File: _binned_statistic.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (611 lines) | stat: -rw-r--r-- 25,272 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
from __future__ import division, print_function, absolute_import

import warnings

import numpy as np
from scipy._lib.six import callable, xrange
from collections import namedtuple

__all__ = ['binned_statistic',
           'binned_statistic_2d',
           'binned_statistic_dd']


BinnedStatisticResult = namedtuple('BinnedStatisticResult',
                                   ('statistic', 'bin_edges', 'binnumber'))


def binned_statistic(x, values, statistic='mean',
                     bins=10, range=None):
    """
    Compute a binned statistic for one or more sets of data.

    This is a generalization of a histogram function.  A histogram divides
    the space into bins, and returns the count of the number of points in
    each bin.  This function allows the computation of the sum, mean, median,
    or other statistic of the values (or set of values) within each bin.

    Parameters
    ----------
    x : (N,) array_like
        A sequence of values to be binned.
    values : (N,) array_like or list of (N,) array_like
        The data on which the statistic will be computed.  This must be
        the same shape as `x`, or a set of sequences - each the same shape as
        `x`.  If `values` is a set of sequences, the statistic will be computed
        on each independently.
    statistic : string or callable, optional
        The statistic to compute (default is 'mean').
        The following statistics are available:

          * 'mean' : compute the mean of values for points within each bin.
            Empty bins will be represented by NaN.
          * 'median' : compute the median of values for points within each
            bin. Empty bins will be represented by NaN.
          * 'count' : compute the count of points within each bin.  This is
            identical to an unweighted histogram.  `values` array is not
            referenced.
          * 'sum' : compute the sum of values for points within each bin.
            This is identical to a weighted histogram.
          * function : a user-defined function which takes a 1D array of
            values, and outputs a single numerical statistic. This function
            will be called on the values in each bin.  Empty bins will be
            represented by function([]), or NaN if this returns an error.

    bins : int or sequence of scalars, optional
        If `bins` is an int, it defines the number of equal-width bins in the
        given range (10 by default).  If `bins` is a sequence, it defines the
        bin edges, including the rightmost edge, allowing for non-uniform bin
        widths.  Values in `x` that are smaller than lowest bin edge are
        assigned to bin number 0, values beyond the highest bin are assigned to
        ``bins[-1]``.  If the bin edges are specified, the number of bins will
        be, (nx = len(bins)-1).
    range : (float, float) or [(float, float)], optional
        The lower and upper range of the bins.  If not provided, range
        is simply ``(x.min(), x.max())``.  Values outside the range are
        ignored.

    Returns
    -------
    statistic : array
        The values of the selected statistic in each bin.
    bin_edges : array of dtype float
        Return the bin edges ``(length(statistic)+1)``.
    binnumber: 1-D ndarray of ints
        Indices of the bins (corresponding to `bin_edges`) in which each value
        of `x` belongs.  Same length as `values`.  A binnumber of `i` means the
        corresponding value is between (bin_edges[i-1], bin_edges[i]).

    See Also
    --------
    numpy.digitize, numpy.histogram, binned_statistic_2d, binned_statistic_dd

    Notes
    -----
    All but the last (righthand-most) bin is half-open.  In other words, if
    `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1,
    but excluding 2) and the second ``[2, 3)``.  The last bin, however, is
    ``[3, 4]``, which *includes* 4.

    .. versionadded:: 0.11.0

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt

    First some basic examples:

    Create two evenly spaced bins in the range of the given sample, and sum the
    corresponding values in each of those bins:

    >>> values = [1.0, 1.0, 2.0, 1.5, 3.0]
    >>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2)
    (array([ 4. ,  4.5]), array([ 1.,  4.,  7.]), array([1, 1, 1, 2, 2]))

    Multiple arrays of values can also be passed.  The statistic is calculated
    on each set independently:

