File: _multivariate.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (3098 lines) | stat: -rw-r--r-- 99,071 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
#
# Author: Joris Vankerschaver 2013
#
from __future__ import division, print_function, absolute_import

import math
import numpy as np
import scipy.linalg
from scipy.misc import doccer
from scipy.special import gammaln, psi, multigammaln
from scipy._lib._util import check_random_state
from scipy.linalg.blas import drot


__all__ = ['multivariate_normal',
           'matrix_normal',
           'dirichlet',
           'wishart',
           'invwishart',
           'special_ortho_group',
           'ortho_group',
           'random_correlation']

_LOG_2PI = np.log(2 * np.pi)
_LOG_2 = np.log(2)
_LOG_PI = np.log(np.pi)


_doc_random_state = """\
random_state : None or int or np.random.RandomState instance, optional
    If int or RandomState, use it for drawing the random variates.
    If None (or np.random), the global np.random state is used.
    Default is None.
"""

def _squeeze_output(out):
    """
    Remove single-dimensional entries from array and convert to scalar,
    if necessary.

    """
    out = out.squeeze()
    if out.ndim == 0:
        out = out[()]
    return out


def _eigvalsh_to_eps(spectrum, cond=None, rcond=None):
    """
    Determine which eigenvalues are "small" given the spectrum.

    This is for compatibility across various linear algebra functions
    that should agree about whether or not a Hermitian matrix is numerically
    singular and what is its numerical matrix rank.
    This is designed to be compatible with scipy.linalg.pinvh.

    Parameters
    ----------
    spectrum : 1d ndarray
        Array of eigenvalues of a Hermitian matrix.
    cond, rcond : float, optional
        Cutoff for small eigenvalues.
        Singular values smaller than rcond * largest_eigenvalue are
        considered zero.
        If None or -1, suitable machine precision is used.

    Returns
    -------
    eps : float
        Magnitude cutoff for numerical negligibility.

    """
    if rcond is not None:
        cond = rcond
    if cond in [None, -1]:
        t = spectrum.dtype.char.lower()
        factor = {'f': 1E3, 'd': 1E6}
        cond = factor[t] * np.finfo(t).eps
    eps = cond * np.max(abs(spectrum))
    return eps


def _pinv_1d(v, eps=1e-5):
    """
    A helper function for computing the pseudoinverse.

    Parameters
    ----------
    v : iterable of numbers
        This may be thought of as a vector of eigenvalues or singular values.
    eps : float
        Values with magnitude no greater than eps are considered negligible.

    Returns
    -------
    v_pinv : 1d float ndarray
        A vector of pseudo-inverted numbers.

    """
    return np.array([0 if abs(x) <= eps else 1/x for x in v], dtype=float)


class _PSD(object):
    """
    Compute coordinated functions of a symmetric positive semidefinite matrix.

    This class addresses two issues.  Firstly it allows the pseudoinverse,
    the logarithm of the pseudo-determinant, and the rank of the matrix
    to be computed using one call to eigh instead of three.
    Secondly it allows these functions to be computed in a way
    that gives mutually compatible results.
    All of the functions are computed with a common understanding as to
    which of the eigenvalues are to be considered negligibly small.
    The functions are designed to coordinate with scipy.linalg.pinvh()
    but not necessarily with np.linalg.det() or with np.linalg.matrix_rank().

    Parameters
    ----------
    M : array_like
        Symmetric positive semidefinite matrix (2-D).
    cond, rcond : float, optional
        Cutoff for small eigenvalues.
        Singular values smaller than rcond * largest_eigenvalue are
        considered zero.
        If None or -1, suitable machine precision is used.
    lower : bool, optional
        Whether the pertinent array data is taken from the lower
        or upper triangle of M. (Default: lower)
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite
        numbers. Disabling may give a performance gain, but may result
        in problems (crashes, non-termination) if the inputs do contain
        infinities or NaNs.
    allow_singular : bool, optional
        Whether to allow a singular matrix.  (Default: True)

    Notes
    -----
    The arguments are similar to those of scipy.linalg.pinvh().

    """

    def __init__(self, M, cond=None, rcond=None, lower=True,
                 check_finite=True, allow_singular=True):
        # Compute the symmetric eigendecomposition.
        # Note that eigh takes care of array conversion, chkfinite,
        # and assertion that the matrix is square.
        s, u = scipy.linalg.eigh(M, lower=lower, check_finite=check_finite)

        eps = _eigvalsh_to_eps(s, cond, rcond)
        if np.min(s) < -eps:
            raise ValueError('the input matrix must be positive semidefinite')
        d = s[s > eps]
        if len(d) < len(s) and not allow_singular:
            raise np.linalg.LinAlgError('singular matrix')
        s_pinv = _pinv_1d(s, eps)
        U = np.multiply(u, np.sqrt(s_pinv))

        # Initialize the eagerly precomputed attributes.
        self.rank = len(d)
        self.U = U
        self.log_pdet = np.sum(np.log(d))

        # Initialize an attribute to be lazily computed.
        self._pinv = None

    @property
    def pinv(self):
        if self._pinv is None:
            self._pinv = np.dot(self.U, self.U.T)
        return self._pinv


class multi_rv_generic(object):
    """
    Class which encapsulates common functionality between all multivariate
    distributions.

    """
    def __init__(self, seed=None):
        super(multi_rv_generic, self).__init__()
        self._random_state = check_random_state(seed)

    @property
    def random_state(self):
        """ Get or set the RandomState object for generating random variates.

        This can be either None or an existing RandomState object.

        If None (or np.random), use the RandomState singleton used by np.random.
        If already a RandomState instance, use it.
        If an int, use a new RandomState instance seeded with seed.

        """
        return self._random_state

    @random_state.setter
    def random_state(self, seed):
        self._random_state = check_random_state(seed)

    def _get_random_state(self, random_state):
        if random_state is not None:
            return check_random_state(random_state)
        else:
            return self._random_state


class multi_rv_frozen(object):
    """
    Class which encapsulates common functionality between all frozen
    multivariate distributions.
    """
    @property
    def random_state(self):
        return self._dist._random_state

    @random_state.setter
    def random_state(self, seed):
        self._dist._random_state = check_random_state(seed)

_mvn_doc_default_callparams = """\
mean : array_like, optional
    Mean of the distribution (default zero)
cov : array_like, optional
    Covariance matrix of the distribution (default one)
allow_singular : bool, optional
    Whether to allow a singular covariance matrix.  (Default: False)
"""

_mvn_doc_callparams_note = \
    """Setting the parameter `mean` to `None` is equivalent to having `mean`
    be the zero-vector. The parameter `cov` can be a scalar, in which case
    the covariance matrix is the identity times that value, a vector of
    diagonal entries for the covariance matrix, or a two-dimensional
    array_like.
    """

_mvn_doc_frozen_callparams = ""

_mvn_doc_frozen_callparams_note = \
    """See class definition for a detailed description of parameters."""

mvn_docdict_params = {
    '_mvn_doc_default_callparams': _mvn_doc_default_callparams,
    '_mvn_doc_callparams_note': _mvn_doc_callparams_note,
    '_doc_random_state': _doc_random_state
}

mvn_docdict_noparams = {
    '_mvn_doc_default_callparams': _mvn_doc_frozen_callparams,
    '_mvn_doc_callparams_note': _mvn_doc_frozen_callparams_note,
    '_doc_random_state': _doc_random_state
}

class multivariate_normal_gen(multi_rv_generic):
    r"""
    A multivariate normal random variable.

    The `mean` keyword specifies the mean. The `cov` keyword specifies the
    covariance matrix.

    Methods
    -------
    ``pdf(x, mean=None, cov=1, allow_singular=False)``
        Probability density function.
    ``logpdf(x, mean=None, cov=1, allow_singular=False)``
        Log of the probability density function.
    ``rvs(mean=None, cov=1, size=1, random_state=None)``
        Draw random samples from a multivariate normal distribution.
    ``entropy()``
        Compute the differential entropy of the multivariate normal.

    Parameters
    ----------
    x : array_like
        Quantiles, with the last axis of `x` denoting the components.
    %(_mvn_doc_default_callparams)s
    %(_doc_random_state)s

    Alternatively, the object may be called (as a function) to fix the mean
    and covariance parameters, returning a "frozen" multivariate normal
    random variable:

    rv = multivariate_normal(mean=None, cov=1, allow_singular=False)
        - Frozen object with the same methods but holding the given
          mean and covariance fixed.

    Notes
    -----
    %(_mvn_doc_callparams_note)s

    The covariance matrix `cov` must be a (symmetric) positive
    semi-definite matrix. The determinant and inverse of `cov` are computed
    as the pseudo-determinant and pseudo-inverse, respectively, so
    that `cov` does not need to have full rank.

    The probability density function for `multivariate_normal` is

    .. math::

        f(x) = \frac{1}{\sqrt{(2 \pi)^k \det \Sigma}}
               \exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right),

    where :math:`\mu` is the mean, :math:`\Sigma` the covariance matrix,
    and :math:`k` is the dimension of the space where :math:`x` takes values.

    .. versionadded:: 0.14.0

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from scipy.stats import multivariate_normal

    >>> x = np.linspace(0, 5, 10, endpoint=False)
    >>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y
    array([ 0.00108914,  0.01033349,  0.05946514,  0.20755375,  0.43939129,
            0.56418958,  0.43939129,  0.20755375,  0.05946514,  0.01033349])
    >>> fig1 = plt.figure()
    >>> ax = fig1.add_subplot(111)
    >>> ax.plot(x, y)

    The input quantiles can be any shape of array, as long as the last
    axis labels the components.  This allows us for instance to
    display the frozen pdf for a non-isotropic random variable in 2D as
    follows:

    >>> x, y = np.mgrid[-1:1:.01, -1:1:.01]
    >>> pos = np.dstack((x, y))
    >>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
    >>> fig2 = plt.figure()
    >>> ax2 = fig2.add_subplot(111)
    >>> ax2.contourf(x, y, rv.pdf(pos))

    """

    def __init__(self, seed=None):
        super(multivariate_normal_gen, self).__init__(seed)
        self.__doc__ = doccer.docformat(self.__doc__, mvn_docdict_params)

    def __call__(self, mean=None, cov=1, allow_singular=False, seed=None):
        """
        Create a frozen multivariate normal distribution.

