2**2 - h2*k2)*(8*h2**3 + 6*k2**3 - 13*h2**2*k2 -
        9*h2*k2**2))
        return 16*pi/13125*k2*(k2 - h2)*res

    def G37(h2, k2):
        return 4*pi*h2**2*k2**2*(k2 - h2)**2/105

    known_funcs = {(0, 1): G01, (1, 1): G11, (1, 2): G12, (1, 3): G13,
                   (2, 1): G21, (2, 2): G22, (2, 3): G23, (2, 4): G24,
                   (2, 5): G25, (3, 1): G31, (3, 2): G32, (3, 3): G33,
                   (3, 4): G34, (3, 5): G35, (3, 6): G36, (3, 7): G37}

    def _ellip_norm(n, p, h2, k2):
        func = known_funcs[n, p]
        return func(h2, k2)
    _ellip_norm = np.vectorize(_ellip_norm)

    def ellip_normal_known(h2, k2, n, p):
        return _ellip_norm(n, p, h2, k2)

    # generate both large and small h2 < k2 pairs
    np.random.seed(1234)
    h2 = np.random.pareto(0.5, size=1)
    k2 = h2 * (1 + np.random.pareto(0.5, size=h2.size))

    points = []
    for n in range(4):
        for p in range(1, 2*n+2):
            points.append((h2, k2, n*np.ones(h2.size), p*np.ones(h2.size)))
    points = np.array(points)
    with warnings.catch_warnings(record=True):  # occurrence of roundoff ...
        assert_func_equal(ellip_normal, ellip_normal_known, points, rtol=1e-12)


def test_ellip_harm_2():

    def I1(h2, k2, s):
        res = (ellip_harm_2(h2, k2, 1, 1, s)/(3 * ellip_harm(h2, k2, 1, 1, s))
        + ellip_harm_2(h2, k2, 1, 2, s)/(3 * ellip_harm(h2, k2, 1, 2, s)) +
        ellip_harm_2(h2, k2, 1, 3, s)/(3 * ellip_harm(h2, k2, 1, 3, s)))
        return res

    with warnings.catch_warnings(record=True):  # occurrence of roundoff ...
        assert_almost_equal(I1(5, 8, 10), 1/(10*sqrt((100-5)*(100-8))))

        # Values produced by code from arXiv:1204.0267
        assert_almost_equal(ellip_harm_2(5, 8, 2, 1, 10), 0.00108056853382)
        assert_almost_equal(ellip_harm_2(5, 8, 2, 2, 10), 0.00105820513809)
        assert_almost_equal(ellip_harm_2(5, 8, 2, 3, 10), 0.00106058384743)
        assert_almost_equal(ellip_harm_2(5, 8, 2, 4, 10), 0.00106774492306)
        assert_almost_equal(ellip_harm_2(5, 8, 2, 5, 10), 0.00107976356454)


def test_ellip_harm():

    def E01(h2, k2, s):
        return 1

    def E11(h2, k2, s):
        return s

    def E12(h2, k2, s):
        return sqrt(abs(s*s - h2))

    def E13(h2, k2, s):
        return sqrt(abs(s*s - k2))

    def E21(h2, k2, s):
        return s*s - 1/3*((h2 + k2) + sqrt(abs((h2 + k2)*(h2 + k2)-3*h2*k2)))

    def E22(h2, k2, s):
        return s*s - 1/3*((h2 + k2) - sqrt(abs((h2 + k2)*(h2 + k2)-3*h2*k2)))

    def E23(h2, k2, s):
        return s * sqrt(abs(s*s - h2))

    def E24(h2, k2, s):
        return s * sqrt(abs(s*s - k2))

    def E25(h2, k2, s):
        return sqrt(abs((s*s - h2)*(s*s - k2)))

    def E31(h2, k2, s):
        return s*s*s - (s/5)*(2*(h2 + k2) + sqrt(4*(h2 + k2)*(h2 + k2) -
        15*h2*k2))

    def E32(h2, k2, s):
        return s*s*s - (s/5)*(2*(h2 + k2) - sqrt(4*(h2 + k2)*(h2 + k2) -
        15*h2*k2))

    def E33(h2, k2, s):
        return sqrt(abs(s*s - h2))*(s*s - 1/5*((h2 + 2*k2) + sqrt(abs((h2 +
        2*k2)*(h2 + 2*k2) - 5*h2*k2))))

    def E34(h2, k2, s):
        return sqrt(abs(s*s - h2))*(s*s - 1/5*((h2 + 2*k2) - sqrt(abs((h2 +
        2*k2)*(h2 + 2*k2) - 5*h2*k2))))

    def E35(h2, k2, s):
        return sqrt(abs(s*s - k2))*(s*s - 1/5*((2*h2 + k2) + sqrt(abs((2*h2
        + k2)*(2*h2 + k2) - 5*h2*k2))))

    def E36(h2, k2, s):
        return sqrt(abs(s*s - k2))*(s*s - 1/5*((2*h2 + k2) - sqrt(abs((2*h2
        + k2)*(2*h2 + k2) - 5*h2*k2))))

    def E37(h2, k2, s):
        return s * sqrt(abs((s*s - h2)*(s*s - k2)))

    assert_equal(ellip_harm(5, 8, 1, 2, 2.5, 1, 1),
    ellip_harm(5, 8, 1, 2, 2.5))

    known_funcs = {(0, 1): E01, (1, 1): E11, (1, 2): E12, (1, 3): E13,
                   (2, 1): E21, (2, 2): E22, (2, 3): E23, (2, 4): E24,
                   (2, 5): E25, (3, 1): E31, (3, 2): E32, (3, 3): E33,
                   (3, 4): E34, (3, 5): E35, (3, 6): E36, (3, 7): E37}

    point_ref = []

    def ellip_harm_known(h2, k2, n, p, s):
        for i in range(h2.size):
            func = known_funcs[(int(n[i]), int(p[i]))]
            point_ref.append(func(h2[i], k2[i], s[i]))
        return point_ref

    np.random.seed(1234)
    h2 = np.random.pareto(0.5, size=30)
    k2 = h2*(1 + np.random.pareto(0.5, size=h2.size))
    s = np.random.pareto(0.5, size=h2.size)
    points = []
    for i in range(h2.size):
        for n in range(4):
            for p in range(1, 2*n+2):
                points.append((h2[i], k2[i], n, p, s[i]))
    points = np.array(points)
    assert_func_equal(ellip_harm, ellip_harm_known, points, rtol=1e-12)


if __name__ == "__main__":
    run_module_suite()