    >>> values = [[1.0, 1.0, 2.0, 1.5, 3.0], [2.0, 2.0, 4.0, 3.0, 6.0]]
    >>> stats.binned_statistic([1, 1, 2, 5, 7], values, 'sum', bins=2)
    (array([[ 4. ,  4.5], [ 8. ,  9. ]]), array([ 1.,  4.,  7.]),
        array([1, 1, 1, 2, 2]))

    >>> stats.binned_statistic([1, 2, 1, 2, 4], np.arange(5), statistic='mean',
    ...                        bins=3)
    (array([ 1.,  2.,  4.]), array([ 1.,  2.,  3.,  4.]),
        array([1, 2, 1, 2, 3]))

    As a second example, we now generate some random data of sailing boat speed
    as a function of wind speed, and then determine how fast our boat is for
    certain wind speeds:

    >>> windspeed = 8 * np.random.rand(500)
    >>> boatspeed = .3 * windspeed**.5 + .2 * np.random.rand(500)
    >>> bin_means, bin_edges, binnumber = stats.binned_statistic(windspeed,
    ...                 boatspeed, statistic='median', bins=[1,2,3,4,5,6,7])
    >>> plt.figure()
    >>> plt.plot(windspeed, boatspeed, 'b.', label='raw data')
    >>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=5,
    ...            label='binned statistic of data')
    >>> plt.legend()

    Now we can use ``binnumber`` to select all datapoints with a windspeed
    below 1:

    >>> low_boatspeed = boatspeed[binnumber == 0]

    As a final example, we will use ``bin_edges`` and ``binnumber`` to make a
    plot of a distribution that shows the mean and distribution around that
    mean per bin, on top of a regular histogram and the probability
    distribution function:

    >>> x = np.linspace(0, 5, num=500)
    >>> x_pdf = stats.maxwell.pdf(x)
    >>> samples = stats.maxwell.rvs(size=10000)

    >>> bin_means, bin_edges, binnumber = stats.binned_statistic(x, x_pdf,
    ...         statistic='mean', bins=25)
    >>> bin_width = (bin_edges[1] - bin_edges[0])
    >>> bin_centers = bin_edges[1:] - bin_width/2

    >>> plt.figure()
    >>> plt.hist(samples, bins=50, normed=True, histtype='stepfilled',
    ...          alpha=0.2, label='histogram of data')
    >>> plt.plot(x, x_pdf, 'r-', label='analytical pdf')
    >>> plt.hlines(bin_means, bin_edges[:-1], bin_edges[1:], colors='g', lw=2,
    ...            label='binned statistic of data')
    >>> plt.plot((binnumber - 0.5) * bin_width, x_pdf, 'g.', alpha=0.5)
    >>> plt.legend(fontsize=10)
    >>> plt.show()

    """
    try:
        N = len(bins)
    except TypeError:
        N = 1

    if N != 1:
        bins = [np.asarray(bins, float)]

    if range is not None:
        if len(range) == 2:
            range = [range]

    medians, edges, binnumbers = binned_statistic_dd(
        [x], values, statistic, bins, range)

    return BinnedStatisticResult(medians, edges[0], binnumbers)


BinnedStatistic2dResult = namedtuple('BinnedStatistic2dResult',
                                     ('statistic', 'x_edge', 'y_edge',
                                      'binnumber'))


def binned_statistic_2d(x, y, values, statistic='mean',
                        bins=10, range=None, expand_binnumbers=False):
    """
    Compute a bidimensional binned statistic for one or more sets of data.

    This is a generalization of a histogram2d function.  A histogram divides
    the space into bins, and returns the count of the number of points in
    each bin.  This function allows the computation of the sum, mean, median,
    or other statistic of the values (or set of values) within each bin.