        See `multivariate_normal_frozen` for more information.

        """
        return multivariate_normal_frozen(mean, cov,
                                          allow_singular=allow_singular,
                                          seed=seed)

    def _process_parameters(self, dim, mean, cov):
        """
        Infer dimensionality from mean or covariance matrix, ensure that
        mean and covariance are full vector resp. matrix.

        """

        # Try to infer dimensionality
        if dim is None:
            if mean is None:
                if cov is None:
                    dim = 1
                else:
                    cov = np.asarray(cov, dtype=float)
                    if cov.ndim < 2:
                        dim = 1
                    else:
                        dim = cov.shape[0]
            else:
                mean = np.asarray(mean, dtype=float)
                dim = mean.size
        else:
            if not np.isscalar(dim):
                raise ValueError("Dimension of random variable must be a scalar.")

        # Check input sizes and return full arrays for mean and cov if necessary
        if mean is None:
            mean = np.zeros(dim)
        mean = np.asarray(mean, dtype=float)

        if cov is None:
            cov = 1.0
        cov = np.asarray(cov, dtype=float)

        if dim == 1:
            mean.shape = (1,)
            cov.shape = (1, 1)

        if mean.ndim != 1 or mean.shape[0] != dim:
            raise ValueError("Array 'mean' must be a vector of length %d." % dim)
        if cov.ndim == 0:
            cov = cov * np.eye(dim)
        elif cov.ndim == 1:
            cov = np.diag(cov)
        elif cov.ndim == 2 and cov.shape != (dim, dim):
            rows, cols = cov.shape
            if rows != cols:
                msg = ("Array 'cov' must be square if it is two dimensional,"
                       " but cov.shape = %s." % str(cov.shape))
            else:
                msg = ("Dimension mismatch: array 'cov' is of shape %s,"
                       " but 'mean' is a vector of length %d.")
                msg = msg % (str(cov.shape), len(mean))
            raise ValueError(msg)
        elif cov.ndim > 2:
            raise ValueError("Array 'cov' must be at most two-dimensional,"
                             " but cov.ndim = %d" % cov.ndim)

        return dim, mean, cov

    def _process_quantiles(self, x, dim):
        """
        Adjust quantiles array so that last axis labels the components of
        each data point.

        """
        x = np.asarray(x, dtype=float)

        if x.ndim == 0:
            x = x[np.newaxis]
        elif x.ndim == 1:
            if dim == 1:
                x = x[:, np.newaxis]
            else:
                x = x[np.newaxis, :]

        return x

    def _logpdf(self, x, mean, prec_U, log_det_cov, rank):
        """
        Parameters
        ----------
        x : ndarray
            Points at which to evaluate the log of the probability
            density function
        mean : ndarray
            Mean of the distribution
        prec_U : ndarray
            A decomposition such that np.dot(prec_U, prec_U.T)
            is the precision matrix, i.e. inverse of the covariance matrix.
        log_det_cov : float
            Logarithm of the determinant of the covariance matrix
        rank : int
            Rank of the covariance matrix.

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'logpdf' instead.

        """
        dev = x - mean
        maha = np.sum(np.square(np.dot(dev, prec_U)), axis=-1)
        return -0.5 * (rank * _LOG_2PI + log_det_cov + maha)

    def logpdf(self, x, mean=None, cov=1, allow_singular=False):
        """
        Log of the multivariate normal probability density function.

        Parameters
        ----------
        x : array_like
            Quantiles, with the last axis of `x` denoting the components.
        %(_mvn_doc_default_callparams)s

        Returns
        -------
        pdf : ndarray
            Log of the probability density function evaluated at `x`

        Notes
        -----
        %(_mvn_doc_callparams_note)s

        """
        dim, mean, cov = self._process_parameters(None, mean, cov)
        x = self._process_quantiles(x, dim)
        psd = _PSD(cov, allow_singular=allow_singular)
        out = self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank)
        return _squeeze_output(out)

    def pdf(self, x, mean=None, cov=1, allow_singular=False):
        """
        Multivariate normal probability density function.

        Parameters
        ----------
        x : array_like
            Quantiles, with the last axis of `x` denoting the components.
        %(_mvn_doc_default_callparams)s

        Returns
        -------
        pdf : ndarray
            Probability density function evaluated at `x`

        Notes
        -----
        %(_mvn_doc_callparams_note)s

        """
        dim, mean, cov = self._process_parameters(None, mean, cov)
        x = self._process_quantiles(x, dim)
        psd = _PSD(cov, allow_singular=allow_singular)
        out = np.exp(self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank))
        return _squeeze_output(out)

    def rvs(self, mean=None, cov=1, size=1, random_state=None):
        """
        Draw random samples from a multivariate normal distribution.

        Parameters
        ----------
        %(_mvn_doc_default_callparams)s
        size : integer, optional
            Number of samples to draw (default 1).
        %(_doc_random_state)s

        Returns
        -------
        rvs : ndarray or scalar
            Random variates of size (`size`, `N`), where `N` is the
            dimension of the random variable.

        Notes
        -----
        %(_mvn_doc_callparams_note)s

        """
        dim, mean, cov = self._process_parameters(None, mean, cov)

        random_state = self._get_random_state(random_state)
        out = random_state.multivariate_normal(mean, cov, size)
        return _squeeze_output(out)

    def entropy(self, mean=None, cov=1):
        """
        Compute the differential entropy of the multivariate normal.

        Parameters
        ----------
        %(_mvn_doc_default_callparams)s

        Returns
        -------
        h : scalar
            Entropy of the multivariate normal distribution

        Notes
        -----
        %(_mvn_doc_callparams_note)s

        """
        dim, mean, cov = self._process_parameters(None, mean, cov)
        _, logdet = np.linalg.slogdet(2 * np.pi * np.e * cov)
        return 0.5 * logdet


multivariate_normal = multivariate_normal_gen()


class multivariate_normal_frozen(multi_rv_frozen):
    def __init__(self, mean=None, cov=1, allow_singular=False, seed=None):
        """
        Create a frozen multivariate normal distribution.

        Parameters
        ----------
        mean : array_like, optional
            Mean of the distribution (default zero)
        cov : array_like, optional
            Covariance matrix of the distribution (default one)
        allow_singular : bool, optional
            If this flag is True then tolerate a singular
            covariance matrix (default False).
        seed : None or int or np.random.RandomState instance, optional
            This parameter defines the RandomState object to use for drawing
            random variates.
            If None (or np.random), the global np.random state is used.
            If integer, it is used to seed the local RandomState instance
            Default is None.

        Examples
        --------
        When called with the default parameters, this will create a 1D random
        variable with mean 0 and covariance 1:

        >>> from scipy.stats import multivariate_normal
        >>> r = multivariate_normal()
        >>> r.mean
        array([ 0.])
        >>> r.cov
        array([[1.]])

        """
        self._dist = multivariate_normal_gen(seed)
        self.dim, self.mean, self.cov = self._dist._process_parameters(
                                                            None, mean, cov)
        self.cov_info = _PSD(self.cov, allow_singular=allow_singular)

    def logpdf(self, x):
        x = self._dist._process_quantiles(x, self.dim)
        out = self._dist._logpdf(x, self.mean, self.cov_info.U,
                                 self.cov_info.log_pdet, self.cov_info.rank)
        return _squeeze_output(out)

    def pdf(self, x):
        return np.exp(self.logpdf(x))

    def rvs(self, size=1, random_state=None):
        return self._dist.rvs(self.mean, self.cov, size, random_state)

    def entropy(self):
        """
        Computes the differential entropy of the multivariate normal.

        Returns
        -------
        h : scalar
            Entropy of the multivariate normal distribution

        """
        log_pdet = self.cov_info.log_pdet
        rank = self.cov_info.rank
        return 0.5 * (rank * (_LOG_2PI + 1) + log_pdet)

# Set frozen generator docstrings from corresponding docstrings in
# multivariate_normal_gen and fill in default strings in class docstrings
for name in ['logpdf', 'pdf', 'rvs']:
    method = multivariate_normal_gen.__dict__[name]
    method_frozen = multivariate_normal_frozen.__dict__[name]
    method_frozen.__doc__ = doccer.docformat(method.__doc__, mvn_docdict_noparams)
    method.__doc__ = doccer.docformat(method.__doc__, mvn_docdict_params)

_matnorm_doc_default_callparams = """\
mean : array_like, optional
    Mean of the distribution (default: `None`)
rowcov : array_like, optional
    Among-row covariance matrix of the distribution (default: `1`)
colcov : array_like, optional
    Among-column covariance matrix of the distribution (default: `1`)
"""

_matnorm_doc_callparams_note = \
    """If `mean` is set to `None` then a matrix of zeros is used for the mean.
    The dimensions of this matrix are inferred from the shape of `rowcov` and
    `colcov`, if these are provided, or set to `1` if ambiguous.

    `rowcov` and `colcov` can be two-dimensional array_likes specifying the
    covariance matrices directly. Alternatively, a one-dimensional array will
    be be interpreted as the entries of a diagonal matrix, and a scalar or
    zero-dimensional array will be interpreted as this value times the
    identity matrix.
    """

_matnorm_doc_frozen_callparams = ""

_matnorm_doc_frozen_callparams_note = \
    """See class definition for a detailed description of parameters."""

matnorm_docdict_params = {
    '_matnorm_doc_default_callparams': _matnorm_doc_default_callparams,
    '_matnorm_doc_callparams_note': _matnorm_doc_callparams_note,
    '_doc_random_state': _doc_random_state
}

matnorm_docdict_noparams = {
    '_matnorm_doc_default_callparams': _matnorm_doc_frozen_callparams,
    '_matnorm_doc_callparams_note': _matnorm_doc_frozen_callparams_note,
    '_doc_random_state': _doc_random_state
}
class matrix_normal_gen(multi_rv_generic):
    r"""
    A matrix normal random variable.

    The `mean` keyword specifies the mean. The `rowcov` keyword specifies the
    among-row covariance matrix. The 'colcov' keyword specifies the
    among-column covariance matrix.

    Methods
    -------
    ``pdf(X, mean=None, rowcov=1, colcov=1)``
        Probability density function.
    ``logpdf(X, mean=None, rowcov=1, colcov=1)``
        Log of the probability density function.
    ``rvs(mean=None, rowcov=1, colcov=1, size=1, random_state=None)``
        Draw random samples.

    Parameters
    ----------
    X : array_like
        Quantiles, with the last two axes of `X` denoting the components.
    %(_matnorm_doc_default_callparams)s
    %(_doc_random_state)s

    Alternatively, the object may be called (as a function) to fix the mean
    and covariance parameters, returning a "frozen" matrix normal
    random variable:

    rv = matrix_normal(mean=None, rowcov=1, colcov=1)
        - Frozen object with the same methods but holding the given
          mean and covariance fixed.

    Notes
    -----
    %(_matnorm_doc_callparams_note)s

    The covariance matrices specified by `rowcov` and `colcov` must be
    (symmetric) positive definite. If the samples in `X` are
    :math:`m \times n`, then `rowcov` must be :math:`m \times m` and
    `colcov` must be :math:`n \times n`. `mean` must be the same shape as `X`.

    The probability density function for `matrix_normal` is

    .. math::

        f(X) = (2 \pi)^{-\frac{mn}{2}}|U|^{-\frac{n}{2}} |V|^{-\frac{m}{2}}
               \exp\left( -\frac{1}{2} \mathrm{Tr}\left[ U^{-1} (X-M) V^{-1}
               (X-M)^T \right] \right),

    where :math:`M` is the mean, :math:`U` the among-row covariance matrix,
    :math:`V` the among-column covariance matrix.

    The `allow_singular` behaviour of the `multivariate_normal`
    distribution is not currently supported. Covariance matrices must be
    full rank.

    The `matrix_normal` distribution is closely related to the
    `multivariate_normal` distribution. Specifically, :math:`\mathrm{Vec}(X)`
    (the vector formed by concatenating the columns  of :math:`X`) has a
    multivariate normal distribution with mean :math:`\mathrm{Vec}(M)`
    and covariance :math:`V \otimes U` (where :math:`\otimes` is the Kronecker
    product). Sampling and pdf evaluation are
    :math:`\mathcal{O}(m^3 + n^3 + m^2 n + m n^2)` for the matrix normal, but
    :math:`\mathcal{O}(m^3 n^3)` for the equivalent multivariate normal,
    making this equivalent form algorithmically inefficient.

    .. versionadded:: 0.17.0

    Examples
    --------

    >>> from scipy.stats import matrix_normal

    >>> M = np.arange(6).reshape(3,2); M
    array([[0, 1],
           [2, 3],
           [4, 5]])
    >>> U = np.diag([1,2,3]); U
    array([[1, 0, 0],
           [0, 2, 0],
           [0, 0, 3]])
    >>> V = 0.3*np.identity(2); V
    array([[ 0.3,  0. ],
           [ 0. ,  0.3]])
    >>> X = M + 0.1; X
    array([[ 0.1,  1.1],
           [ 2.1,  3.1],
           [ 4.1,  5.1]])
    >>> matrix_normal.pdf(X, mean=M, rowcov=U, colcov=V)
    0.023410202050005054

    >>> # Equivalent multivariate normal
    >>> from scipy.stats import multivariate_normal
    >>> vectorised_X = X.T.flatten()
    >>> equiv_mean = M.T.flatten()
    >>> equiv_cov = np.kron(V,U)
    >>> multivariate_normal.pdf(vectorised_X, mean=equiv_mean, cov=equiv_cov)
    0.023410202050005054
    """

    def __init__(self, seed=None):
        super(matrix_normal_gen, self).__init__(seed)
        self.__doc__ = doccer.docformat(self.__doc__, matnorm_docdict_params)

    def __call__(self, mean=None, rowcov=1, colcov=1, seed=None):
        """
        Create a frozen matrix normal distribution.

        See `matrix_normal_frozen` for more information.

        """
        return matrix_normal_frozen(mean, rowcov, colcov, seed=seed)

    def _process_parameters(self, mean, rowcov, colcov):
        """
        Infer dimensionality from mean or covariance matrices. Handle
        defaults. Ensure compatible dimensions.

        """

        # Process mean
        if mean is not None:
            mean = np.asarray(mean, dtype=float)
            meanshape = mean.shape
            if len(meanshape) != 2:
                raise ValueError("Array `mean` must be two dimensional.")
            if np.any(meanshape == 0):
                raise ValueError("Array `mean` has invalid shape.")

        # Process among-row covariance
        rowcov = np.asarray(rowcov, dtype=float)
        if rowcov.ndim == 0:
            if mean is not None:
                rowcov = rowcov * np.identity(meanshape[0])
            else:
                rowcov = rowcov * np.identity(1)
        elif rowcov.ndim == 1:
            rowcov = np.diag(rowcov)
        rowshape = rowcov.shape
        if len(rowshape) != 2:
            raise ValueError("`rowcov` must be a scalar or a 2D array.")
        if rowshape[0] != rowshape[1]:
            raise ValueError("Array `rowcov` must be square.")
        if rowshape[0] == 0:
            raise ValueError("Array `rowcov` has invalid shape.")
        numrows = rowshape[0]

        # Process among-column covariance
        colcov = np.asarray(colcov, dtype=float)
        if colcov.ndim == 0:
            if mean is not None:
                colcov = colcov * np.identity(meanshape[1])
            else:
                colcov = colcov * np.identity(1)
        elif colcov.ndim == 1:
            colcov = np.diag(colcov)
        colshape = colcov.shape
        if len(colshape) != 2:
            raise ValueError("`colcov` must be a scalar or a 2D array.")
        if colshape[0] != colshape[1]:
            raise ValueError("Array `colcov` must be square.")
        if colshape[0] == 0:
            raise ValueError("Array `colcov` has invalid shape.")
        numcols = colshape[0]

        # Ensure mean and covariances compatible
        if mean is not None:
            if meanshape[0] != numrows:
                raise ValueError("Arrays `mean` and `rowcov` must have the"
                                  "same number of rows.")
            if meanshape[1] != numcols:
                raise ValueError("Arrays `mean` and `colcov` must have the"
                                  "same number of columns.")
        else:
            mean = np.zeros((numrows,numcols))

        dims = (numrows, numcols)

        return dims, mean, rowcov, colcov

    def _process_quantiles(self, X, dims):
        """
        Adjust quantiles array so that last two axes labels the components of
        each data point.

        """
        X = np.asarray(X, dtype=float)
        if X.ndim == 2:
            X = X[np.newaxis, :]
        if X.shape[-2:] != dims:
            raise ValueError("The shape of array `X` is not compatible "
                              "with the distribution parameters.")
        return X

    def _logpdf(self, dims, X, mean, row_prec_rt, log_det_rowcov,
                col_prec_rt, log_det_colcov):
        """
        Parameters
        ----------
        dims : tuple
            Dimensions of the matrix variates
        X : ndarray
            Points at which to evaluate the log of the probability
            density function
        mean : ndarray
            Mean of the distribution
        row_prec_rt : ndarray
            A decomposition such that np.dot(row_prec_rt, row_prec_rt.T)
            is the inverse of the among-row covariance matrix
        log_det_rowcov : float
            Logarithm of the determinant of the among-row covariance matrix
        col_prec_rt : ndarray
            A decomposition such that np.dot(col_prec_rt, col_prec_rt.T)
            is the inverse of the among-column covariance matrix
        log_det_colcov : float
            Logarithm of the determinant of the among-column covariance matrix

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'logpdf' instead.

        """
        numrows, numcols = dims
        roll_dev = np.rollaxis(X-mean, axis=-1, start=0)
        scale_dev = np.tensordot(col_prec_rt.T,
                                 np.dot(roll_dev, row_prec_rt), 1)
        maha = np.sum(np.sum(np.square(scale_dev), axis=-1), axis=0)
        return -0.5 * (numrows*numcols*_LOG_2PI + numcols*log_det_rowcov
                       + numrows*log_det_colcov + maha)

    def logpdf(self, X, mean=None, rowcov=1, colcov=1):
        """
        Log of the matrix normal probability density function.

        Parameters
        ----------
        X : array_like
            Quantiles, with the last two axes of `X` denoting the components.
        %(_matnorm_doc_default_callparams)s

        Returns
        -------
        logpdf : ndarray
            Log of the probability density function evaluated at `X`

        Notes
        -----
        %(_matnorm_doc_callparams_note)s

        """
        dims, mean, rowcov, colcov = self._process_parameters(mean, rowcov,
                                                              colcov)
        X = self._process_quantiles(X, dims)
        rowpsd = _PSD(rowcov, allow_singular=False)
        colpsd = _PSD(colcov, allow_singular=False)
        out = self._logpdf(dims, X, mean, rowpsd.U, rowpsd.log_pdet, colpsd.U,
                           colpsd.log_pdet)
        return _squeeze_output(out)

    def pdf(self, X, mean=None, rowcov=1, colcov=1):
        """
        Matrix normal probability density function.

        Parameters
        ----------
        X : array_like
            Quantiles, with the last two axes of `X` denoting the components.
        %(_matnorm_doc_default_callparams)s

        Returns
        -------
        pdf : ndarray
            Probability density function evaluated at `X`

        Notes
        -----
        %(_matnorm_doc_callparams_note)s

        """
        return np.exp(self.logpdf(X, mean, rowcov, colcov))

    def rvs(self, mean=None, rowcov=1, colcov=1, size=1, random_state=None):
        """
        Draw random samples from a matrix normal distribution.

        Parameters
        ----------
        %(_matnorm_doc_default_callparams)s
        size : integer, optional
            Number of samples to draw (default 1).
        %(_doc_random_state)s

        Returns
        -------
        rvs : ndarray or scalar
            Random variates of size (`size`, `dims`), where `dims` is the
            dimension of the random matrices.

        Notes
        -----
        %(_matnorm_doc_callparams_note)s

        """
        size = int(size)
        dims, mean, rowcov, colcov = self._process_parameters(mean, rowcov,
                                                              colcov)
        rowchol = scipy.linalg.cholesky(rowcov, lower=True)
        colchol = scipy.linalg.cholesky(colcov, lower=True)
        random_state = self._get_random_state(random_state)
        std_norm = random_state.standard_normal(size=(dims[1],size,dims[0]))
        roll_rvs = np.tensordot(colchol, np.dot(std_norm, rowchol.T), 1)
        out = np.rollaxis(roll_rvs.T, axis=1, start=0) + mean[np.newaxis,:,:]
        if size == 1:
            #out = np.squeeze(out, axis=0)
            out = out.reshape(mean.shape)
        return out

matrix_normal = matrix_normal_gen()


class matrix_normal_frozen(multi_rv_frozen):
    def __init__(self, mean=None, rowcov=1, colcov=1, seed=None):
        """
        Create a frozen matrix normal distribution.