    Parameters
    ----------
    x : (N,) array_like
        A sequence of values to be binned along the first dimension.
    y : (N,) array_like
        A sequence of values to be binned along the second dimension.
    values : (N,) array_like or list of (N,) array_like
        The data on which the statistic will be computed.  This must be
        the same shape as `x`, or a list of sequences - each with the same
        shape as `x`.  If `values` is such a list, the statistic will be
        computed on each independently.
    statistic : string or callable, optional
        The statistic to compute (default is 'mean').
        The following statistics are available:

          * 'mean' : compute the mean of values for points within each bin.
            Empty bins will be represented by NaN.
          * 'median' : compute the median of values for points within each
            bin. Empty bins will be represented by NaN.
          * 'count' : compute the count of points within each bin.  This is
            identical to an unweighted histogram.  `values` array is not
            referenced.
          * 'sum' : compute the sum of values for points within each bin.
            This is identical to a weighted histogram.
          * function : a user-defined function which takes a 1D array of
            values, and outputs a single numerical statistic. This function
            will be called on the values in each bin.  Empty bins will be
            represented by function([]), or NaN if this returns an error.

    bins : int or [int, int] or array_like or [array, array], optional
        The bin specification:

          * the number of bins for the two dimensions (nx = ny = bins),
          * the number of bins in each dimension (nx, ny = bins),
          * the bin edges for the two dimensions (x_edge = y_edge = bins),
          * the bin edges in each dimension (x_edge, y_edge = bins).

        If the bin edges are specified, the number of bins will be,
        (nx = len(x_edge)-1, ny = len(y_edge)-1).

    range : (2,2) array_like, optional
        The leftmost and rightmost edges of the bins along each dimension
        (if not specified explicitly in the `bins` parameters):
        [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be
        considered outliers and not tallied in the histogram.
    expand_binnumbers : bool, optional
        'False' (default): the returned `binnumber` is a shape (N,) array of
        linearized bin indices.
        'True': the returned `binnumber` is 'unraveled' into a shape (2,N)
        ndarray, where each row gives the bin numbers in the corresponding
        dimension.
        See the `binnumber` returned value, and the `Examples` section.

        .. versionadded:: 0.17.0

    Returns
    -------
    statistic : (nx, ny) ndarray
        The values of the selected statistic in each two-dimensional bin.
    x_edge : (nx + 1) ndarray
        The bin edges along the first dimension.
    y_edge : (ny + 1) ndarray
        The bin edges along the second dimension.
    binnumber : (N,) array of ints or (2,N) ndarray of ints
        This assigns to each element of `sample` an integer that represents the
        bin in which this observation falls.  The representation depends on the
        `expand_binnumbers` argument.  See `Notes` for details.


    See Also
    --------
    numpy.digitize, numpy.histogram2d, binned_statistic, binned_statistic_dd

    Notes
    -----
    Binedges:
    All but the last (righthand-most) bin is half-open.  In other words, if
    `bins` is ``[1, 2, 3, 4]``, then the first bin is ``[1, 2)`` (including 1,
    but excluding 2) and the second ``[2, 3)``.  The last bin, however, is
    ``[3, 4]``, which *includes* 4.

    `binnumber`:
    This returned argument assigns to each element of `sample` an integer that
    represents the bin in which it belongs.  The representation depends on the
    `expand_binnumbers` argument. If 'False' (default): The returned
    `binnumber` is a shape (N,) array of linearized indices mapping each
    element of `sample` to its corresponding bin (using row-major ordering).
    If 'True': The returned `binnumber` is a shape (2,N) ndarray where
    each row indicates bin placements for each dimension respectively.  In each
    dimension, a binnumber of `i` means the corresponding value is between
    (D_edge[i-1], D_edge[i]), where 'D' is either 'x' or 'y'.

    .. versionadded:: 0.11.0

    Examples
    --------
    >>> from scipy import stats

    Calculate the counts with explicit bin-edges:

    >>> x = [0.1, 0.1, 0.1, 0.6]
    >>> y = [2.1, 2.6, 2.1, 2.1]
    >>> binx = [0.0, 0.5, 1.0]
    >>> biny = [2.0, 2.5, 3.0]
    >>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx,biny])
    >>> ret.statistic
    array([[ 2.,  1.],
           [ 1.,  0.]])