        Parameters
        ----------
        %(_matnorm_doc_default_callparams)s
        seed : None or int or np.random.RandomState instance, optional
            If int or RandomState, use it for drawing the random variates.
            If None (or np.random), the global np.random state is used.
            Default is None.

        Examples
        --------
        >>> from scipy.stats import matrix_normal

        >>> distn = matrix_normal(mean=np.zeros((3,3)))
        >>> X = distn.rvs(); X
        array([[-0.02976962,  0.93339138, -0.09663178],
               [ 0.67405524,  0.28250467, -0.93308929],
               [-0.31144782,  0.74535536,  1.30412916]])
        >>> distn.pdf(X)
        2.5160642368346784e-05
        >>> distn.logpdf(X)
        -10.590229595124615
        """
        self._dist = matrix_normal_gen(seed)
        self.dims, self.mean, self.rowcov, self.colcov = \
            self._dist._process_parameters(mean, rowcov, colcov)
        self.rowpsd = _PSD(self.rowcov, allow_singular=False)
        self.colpsd = _PSD(self.colcov, allow_singular=False)

    def logpdf(self, X):
        X = self._dist._process_quantiles(X, self.dims)
        out = self._dist._logpdf(self.dims, X, self.mean, self.rowpsd.U,
                                 self.rowpsd.log_pdet, self.colpsd.U,
                                 self.colpsd.log_pdet)
        return _squeeze_output(out)

    def pdf(self, X):
        return np.exp(self.logpdf(X))

    def rvs(self, size=1, random_state=None):
        return self._dist.rvs(self.mean, self.rowcov, self.colcov, size,
                              random_state)


# Set frozen generator docstrings from corresponding docstrings in
# matrix_normal_gen and fill in default strings in class docstrings
for name in ['logpdf', 'pdf', 'rvs']:
    method = matrix_normal_gen.__dict__[name]
    method_frozen = matrix_normal_frozen.__dict__[name]
    method_frozen.__doc__ = doccer.docformat(method.__doc__, matnorm_docdict_noparams)
    method.__doc__ = doccer.docformat(method.__doc__, matnorm_docdict_params)

_dirichlet_doc_default_callparams = """\
alpha : array_like
    The concentration parameters. The number of entries determines the
    dimensionality of the distribution.
"""
_dirichlet_doc_frozen_callparams = ""

_dirichlet_doc_frozen_callparams_note = \
    """See class definition for a detailed description of parameters."""

dirichlet_docdict_params = {
    '_dirichlet_doc_default_callparams': _dirichlet_doc_default_callparams,
    '_doc_random_state': _doc_random_state
}

dirichlet_docdict_noparams = {
    '_dirichlet_doc_default_callparams': _dirichlet_doc_frozen_callparams,
    '_doc_random_state': _doc_random_state
}

def _dirichlet_check_parameters(alpha):
    alpha = np.asarray(alpha)
    if np.min(alpha) <= 0:
        raise ValueError("All parameters must be greater than 0")
    elif alpha.ndim != 1:
        raise ValueError("Parameter vector 'a' must be one dimensional, "
                       "but a.shape = %s." % (alpha.shape, ))
    return alpha


def _dirichlet_check_input(alpha, x):
    x = np.asarray(x)

    if x.shape[0] + 1 != alpha.shape[0] and x.shape[0] != alpha.shape[0]:
        raise ValueError("Vector 'x' must have either the same number "
                         "of entries as, or one entry fewer than, "
                         "parameter vector 'a', but alpha.shape = %s "
                         "and x.shape = %s." % (alpha.shape, x.shape))

    if x.shape[0] != alpha.shape[0]:
        xk = np.array([1 - np.sum(x, 0)])
        if xk.ndim == 1:
            x = np.append(x, xk)
        elif xk.ndim == 2:
            x = np.vstack((x, xk))
        else:
            raise ValueError("The input must be one dimensional or a two "
                             "dimensional matrix containing the entries.")

    if np.min(x) <= 0:
        raise ValueError("Each entry in 'x' must be greater than zero.")

    if np.max(x) > 1:
        raise ValueError("Each entry in 'x' must be smaller or equal one.")

    if (np.abs(np.sum(x, 0) - 1.0) > 10e-10).any():
        raise ValueError("The input vector 'x' must lie within the normal "
                       "simplex. but np.sum(x, 0) = %s." % np.sum(x, 0))

    return x


def _lnB(alpha):
    r"""
    Internal helper function to compute the log of the useful quotient

    .. math::

        B(\alpha) = \frac{\prod_{i=1}{K}\Gamma(\alpha_i)}{\Gamma\left(\sum_{i=1}^{K}\alpha_i\right)}

    Parameters
    ----------
    %(_dirichlet_doc_default_callparams)s

    Returns
    -------
    B : scalar
        Helper quotient, internal use only

    """
    return np.sum(gammaln(alpha)) - gammaln(np.sum(alpha))


class dirichlet_gen(multi_rv_generic):
    r"""
    A Dirichlet random variable.

    The `alpha` keyword specifies the concentration parameters of the
    distribution.

    .. versionadded:: 0.15.0

    Methods
    -------
    ``pdf(x, alpha)``
        Probability density function.
    ``logpdf(x, alpha)``
        Log of the probability density function.
    ``rvs(alpha, size=1, random_state=None)``
        Draw random samples from a Dirichlet distribution.
    ``mean(alpha)``
        The mean of the Dirichlet distribution
    ``var(alpha)``
        The variance of the Dirichlet distribution
    ``entropy(alpha)``
        Compute the differential entropy of the multivariate normal.

    Parameters
    ----------
    x : array_like
        Quantiles, with the last axis of `x` denoting the components.
    %(_dirichlet_doc_default_callparams)s
    %(_doc_random_state)s

    Alternatively, the object may be called (as a function) to fix
    concentration parameters, returning a "frozen" Dirichlet
    random variable:

    rv = dirichlet(alpha)
        - Frozen object with the same methods but holding the given
          concentration parameters fixed.

    Notes
    -----
    Each :math:`\alpha` entry must be positive. The distribution has only
    support on the simplex defined by

    .. math::
        \sum_{i=1}^{K} x_i \le 1


    The probability density function for `dirichlet` is

    .. math::

        f(x) = \frac{1}{\mathrm{B}(\boldsymbol\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1}

    where

    .. math::

        \mathrm{B}(\boldsymbol\alpha) = \frac{\prod_{i=1}^K \Gamma(\alpha_i)}
                                     {\Gamma\bigl(\sum_{i=1}^K \alpha_i\bigr)}

    and :math:`\boldsymbol\alpha=(\alpha_1,\ldots,\alpha_K)`, the
    concentration parameters and :math:`K` is the dimension of the space
    where :math:`x` takes values.

    Note that the dirichlet interface is somewhat inconsistent.
    The array returned by the rvs function is transposed
    with respect to the format expected by the pdf and logpdf.

    """

    def __init__(self, seed=None):
        super(dirichlet_gen, self).__init__(seed)
        self.__doc__ = doccer.docformat(self.__doc__, dirichlet_docdict_params)

    def __call__(self, alpha, seed=None):
        return dirichlet_frozen(alpha, seed=seed)

    def _logpdf(self, x, alpha):
        """
        Parameters
        ----------
        x : ndarray
            Points at which to evaluate the log of the probability
            density function
        %(_dirichlet_doc_default_callparams)s

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'logpdf' instead.

        """
        lnB = _lnB(alpha)
        return - lnB + np.sum((np.log(x.T) * (alpha - 1)).T, 0)

    def logpdf(self, x, alpha):
        """
        Log of the Dirichlet probability density function.

        Parameters
        ----------
        x : array_like
            Quantiles, with the last axis of `x` denoting the components.
        %(_dirichlet_doc_default_callparams)s

        Returns
        -------
        pdf : ndarray
            Log of the probability density function evaluated at `x`.

        """
        alpha = _dirichlet_check_parameters(alpha)
        x = _dirichlet_check_input(alpha, x)

        out = self._logpdf(x, alpha)
        return _squeeze_output(out)

    def pdf(self, x, alpha):
        """
        The Dirichlet probability density function.

        Parameters
        ----------
        x : array_like
            Quantiles, with the last axis of `x` denoting the components.
        %(_dirichlet_doc_default_callparams)s

        Returns
        -------
        pdf : ndarray
            The probability density function evaluated at `x`.

        """
        alpha = _dirichlet_check_parameters(alpha)
        x = _dirichlet_check_input(alpha, x)

        out = np.exp(self._logpdf(x, alpha))
        return _squeeze_output(out)

    def mean(self, alpha):
        """
        Compute the mean of the dirichlet distribution.

        Parameters
        ----------
        %(_dirichlet_doc_default_callparams)s

        Returns
        -------
        mu : scalar
            Mean of the Dirichlet distribution

        """
        alpha = _dirichlet_check_parameters(alpha)

        out = alpha / (np.sum(alpha))
        return _squeeze_output(out)

    def var(self, alpha):
        """
        Compute the variance of the dirichlet distribution.

        Parameters
        ----------
        %(_dirichlet_doc_default_callparams)s

        Returns
        -------
        v : scalar
            Variance of the Dirichlet distribution

        """

        alpha = _dirichlet_check_parameters(alpha)

        alpha0 = np.sum(alpha)
        out = (alpha * (alpha0 - alpha)) / ((alpha0 * alpha0) * (alpha0 + 1))
        return out

    def entropy(self, alpha):
        """
        Compute the differential entropy of the dirichlet distribution.

        Parameters
        ----------
        %(_dirichlet_doc_default_callparams)s

        Returns
        -------
        h : scalar
            Entropy of the Dirichlet distribution

        """

        alpha = _dirichlet_check_parameters(alpha)

        alpha0 = np.sum(alpha)
        lnB = _lnB(alpha)
        K = alpha.shape[0]

        out = lnB + (alpha0 - K) * scipy.special.psi(alpha0) - np.sum(
            (alpha - 1) * scipy.special.psi(alpha))
        return _squeeze_output(out)

    def rvs(self, alpha, size=1, random_state=None):
        """
        Draw random samples from a Dirichlet distribution.

        Parameters
        ----------
        %(_dirichlet_doc_default_callparams)s
        size : int, optional
            Number of samples to draw (default 1).
        %(_doc_random_state)s

        Returns
        -------
        rvs : ndarray or scalar
            Random variates of size (`size`, `N`), where `N` is the
            dimension of the random variable.

        """
        alpha = _dirichlet_check_parameters(alpha)
        random_state = self._get_random_state(random_state)
        return random_state.dirichlet(alpha, size=size)


dirichlet = dirichlet_gen()


class dirichlet_frozen(multi_rv_frozen):
    def __init__(self, alpha, seed=None):
        self.alpha = _dirichlet_check_parameters(alpha)
        self._dist = dirichlet_gen(seed)

    def logpdf(self, x):
        return self._dist.logpdf(x, self.alpha)

    def pdf(self, x):
        return self._dist.pdf(x, self.alpha)

    def mean(self):
        return self._dist.mean(self.alpha)

    def var(self):
        return self._dist.var(self.alpha)

    def entropy(self):
        return self._dist.entropy(self.alpha)

    def rvs(self, size=1, random_state=None):
        return self._dist.rvs(self.alpha, size, random_state)


# Set frozen generator docstrings from corresponding docstrings in
# multivariate_normal_gen and fill in default strings in class docstrings
for name in ['logpdf', 'pdf', 'rvs', 'mean', 'var', 'entropy']:
    method = dirichlet_gen.__dict__[name]
    method_frozen = dirichlet_frozen.__dict__[name]
    method_frozen.__doc__ = doccer.docformat(
        method.__doc__, dirichlet_docdict_noparams)
    method.__doc__ = doccer.docformat(method.__doc__, dirichlet_docdict_params)


_wishart_doc_default_callparams = """\
df : int
    Degrees of freedom, must be greater than or equal to dimension of the
    scale matrix
scale : array_like
    Symmetric positive definite scale matrix of the distribution
"""

_wishart_doc_callparams_note = ""

_wishart_doc_frozen_callparams = ""

_wishart_doc_frozen_callparams_note = \
    """See class definition for a detailed description of parameters."""

wishart_docdict_params = {
    '_doc_default_callparams': _wishart_doc_default_callparams,
    '_doc_callparams_note': _wishart_doc_callparams_note,
    '_doc_random_state': _doc_random_state
}

wishart_docdict_noparams = {
    '_doc_default_callparams': _wishart_doc_frozen_callparams,
    '_doc_callparams_note': _wishart_doc_frozen_callparams_note,
    '_doc_random_state': _doc_random_state
}


class wishart_gen(multi_rv_generic):
    r"""
    A Wishart random variable.

    The `df` keyword specifies the degrees of freedom. The `scale` keyword
    specifies the scale matrix, which must be symmetric and positive definite.
    In this context, the scale matrix is often interpreted in terms of a
    multivariate normal precision matrix (the inverse of the covariance
    matrix).

    Methods
    -------
    ``pdf(x, df, scale)``
        Probability density function.
    ``logpdf(x, df, scale)``
        Log of the probability density function.
    ``rvs(df, scale, size=1, random_state=None)``
        Draw random samples from a Wishart distribution.
    ``entropy()``
        Compute the differential entropy of the Wishart distribution.

    Parameters
    ----------
    x : array_like
        Quantiles, with the last axis of `x` denoting the components.
    %(_doc_default_callparams)s
    %(_doc_random_state)s

    Alternatively, the object may be called (as a function) to fix the degrees
    of freedom and scale parameters, returning a "frozen" Wishart random
    variable:

    rv = wishart(df=1, scale=1)
        - Frozen object with the same methods but holding the given
          degrees of freedom and scale fixed.

    See Also
    --------
    invwishart, chi2

    Notes
    -----
    %(_doc_callparams_note)s

    The scale matrix `scale` must be a symmetric positive definite
    matrix. Singular matrices, including the symmetric positive semi-definite
    case, are not supported.

    The Wishart distribution is often denoted

    .. math::

        W_p(\nu, \Sigma)

    where :math:`\nu` is the degrees of freedom and :math:`\Sigma` is the
    :math:`p \times p` scale matrix.

    The probability density function for `wishart` has support over positive
    definite matrices :math:`S`; if :math:`S \sim W_p(\nu, \Sigma)`, then
    its PDF is given by:

    .. math::

        f(S) = \frac{|S|^{\frac{\nu - p - 1}{2}}}{2^{ \frac{\nu p}{2} }
               |\Sigma|^\frac{\nu}{2} \Gamma_p \left ( \frac{\nu}{2} \right )}
               \exp\left( -tr(\Sigma^{-1} S) / 2 \right)

    If :math:`S \sim W_p(\nu, \Sigma)` (Wishart) then
    :math:`S^{-1} \sim W_p^{-1}(\nu, \Sigma^{-1})` (inverse Wishart).

    If the scale matrix is 1-dimensional and equal to one, then the Wishart
    distribution :math:`W_1(\nu, 1)` collapses to the :math:`\chi^2(\nu)`
    distribution.

    .. versionadded:: 0.16.0

    References
    ----------
    .. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach",
           Wiley, 1983.
    .. [2] W.B. Smith and R.R. Hocking, "Algorithm AS 53: Wishart Variate
           Generator", Applied Statistics, vol. 21, pp. 341-345, 1972.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from scipy.stats import wishart, chi2
    >>> x = np.linspace(1e-5, 8, 100)
    >>> w = wishart.pdf(x, df=3, scale=1); w[:5]
    array([ 0.00126156,  0.10892176,  0.14793434,  0.17400548,  0.1929669 ])
    >>> c = chi2.pdf(x, 3); c[:5]
    array([ 0.00126156,  0.10892176,  0.14793434,  0.17400548,  0.1929669 ])
    >>> plt.plot(x, w)

    The input quantiles can be any shape of array, as long as the last
    axis labels the components.

    """

    def __init__(self, seed=None):
        super(wishart_gen, self).__init__(seed)
        self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params)

    def __call__(self, df=None, scale=None, seed=None):
        """
        Create a frozen Wishart distribution.

        See `wishart_frozen` for more information.

        """
        return wishart_frozen(df, scale, seed)

    def _process_parameters(self, df, scale):
        if scale is None:
            scale = 1.0
        scale = np.asarray(scale, dtype=float)

        if scale.ndim == 0:
            scale = scale[np.newaxis,np.newaxis]
        elif scale.ndim == 1:
            scale = np.diag(scale)
        elif scale.ndim == 2 and not scale.shape[0] == scale.shape[1]:
            raise ValueError("Array 'scale' must be square if it is two"
                             " dimensional, but scale.scale = %s."
                             % str(scale.shape))
        elif scale.ndim > 2:
            raise ValueError("Array 'scale' must be at most two-dimensional,"
                             " but scale.ndim = %d" % scale.ndim)

        dim = scale.shape[0]

        if df is None:
            df = dim
        elif not np.isscalar(df):
            raise ValueError("Degrees of freedom must be a scalar.")
        elif df < dim:
            raise ValueError("Degrees of freedom cannot be less than dimension"
                             " of scale matrix, but df = %d" % df)

        return dim, df, scale

    def _process_quantiles(self, x, dim):
        """
        Adjust quantiles array so that last axis labels the components of
        each data point.
        """
        x = np.asarray(x, dtype=float)

        if x.ndim == 0:
            x = x * np.eye(dim)[:, :, np.newaxis]
        if x.ndim == 1:
            if dim == 1:
                x = x[np.newaxis, np.newaxis, :]
            else:
                x = np.diag(x)[:, :, np.newaxis]
        elif x.ndim == 2:
            if not x.shape[0] == x.shape[1]:
                raise ValueError("Quantiles must be square if they are two"
                                 " dimensional, but x.shape = %s."
                                 % str(x.shape))
            x = x[:, :, np.newaxis]
        elif x.ndim == 3:
            if not x.shape[0] == x.shape[1]:
                raise ValueError("Quantiles must be square in the first two"
                                 " dimensions if they are three dimensional"
                                 ", but x.shape = %s." % str(x.shape))
        elif x.ndim > 3:
            raise ValueError("Quantiles must be at most two-dimensional with"
                             " an additional dimension for multiple"
                             "components, but x.ndim = %d" % x.ndim)

        # Now we have 3-dim array; should have shape [dim, dim, *]
        if not x.shape[0:2] == (dim, dim):
            raise ValueError('Quantiles have incompatible dimensions: should'
                             ' be %s, got %s.' % ((dim, dim), x.shape[0:2]))

        return x

    def _process_size(self, size):
        size = np.asarray(size)

        if size.ndim == 0:
            size = size[np.newaxis]
        elif size.ndim > 1:
            raise ValueError('Size must be an integer or tuple of integers;'
                             ' thus must have dimension <= 1.'
                             ' Got size.ndim = %s' % str(tuple(size)))
        n = size.prod()
        shape = tuple(size)

        return n, shape

    def _logpdf(self, x, dim, df, scale, log_det_scale, C):
        """
        Parameters
        ----------
        x : ndarray
            Points at which to evaluate the log of the probability
            density function
        dim : int
            Dimension of the scale matrix
        df : int
            Degrees of freedom
        scale : ndarray
            Scale matrix
        log_det_scale : float
            Logarithm of the determinant of the scale matrix
        C : ndarray
            Cholesky factorization of the scale matrix, lower triagular.

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'logpdf' instead.