    The bin in which each sample is placed is given by the `binnumber`
    returned parameter.  By default, these are the linearized bin indices:

    >>> ret.binnumber
    array([5, 6, 5, 9])

    The bin indices can also be expanded into separate entries for each
    dimension using the `expand_binnumbers` parameter:

    >>> ret = stats.binned_statistic_2d(x, y, None, 'count', bins=[binx,biny],
    ...                                 expand_binnumbers=True)
    >>> ret.binnumber
    array([[1, 1, 1, 2],
           [1, 2, 1, 1]])

    Which shows that the first three elements belong in the xbin 1, and the
    fourth into xbin 2; and so on for y.

    """

    # This code is based on np.histogram2d
    try:
        N = len(bins)
    except TypeError:
        N = 1

    if N != 1 and N != 2:
        xedges = yedges = np.asarray(bins, float)
        bins = [xedges, yedges]

    medians, edges, binnumbers = binned_statistic_dd(
        [x, y], values, statistic, bins, range,
        expand_binnumbers=expand_binnumbers)

    return BinnedStatistic2dResult(medians, edges[0], edges[1], binnumbers)


BinnedStatisticddResult = namedtuple('BinnedStatisticddResult',
                                     ('statistic', 'bin_edges',
                                      'binnumber'))


def binned_statistic_dd(sample, values, statistic='mean',
                        bins=10, range=None, expand_binnumbers=False):
    """
    Compute a multidimensional binned statistic for a set of data.

    This is a generalization of a histogramdd function.  A histogram divides
    the space into bins, and returns the count of the number of points in
    each bin.  This function allows the computation of the sum, mean, median,
    or other statistic of the values within each bin.

    Parameters
    ----------
    sample : array_like
        Data to histogram passed as a sequence of D arrays of length N, or
        as an (N,D) array.
    values : (N,) array_like or list of (N,) array_like
        The data on which the statistic will be computed.  This must be
        the same shape as `x`, or a list of sequences - each with the same
        shape as `x`.  If `values` is such a list, the statistic will be
        computed on each independently.
    statistic : string or callable, optional
        The statistic to compute (default is 'mean').
        The following statistics are available:

          * 'mean' : compute the mean of values for points within each bin.
            Empty bins will be represented by NaN.
          * 'median' : compute the median of values for points within each
            bin. Empty bins will be represented by NaN.
          * 'count' : compute the count of points within each bin.  This is
            identical to an unweighted histogram.  `values` array is not
            referenced.
          * 'sum' : compute the sum of values for points within each bin.
            This is identical to a weighted histogram.
          * function : a user-defined function which takes a 1D array of
            values, and outputs a single numerical statistic. This function
            will be called on the values in each bin.  Empty bins will be
            represented by function([]), or NaN if this returns an error.

    bins : sequence or int, optional
        The bin specification must be in one of the following forms:

          * A sequence of arrays describing the bin edges along each dimension.
          * The number of bins for each dimension (nx, ny, ... = bins).
          * The number of bins for all dimensions (nx = ny = ... = bins).

    range : sequence, optional
        A sequence of lower and upper bin edges to be used if the edges are
        not given explicitely in `bins`. Defaults to the minimum and maximum
        values along each dimension.
    expand_binnumbers : bool, optional
        'False' (default): the returned `binnumber` is a shape (N,) array of
        linearized bin indices.
        'True': the returned `binnumber` is 'unraveled' into a shape (D,N)
        ndarray, where each row gives the bin numbers in the corresponding
        dimension.
        See the `binnumber` returned value, and the `Examples` section of
        `binned_statistic_2d`.

        .. versionadded:: 0.17.0

    Returns
    -------
    statistic : ndarray, shape(nx1, nx2, nx3,...)
        The values of the selected statistic in each two-dimensional bin.
    bin_edges : list of ndarrays
        A list of D arrays describing the (nxi + 1) bin edges for each
        dimension.
    binnumber : (N,) array of ints or (D,N) ndarray of ints
        This assigns to each element of `sample` an integer that represents the
        bin in which this observation falls.  The representation depends on the
        `expand_binnumbers` argument.  See `Notes` for details.