        """
        # log determinant of x
        # Note: x has components along the last axis, so that x.T has
        # components alone the 0-th axis. Then since det(A) = det(A'), this
        # gives us a 1-dim vector of determinants

        # Retrieve tr(scale^{-1} x)
        log_det_x = np.zeros(x.shape[-1])
        scale_inv_x = np.zeros(x.shape)
        tr_scale_inv_x = np.zeros(x.shape[-1])
        for i in range(x.shape[-1]):
            _, log_det_x[i] = self._cholesky_logdet(x[:,:,i])
            scale_inv_x[:,:,i] = scipy.linalg.cho_solve((C, True), x[:,:,i])
            tr_scale_inv_x[i] = scale_inv_x[:,:,i].trace()

        # Log PDF
        out = ((0.5 * (df - dim - 1) * log_det_x - 0.5 * tr_scale_inv_x) -
               (0.5 * df * dim * _LOG_2 + 0.5 * df * log_det_scale +
                multigammaln(0.5*df, dim)))

        return out

    def logpdf(self, x, df, scale):
        """
        Log of the Wishart probability density function.

        Parameters
        ----------
        x : array_like
            Quantiles, with the last axis of `x` denoting the components.
            Each quantile must be a symmetric positive definite matrix.
        %(_doc_default_callparams)s

        Returns
        -------
        pdf : ndarray
            Log of the probability density function evaluated at `x`

        Notes
        -----
        %(_doc_callparams_note)s

        """
        dim, df, scale = self._process_parameters(df, scale)
        x = self._process_quantiles(x, dim)

        # Cholesky decomposition of scale, get log(det(scale))
        C, log_det_scale = self._cholesky_logdet(scale)

        out = self._logpdf(x, dim, df, scale, log_det_scale, C)
        return _squeeze_output(out)

    def pdf(self, x, df, scale):
        """
        Wishart probability density function.

        Parameters
        ----------
        x : array_like
            Quantiles, with the last axis of `x` denoting the components.
            Each quantile must be a symmetric positive definite matrix.
        %(_doc_default_callparams)s

        Returns
        -------
        pdf : ndarray
            Probability density function evaluated at `x`

        Notes
        -----
        %(_doc_callparams_note)s

        """
        return np.exp(self.logpdf(x, df, scale))

    def _mean(self, dim, df, scale):
        """
        Parameters
        ----------
        dim : int
            Dimension of the scale matrix
        %(_doc_default_callparams)s

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'mean' instead.

        """
        return df * scale

    def mean(self, df, scale):
        """
        Mean of the Wishart distribution

        Parameters
        ----------
        %(_doc_default_callparams)s

        Returns
        -------
        mean : float
            The mean of the distribution
        """
        dim, df, scale = self._process_parameters(df, scale)
        out = self._mean(dim, df, scale)
        return _squeeze_output(out)

    def _mode(self, dim, df, scale):
        """
        Parameters
        ----------
        dim : int
            Dimension of the scale matrix
        %(_doc_default_callparams)s

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'mode' instead.

        """
        if df >= dim + 1:
            out = (df-dim-1) * scale
        else:
            out = None
        return out

    def mode(self, df, scale):
        """
        Mode of the Wishart distribution

        Only valid if the degrees of freedom are greater than the dimension of
        the scale matrix.

        Parameters
        ----------
        %(_doc_default_callparams)s

        Returns
        -------
        mode : float or None
            The Mode of the distribution
        """
        dim, df, scale = self._process_parameters(df, scale)
        out = self._mode(dim, df, scale)
        return _squeeze_output(out) if out is not None else out

    def _var(self, dim, df, scale):
        """
        Parameters
        ----------
        dim : int
            Dimension of the scale matrix
        %(_doc_default_callparams)s

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'var' instead.

        """
        var = scale**2
        diag = scale.diagonal()  # 1 x dim array
        var += np.outer(diag, diag)
        var *= df
        return var

    def var(self, df, scale):
        """
        Variance of the Wishart distribution

        Parameters
        ----------
        %(_doc_default_callparams)s

        Returns
        -------
        var : float
            The variance of the distribution
        """
        dim, df, scale = self._process_parameters(df, scale)
        out = self._var(dim, df, scale)
        return _squeeze_output(out)

    def _standard_rvs(self, n, shape, dim, df, random_state):
        """
        Parameters
        ----------
        n : integer
            Number of variates to generate
        shape : iterable
            Shape of the variates to generate
        dim : int
            Dimension of the scale matrix
        df : int
            Degrees of freedom
        random_state : np.random.RandomState instance
            RandomState used for drawing the random variates.

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'rvs' instead.

        """
        # Random normal variates for off-diagonal elements
        n_tril = dim * (dim-1) // 2
        covariances = random_state.normal(
            size=n*n_tril).reshape(shape+(n_tril,))

        # Random chi-square variates for diagonal elements
        variances = np.r_[[random_state.chisquare(df-(i+1)+1, size=n)**0.5
             for i in range(dim)]].reshape((dim,) + shape[::-1]).T

        # Create the A matri(ces) - lower triangular
        A = np.zeros(shape + (dim, dim))

        # Input the covariances
        size_idx = tuple([slice(None,None,None)]*len(shape))
        tril_idx = np.tril_indices(dim, k=-1)
        A[size_idx + tril_idx] = covariances

        # Input the variances
        diag_idx = np.diag_indices(dim)
        A[size_idx + diag_idx] = variances

        return A

    def _rvs(self, n, shape, dim, df, C, random_state):
        """
        Parameters
        ----------
        n : integer
            Number of variates to generate
        shape : iterable
            Shape of the variates to generate
        dim : int
            Dimension of the scale matrix
        df : int
            Degrees of freedom
        scale : ndarray
            Scale matrix
        C : ndarray
            Cholesky factorization of the scale matrix, lower triangular.
        %(_doc_random_state)s

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'rvs' instead.

        """
        random_state = self._get_random_state(random_state)
        # Calculate the matrices A, which are actually lower triangular
        # Cholesky factorizations of a matrix B such that B ~ W(df, I)
        A = self._standard_rvs(n, shape, dim, df, random_state)

        # Calculate SA = C A A' C', where SA ~ W(df, scale)
        # Note: this is the product of a (lower) (lower) (lower)' (lower)'
        #       or, denoting B = AA', it is C B C' where C is the lower
        #       triangular Cholesky factorization of the scale matrix.
        #       this appears to conflict with the instructions in [1]_, which
        #       suggest that it should be D' B D where D is the lower
        #       triangular factorization of the scale matrix. However, it is
        #       meant to refer to the Bartlett (1933) representation of a
        #       Wishart random variate as L A A' L' where L is lower triangular
        #       so it appears that understanding D' to be upper triangular
        #       is either a typo in or misreading of [1]_.
        for index in np.ndindex(shape):
            CA = np.dot(C, A[index])
            A[index] = np.dot(CA, CA.T)

        return A

    def rvs(self, df, scale, size=1, random_state=None):
        """
        Draw random samples from a Wishart distribution.

        Parameters
        ----------
        %(_doc_default_callparams)s
        size : integer or iterable of integers, optional
            Number of samples to draw (default 1).
        %(_doc_random_state)s

        Returns
        -------
        rvs : ndarray
            Random variates of shape (`size`) + (`dim`, `dim), where `dim` is
            the dimension of the scale matrix.

        Notes
        -----
        %(_doc_callparams_note)s

        """
        n, shape = self._process_size(size)
        dim, df, scale = self._process_parameters(df, scale)

        # Cholesky decomposition of scale
        C = scipy.linalg.cholesky(scale, lower=True)

        out = self._rvs(n, shape, dim, df, C, random_state)

        return _squeeze_output(out)

    def _entropy(self, dim, df, log_det_scale):
        """
        Parameters
        ----------
        dim : int
            Dimension of the scale matrix
        df : int
            Degrees of freedom
        log_det_scale : float
            Logarithm of the determinant of the scale matrix

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'entropy' instead.

        """
        return (
            0.5 * (dim+1) * log_det_scale +
            0.5 * dim * (dim+1) * _LOG_2 +
            multigammaln(0.5*df, dim) -
            0.5 * (df - dim - 1) * np.sum(
                [psi(0.5*(df + 1 - (i+1))) for i in range(dim)]
            ) +
            0.5 * df * dim
        )

    def entropy(self, df, scale):
        """
        Compute the differential entropy of the Wishart.

        Parameters
        ----------
        %(_doc_default_callparams)s

        Returns
        -------
        h : scalar
            Entropy of the Wishart distribution

        Notes
        -----
        %(_doc_callparams_note)s

        """
        dim, df, scale = self._process_parameters(df, scale)
        _, log_det_scale = self._cholesky_logdet(scale)
        return self._entropy(dim, df, log_det_scale)

    def _cholesky_logdet(self, scale):
        """
        Compute Cholesky decomposition and determine (log(det(scale)).

        Parameters
        ----------
        scale : ndarray
            Scale matrix.

        Returns
        -------
        c_decomp : ndarray
            The Cholesky decomposition of `scale`.
        logdet : scalar
            The log of the determinant of `scale`.

        Notes
        -----
        This computation of ``logdet`` is equivalent to
        ``np.linalg.slogdet(scale)``.  It is ~2x faster though.

        """
        c_decomp = scipy.linalg.cholesky(scale, lower=True)
        logdet = 2 * np.sum(np.log(c_decomp.diagonal()))
        return c_decomp, logdet
wishart = wishart_gen()


class wishart_frozen(multi_rv_frozen):
    """
    Create a frozen Wishart distribution.

    Parameters
    ----------
    df : array_like
        Degrees of freedom of the distribution
    scale : array_like
        Scale matrix of the distribution
    seed : None or int or np.random.RandomState instance, optional
        This parameter defines the RandomState object to use for drawing
        random variates.
        If None (or np.random), the global np.random state is used.
        If integer, it is used to seed the local RandomState instance
        Default is None.

    """
    def __init__(self, df, scale, seed=None):
        self._dist = wishart_gen(seed)
        self.dim, self.df, self.scale = self._dist._process_parameters(
            df, scale)
        self.C, self.log_det_scale = self._dist._cholesky_logdet(self.scale)

    def logpdf(self, x):
        x = self._dist._process_quantiles(x, self.dim)

        out = self._dist._logpdf(x, self.dim, self.df, self.scale,
                                 self.log_det_scale, self.C)
        return _squeeze_output(out)

    def pdf(self, x):
        return np.exp(self.logpdf(x))

    def mean(self):
        out = self._dist._mean(self.dim, self.df, self.scale)
        return _squeeze_output(out)

    def mode(self):
        out = self._dist._mode(self.dim, self.df, self.scale)
        return _squeeze_output(out) if out is not None else out

    def var(self):
        out = self._dist._var(self.dim, self.df, self.scale)
        return _squeeze_output(out)

    def rvs(self, size=1, random_state=None):
        n, shape = self._dist._process_size(size)
        out = self._dist._rvs(n, shape, self.dim, self.df,
                              self.C, random_state)
        return _squeeze_output(out)

    def entropy(self):
        return self._dist._entropy(self.dim, self.df, self.log_det_scale)

# Set frozen generator docstrings from corresponding docstrings in
# Wishart and fill in default strings in class docstrings
for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs', 'entropy']:
    method = wishart_gen.__dict__[name]
    method_frozen = wishart_frozen.__dict__[name]
    method_frozen.__doc__ = doccer.docformat(
        method.__doc__, wishart_docdict_noparams)
    method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params)


from numpy import asarray_chkfinite, asarray
from scipy.linalg.misc import LinAlgError
from scipy.linalg.lapack import get_lapack_funcs
def _cho_inv_batch(a, check_finite=True):
    """
    Invert the matrices a_i, using a Cholesky factorization of A, where
    a_i resides in the last two dimensions of a and the other indices describe
    the index i.

    Overwrites the data in a.

    Parameters
    ----------
    a : array
        Array of matrices to invert, where the matrices themselves are stored
        in the last two dimensions.
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : array
        Array of inverses of the matrices ``a_i``.

    See also
    --------
    scipy.linalg.cholesky : Cholesky factorization of a matrix

    """
    if check_finite:
        a1 = asarray_chkfinite(a)
    else:
        a1 = asarray(a)
    if len(a1.shape) < 2 or a1.shape[-2] != a1.shape[-1]:
        raise ValueError('expected square matrix in last two dimensions')

    potrf, potri = get_lapack_funcs(('potrf','potri'), (a1,))

    tril_idx = np.tril_indices(a.shape[-2], k=-1)
    triu_idx = np.triu_indices(a.shape[-2], k=1)
    for index in np.ndindex(a1.shape[:-2]):

        # Cholesky decomposition
        a1[index], info = potrf(a1[index], lower=True, overwrite_a=False,
                                clean=False)
        if info > 0:
            raise LinAlgError("%d-th leading minor not positive definite"
                              % info)
        if info < 0:
            raise ValueError('illegal value in %d-th argument of internal'
                             ' potrf' % -info)
        # Inversion
        a1[index], info = potri(a1[index], lower=True, overwrite_c=False)
        if info > 0:
            raise LinAlgError("the inverse could not be computed")
        if info < 0:
            raise ValueError('illegal value in %d-th argument of internal'
                             ' potrf' % -info)

        # Make symmetric (dpotri only fills in the lower triangle)
        a1[index][triu_idx] = a1[index][tril_idx]

    return a1


class invwishart_gen(wishart_gen):
    r"""
    An inverse Wishart random variable.

    The `df` keyword specifies the degrees of freedom. The `scale` keyword
    specifies the scale matrix, which must be symmetric and positive definite.
    In this context, the scale matrix is often interpreted in terms of a
    multivariate normal covariance matrix.

    Methods
    -------
    ``pdf(x, df, scale)``
        Probability density function.
    ``logpdf(x, df, scale)``
        Log of the probability density function.
    ``rvs(df, scale, size=1, random_state=None)``
        Draw random samples from an inverse Wishart distribution.

    Parameters
    ----------
    x : array_like
        Quantiles, with the last axis of `x` denoting the components.
    %(_doc_default_callparams)s
    %(_doc_random_state)s

    Alternatively, the object may be called (as a function) to fix the degrees
    of freedom and scale parameters, returning a "frozen" inverse Wishart
    random variable:

    rv = invwishart(df=1, scale=1)
        - Frozen object with the same methods but holding the given
          degrees of freedom and scale fixed.

    See Also
    --------
    wishart

    Notes
    -----
    %(_doc_callparams_note)s

    The scale matrix `scale` must be a symmetric positive definite
    matrix. Singular matrices, including the symmetric positive semi-definite
    case, are not supported.

    The inverse Wishart distribution is often denoted

    .. math::

        W_p^{-1}(\nu, \Psi)

    where :math:`\nu` is the degrees of freedom and :math:`\Psi` is the
    :math:`p \times p` scale matrix.

    The probability density function for `invwishart` has support over positive
    definite matrices :math:`S`; if :math:`S \sim W^{-1}_p(\nu, \Sigma)`,
    then its PDF is given by:

    .. math::

        f(S) = \frac{|\Sigma|^\frac{\nu}{2}}{2^{ \frac{\nu p}{2} }
               |S|^{\frac{\nu + p + 1}{2}} \Gamma_p \left(\frac{\nu}{2} \right)}
               \exp\left( -tr(\Sigma S^{-1}) / 2 \right)

    If :math:`S \sim W_p^{-1}(\nu, \Psi)` (inverse Wishart) then
    :math:`S^{-1} \sim W_p(\nu, \Psi^{-1})` (Wishart).

    If the scale matrix is 1-dimensional and equal to one, then the inverse
    Wishart distribution :math:`W_1(\nu, 1)` collapses to the
    inverse Gamma distribution with parameters shape = :math:`\frac{\nu}{2}`
    and scale = :math:`\frac{1}{2}`.

    .. versionadded:: 0.16.0

    References
    ----------
    .. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach",
           Wiley, 1983.
    .. [2] M.C. Jones, "Generating Inverse Wishart Matrices", Communications in
           Statistics - Simulation and Computation, vol. 14.2, pp.511-514, 1985.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from scipy.stats import invwishart, invgamma
    >>> x = np.linspace(0.01, 1, 100)
    >>> iw = invwishart.pdf(x, df=6, scale=1)
    >>> iw[:3]
    array([  1.20546865e-15,   5.42497807e-06,   4.45813929e-03])
    >>> ig = invgamma.pdf(x, 6/2., scale=1./2)
    >>> ig[:3]
    array([  1.20546865e-15,   5.42497807e-06,   4.45813929e-03])
    >>> plt.plot(x, iw)

    The input quantiles can be any shape of array, as long as the last
    axis labels the components.

    """

    def __init__(self, seed=None):
        super(invwishart_gen, self).__init__(seed)
        self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params)

    def __call__(self, df=None, scale=None, seed=None):
        """
        Create a frozen inverse Wishart distribution.

        See `invwishart_frozen` for more information.

        """
        return invwishart_frozen(df, scale, seed)

    def _logpdf(self, x, dim, df, scale, log_det_scale):
        """
        Parameters
        ----------
        x : ndarray
            Points at which to evaluate the log of the probability
            density function.
        dim : int
            Dimension of the scale matrix
        df : int
            Degrees of freedom
        scale : ndarray
            Scale matrix
        log_det_scale : float
            Logarithm of the determinant of the scale matrix

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'logpdf' instead.

        """
        log_det_x = np.zeros(x.shape[-1])
        #scale_x_inv = np.zeros(x.shape)
        x_inv = np.copy(x).T
        if dim > 1:
            _cho_inv_batch(x_inv)  # works in-place
        else:
            x_inv = 1./x_inv
        tr_scale_x_inv = np.zeros(x.shape[-1])

        for i in range(x.shape[-1]):
            C, lower = scipy.linalg.cho_factor(x[:,:,i], lower=True)

            log_det_x[i] = 2 * np.sum(np.log(C.diagonal()))

            #scale_x_inv[:,:,i] = scipy.linalg.cho_solve((C, True), scale).T
            tr_scale_x_inv[i] = np.dot(scale, x_inv[i]).trace()

        # Log PDF
        out = ((0.5 * df * log_det_scale - 0.5 * tr_scale_x_inv) -
               (0.5 * df * dim * _LOG_2 + 0.5 * (df + dim + 1) * log_det_x) -
               multigammaln(0.5*df, dim))

        return out

    def logpdf(self, x, df, scale):
        """
        Log of the inverse Wishart probability density function.

        Parameters
        ----------
        x : array_like
            Quantiles, with the last axis of `x` denoting the components.
            Each quantile must be a symmetric positive definite matrix.
        %(_doc_default_callparams)s

        Returns
        -------
        pdf : ndarray
            Log of the probability density function evaluated at `x`

        Notes
        -----
        %(_doc_callparams_note)s

        """
        dim, df, scale = self._process_parameters(df, scale)
        x = self._process_quantiles(x, dim)
        _, log_det_scale = self._cholesky_logdet(scale)
        out = self._logpdf(x, dim, df, scale, log_det_scale)
        return _squeeze_output(out)

    def pdf(self, x, df, scale):
        """
        Inverse Wishart probability density function.

        Parameters
        ----------
        x : array_like
            Quantiles, with the last axis of `x` denoting the components.
            Each quantile must be a symmetric positive definite matrix.

        %(_doc_default_callparams)s

        Returns
        -------
        pdf : ndarray
            Probability density function evaluated at `x`

        Notes
        -----
        %(_doc_callparams_note)s

        """
        return np.exp(self.logpdf(x, df, scale))

    def _mean(self, dim, df, scale):
        """
        Parameters
        ----------
        dim : int
            Dimension of the scale matrix
        %(_doc_default_callparams)s

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'mean' instead.

        """
        if df > dim + 1:
            out = scale / (df - dim - 1)
        else:
            out = None
        return out

    def mean(self, df, scale):
        """
        Mean of the inverse Wishart distribution

        Only valid if the degrees of freedom are greater than the dimension of
        the scale matrix plus one.

        Parameters
        ----------
        %(_doc_default_callparams)s

        Returns
        -------
        mean : float or None
            The mean of the distribution

        """
        dim, df, scale = self._process_parameters(df, scale)
        out = self._mean(dim, df, scale)
        return _squeeze_output(out) if out is not None else out

    def _mode(self, dim, df, scale):
        """
        Parameters
        ----------
        dim : int
            Dimension of the scale matrix
        %(_doc_default_callparams)s

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'mode' instead.

        """
        return scale / (df + dim + 1)

    def mode(self, df, scale):
        """
        Mode of the inverse Wishart distribution

        Parameters
        ----------
        %(_doc_default_callparams)s

        Returns
        -------
        mode : float
            The Mode of the distribution

        """
        dim, df, scale = self._process_parameters(df, scale)
        out = self._mode(dim, df, scale)
        return _squeeze_output(out)

    def _var(self, dim, df, scale):
        """
        Parameters
        ----------
        dim : int
            Dimension of the scale matrix
        %(_doc_default_callparams)s

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'var' instead.