    See Also
    --------
    numpy.digitize, numpy.histogramdd, binned_statistic, binned_statistic_2d

    Notes
    -----
    Binedges:
    All but the last (righthand-most) bin is half-open in each dimension.  In
    other words, if `bins` is ``[1, 2, 3, 4]``, then the first bin is
    ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``.  The
    last bin, however, is ``[3, 4]``, which *includes* 4.

    `binnumber`:
    This returned argument assigns to each element of `sample` an integer that
    represents the bin in which it belongs.  The representation depends on the
    `expand_binnumbers` argument. If 'False' (default): The returned
    `binnumber` is a shape (N,) array of linearized indices mapping each
    element of `sample` to its corresponding bin (using row-major ordering).
    If 'True': The returned `binnumber` is a shape (D,N) ndarray where
    each row indicates bin placements for each dimension respectively.  In each
    dimension, a binnumber of `i` means the corresponding value is between
    (bin_edges[D][i-1], bin_edges[D][i]), for each dimension 'D'.

    .. versionadded:: 0.11.0

    """
    known_stats = ['mean', 'median', 'count', 'sum', 'std']
    if not callable(statistic) and statistic not in known_stats:
        raise ValueError('invalid statistic %r' % (statistic,))

    # `Ndim` is the number of dimensions (e.g. `2` for `binned_statistic_2d`)
    # `Dlen` is the length of elements along each dimension.
    # This code is based on np.histogramdd
    try:
        # `sample` is an ND-array.
        Dlen, Ndim = sample.shape
    except (AttributeError, ValueError):
        # `sample` is a sequence of 1D arrays.
        sample = np.atleast_2d(sample).T
        Dlen, Ndim = sample.shape

    # Store initial shape of `values` to preserve it in the output
    values = np.asarray(values)
    input_shape = list(values.shape)
    # Make sure that `values` is 2D to iterate over rows
    values = np.atleast_2d(values)
    Vdim, Vlen = values.shape

    # Make sure `values` match `sample`
    if(statistic != 'count' and Vlen != Dlen):
        raise AttributeError('The number of `values` elements must match the '
                             'length of each `sample` dimension.')

    nbin = np.empty(Ndim, int)    # Number of bins in each dimension
    edges = Ndim * [None]         # Bin edges for each dim (will be 2D array)
    dedges = Ndim * [None]        # Spacing between edges (will be 2D array)

    try:
        M = len(bins)
        if M != Ndim:
            raise AttributeError('The dimension of bins must be equal '
                                 'to the dimension of the sample x.')
    except TypeError:
        bins = Ndim * [bins]

    # Select range for each dimension
    # Used only if number of bins is given.
    if range is None:
        smin = np.atleast_1d(np.array(sample.min(axis=0), float))
        smax = np.atleast_1d(np.array(sample.max(axis=0), float))
    else:
        smin = np.zeros(Ndim)
        smax = np.zeros(Ndim)
        for i in xrange(Ndim):
            smin[i], smax[i] = range[i]

    # Make sure the bins have a finite width.
    for i in xrange(len(smin)):
        if smin[i] == smax[i]:
            smin[i] = smin[i] - .5
            smax[i] = smax[i] + .5

    # Create edge arrays
    for i in xrange(Ndim):
        if np.isscalar(bins[i]):
            nbin[i] = bins[i] + 2  # +2 for outlier bins
            edges[i] = np.linspace(smin[i], smax[i], nbin[i] - 1)
        else:
            edges[i] = np.asarray(bins[i], float)
            nbin[i] = len(edges[i]) + 1  # +1 for outlier bins
        dedges[i] = np.diff(edges[i])

    nbin = np.asarray(nbin)

    # Compute the bin number each sample falls into, in each dimension
    sampBin = {}
    for i in xrange(Ndim):
        sampBin[i] = np.digitize(sample[:, i], edges[i])

    # Using `digitize`, values that fall on an edge are put in the right bin.
    # For the rightmost bin, we want values equal to the right
    # edge to be counted in the last bin, and not as an outlier.
    for i in xrange(Ndim):
        # Find the rounding precision
        decimal = int(-np.log10(dedges[i].min())) + 6
        # Find which points are on the rightmost edge.
        on_edge = np.where(np.around(sample[:, i], decimal) ==
                           np.around(edges[i][-1], decimal))[0]
        # Shift these points one bin to the left.
        sampBin[i][on_edge] -= 1

    # Compute the sample indices in the flattened statistic matrix.
    ni = nbin.argsort()
    # `binnumbers` is which bin (in linearized `Ndim` space) each sample goes
    binnumbers = np.zeros(Dlen, int)
    for i in xrange(0, Ndim - 1):
        binnumbers += sampBin[ni[i]] * nbin[ni[i + 1:]].prod()
    binnumbers += sampBin[ni[-1]]

    result = np.empty([Vdim, nbin.prod()], float)

    if statistic == 'mean':
        result.fill(np.nan)
        flatcount = np.bincount(binnumbers, None)
        a = flatcount.nonzero()
        for vv in xrange(Vdim):
            flatsum = np.bincount(binnumbers, values[vv])
            result[vv, a] = flatsum[a] / flatcount[a]
    elif statistic == 'std':
        result.fill(0)
        flatcount = np.bincount(binnumbers, None)
        a = flatcount.nonzero()
        for vv in xrange(Vdim):
            flatsum = np.bincount(binnumbers, values[vv])
            flatsum2 = np.bincount(binnumbers, values[vv] ** 2)
            result[vv, a] = np.sqrt(flatsum2[a] / flatcount[a] -
                                    (flatsum[a] / flatcount[a]) ** 2)
    elif statistic == 'count':
        result.fill(0)
        flatcount = np.bincount(binnumbers, None)
        a = np.arange(len(flatcount))
        result[:, a] = flatcount[np.newaxis, :]
    elif statistic == 'sum':
        result.fill(0)
        for vv in xrange(Vdim):
            flatsum = np.bincount(binnumbers, values[vv])
            a = np.arange(len(flatsum))
            result[vv, a] = flatsum
    elif statistic == 'median':
        result.fill(np.nan)
        for i in np.unique(binnumbers):
            for vv in xrange(Vdim):
                result[vv, i] = np.median(values[vv, binnumbers == i])
    elif callable(statistic):
        with warnings.catch_warnings():
            # Numpy generates a warnings for mean/std/... with empty list
            warnings.filterwarnings('ignore', category=RuntimeWarning)
            old = np.seterr(invalid='ignore')
            try:
                null = statistic([])
            except:
                null = np.nan
            np.seterr(**old)
        result.fill(null)
        for i in np.unique(binnumbers):
            for vv in xrange(Vdim):
                result[vv, i] = statistic(values[vv, binnumbers == i])

    # Shape into a proper matrix
    result = result.reshape(np.append(Vdim, np.sort(nbin)))

    for i in xrange(nbin.size):
        j = ni.argsort()[i]
        # Accomodate the extra `Vdim` dimension-zero with `+1`
        result = result.swapaxes(i+1, j+1)
        ni[i], ni[j] = ni[j], ni[i]

    # Remove outliers (indices 0 and -1 for each bin-dimension).
    core = [slice(None)] + Ndim * [slice(1, -1)]
    result = result[core]

    # Unravel binnumbers into an ndarray, each row the bins for each dimension
    if(expand_binnumbers and Ndim > 1):
        binnumbers = np.asarray(np.unravel_index(binnumbers, nbin))

    if np.any(result.shape[1:] != nbin - 2):
        raise RuntimeError('Internal Shape Error')

    # Reshape to have output (`reulst`) match input (`values`) shape
    result = result.reshape(input_shape[:-1] + list(nbin-2))

    return BinnedStatisticddResult(result, edges, binnumbers)