        """
        if df > dim + 3:
            var = (df - dim + 1) * scale**2
            diag = scale.diagonal()  # 1 x dim array
            var += (df - dim - 1) * np.outer(diag, diag)
            var /= (df - dim) * (df - dim - 1)**2 * (df - dim - 3)
        else:
            var = None
        return var

    def var(self, df, scale):
        """
        Variance of the inverse Wishart distribution

        Only valid if the degrees of freedom are greater than the dimension of
        the scale matrix plus three.

        Parameters
        ----------
        %(_doc_default_callparams)s

        Returns
        -------
        var : float
            The variance of the distribution
        """
        dim, df, scale = self._process_parameters(df, scale)
        out = self._var(dim, df, scale)
        return _squeeze_output(out) if out is not None else out

    def _rvs(self, n, shape, dim, df, C, random_state):
        """
        Parameters
        ----------
        n : integer
            Number of variates to generate
        shape : iterable
            Shape of the variates to generate
        dim : int
            Dimension of the scale matrix
        df : int
            Degrees of freedom
        C : ndarray
            Cholesky factorization of the scale matrix, lower triagular.
        %(_doc_random_state)s

        Notes
        -----
        As this function does no argument checking, it should not be
        called directly; use 'rvs' instead.

        """
        random_state = self._get_random_state(random_state)
        # Get random draws A such that A ~ W(df, I)
        A = super(invwishart_gen, self)._standard_rvs(n, shape, dim,
                                                      df, random_state)

        # Calculate SA = (CA)'^{-1} (CA)^{-1} ~ iW(df, scale)
        eye = np.eye(dim)
        trtrs = get_lapack_funcs(('trtrs'), (A,))

        for index in np.ndindex(A.shape[:-2]):
            # Calculate CA
            CA = np.dot(C, A[index])
            # Get (C A)^{-1} via triangular solver
            if dim > 1:
                CA, info = trtrs(CA, eye, lower=True)
                if info > 0:
                    raise LinAlgError("Singular matrix.")
                if info < 0:
                    raise ValueError('Illegal value in %d-th argument of'
                                     ' internal trtrs' % -info)
            else:
                CA = 1. / CA
            # Get SA
            A[index] = np.dot(CA.T, CA)

        return A

    def rvs(self, df, scale, size=1, random_state=None):
        """
        Draw random samples from an inverse Wishart distribution.

        Parameters
        ----------
        %(_doc_default_callparams)s
        size : integer or iterable of integers, optional
            Number of samples to draw (default 1).
        %(_doc_random_state)s

        Returns
        -------
        rvs : ndarray
            Random variates of shape (`size`) + (`dim`, `dim), where `dim` is
            the dimension of the scale matrix.

        Notes
        -----
        %(_doc_callparams_note)s

        """
        n, shape = self._process_size(size)
        dim, df, scale = self._process_parameters(df, scale)

        # Invert the scale
        eye = np.eye(dim)
        L, lower = scipy.linalg.cho_factor(scale, lower=True)
        inv_scale = scipy.linalg.cho_solve((L, lower), eye)
        # Cholesky decomposition of inverted scale
        C = scipy.linalg.cholesky(inv_scale, lower=True)

        out = self._rvs(n, shape, dim, df, C, random_state)

        return _squeeze_output(out)

    def entropy(self):
        # Need to find reference for inverse Wishart entropy
        raise AttributeError

invwishart = invwishart_gen()

class invwishart_frozen(multi_rv_frozen):
    def __init__(self, df, scale, seed=None):
        """
        Create a frozen inverse Wishart distribution.

        Parameters
        ----------
        df : array_like
            Degrees of freedom of the distribution
        scale : array_like
            Scale matrix of the distribution
        seed : None or int or np.random.RandomState instance, optional
            This parameter defines the RandomState object to use for drawing
            random variates.
            If None (or np.random), the global np.random state is used.
            If integer, it is used to seed the local RandomState instance
            Default is None.

        """
        self._dist = invwishart_gen(seed)
        self.dim, self.df, self.scale = self._dist._process_parameters(
            df, scale
        )

        # Get the determinant via Cholesky factorization
        C, lower = scipy.linalg.cho_factor(self.scale, lower=True)
        self.log_det_scale = 2 * np.sum(np.log(C.diagonal()))

        # Get the inverse using the Cholesky factorization
        eye = np.eye(self.dim)
        self.inv_scale = scipy.linalg.cho_solve((C, lower), eye)

        # Get the Cholesky factorization of the inverse scale
        self.C = scipy.linalg.cholesky(self.inv_scale, lower=True)

    def logpdf(self, x):
        x = self._dist._process_quantiles(x, self.dim)
        out = self._dist._logpdf(x, self.dim, self.df, self.scale,
                                 self.log_det_scale)
        return _squeeze_output(out)

    def pdf(self, x):
        return np.exp(self.logpdf(x))

    def mean(self):
        out = self._dist._mean(self.dim, self.df, self.scale)
        return _squeeze_output(out) if out is not None else out

    def mode(self):
        out = self._dist._mode(self.dim, self.df, self.scale)
        return _squeeze_output(out)

    def var(self):
        out = self._dist._var(self.dim, self.df, self.scale)
        return _squeeze_output(out) if out is not None else out

    def rvs(self, size=1, random_state=None):
        n, shape = self._dist._process_size(size)

        out = self._dist._rvs(n, shape, self.dim, self.df,
                              self.C, random_state)

        return _squeeze_output(out)

    def entropy(self):
        # Need to find reference for inverse Wishart entropy
        raise AttributeError

# Set frozen generator docstrings from corresponding docstrings in
# inverse Wishart and fill in default strings in class docstrings
for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs']:
    method = invwishart_gen.__dict__[name]
    method_frozen = wishart_frozen.__dict__[name]
    method_frozen.__doc__ = doccer.docformat(
        method.__doc__, wishart_docdict_noparams)
    method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params)

class special_ortho_group_gen(multi_rv_generic):
    r"""
    A matrix-valued SO(N) random variable.

    Return a random rotation matrix, drawn from the Haar distribution
    (the only uniform distribution on SO(n)).

    The `dim` keyword specifies the dimension N.

    Methods
    -------
    ``rvs(dim=None, size=1, random_state=None)``
        Draw random samples from SO(N).

    Parameters
    ----------
    dim : scalar
        Dimension of matrices

    Notes
    ----------
    This class is wrapping the random_rot code from the MDP Toolkit,
    https://github.com/mdp-toolkit/mdp-toolkit

    Return a random rotation matrix, drawn from the Haar distribution
    (the only uniform distribution on SO(n)).
    The algorithm is described in the paper
    Stewart, G.W., "The efficient generation of random orthogonal
    matrices with an application to condition estimators", SIAM Journal
    on Numerical Analysis, 17(3), pp. 403-409, 1980.
    For more information see
    http://en.wikipedia.org/wiki/Orthogonal_matrix#Randomization

    See also the similar `ortho_group`.

    Examples
    --------
    >>> from scipy.stats import special_ortho_group
    >>> x = special_ortho_group.rvs(3)

    >>> np.dot(x, x.T)
    array([[  1.00000000e+00,   1.13231364e-17,  -2.86852790e-16],
           [  1.13231364e-17,   1.00000000e+00,  -1.46845020e-16],
           [ -2.86852790e-16,  -1.46845020e-16,   1.00000000e+00]])

    >>> import scipy.linalg
    >>> scipy.linalg.det(x)
    1.0

    This generates one random matrix from SO(3). It is orthogonal and
    has a determinant of 1.

    """

    def __init__(self, seed=None):
        super(special_ortho_group_gen, self).__init__(seed)
        self.__doc__ = doccer.docformat(self.__doc__)

    def __call__(self, dim=None, seed=None):
        """
        Create a frozen SO(N) distribution.

        See `special_ortho_group_frozen` for more information.

        """
        return special_ortho_group_frozen(dim, seed=seed)

    def _process_parameters(self, dim):
        """
        Dimension N must be specified; it cannot be inferred.
        """

        if dim is None or not np.isscalar(dim) or dim <= 1 or dim != int(dim):
            raise ValueError("""Dimension of rotation must be specified,
                                and must be a scalar greater than 1.""")

        return dim

    def rvs(self, dim, size=1, random_state=None):
        """
        Draw random samples from SO(N).

        Parameters
        ----------
        dim : integer
            Dimension of rotation space (N).
        size : integer, optional
            Number of samples to draw (default 1).

        Returns
        -------
        rvs : ndarray or scalar
            Random size N-dimensional matrices, dimension (size, dim, dim)

        """
        size = int(size)
        if size > 1:
            return np.array([self.rvs(dim, size=1, random_state=random_state)
                             for i in range(size)])

        dim = self._process_parameters(dim)

        random_state = self._get_random_state(random_state)

        H = np.eye(dim)
        D = np.ones((dim,))
        for n in range(1, dim):
            x = random_state.normal(size=(dim-n+1,))

            D[n-1] = np.sign(x[0])
            x[0] -= D[n-1]*np.sqrt((x*x).sum())
            # Householder transformation
            Hx = (np.eye(dim-n+1)
                  - 2.*np.outer(x, x)/(x*x).sum())
            mat = np.eye(dim)
            mat[n-1:, n-1:] = Hx
            H = np.dot(H, mat)
            # Fix the last sign such that the determinant is 1
        D[-1] = (-1)**(1-(dim % 2))*D.prod()
        # Equivalent to np.dot(np.diag(D), H) but faster, apparently
        H = (D*H.T).T
        return H

special_ortho_group = special_ortho_group_gen()

class special_ortho_group_frozen(multi_rv_frozen):
    def __init__(self, dim=None, seed=None):
        """
        Create a frozen SO(N) distribution.

        Parameters
        ----------
        dim : scalar
            Dimension of matrices
        seed : None or int or np.random.RandomState instance, optional
            This parameter defines the RandomState object to use for drawing
            random variates.
            If None (or np.random), the global np.random state is used.
            If integer, it is used to seed the local RandomState instance
            Default is None.

        Examples
        --------
        >>> from scipy.stats import special_ortho_group
        >>> g = special_ortho_group(5)
        >>> x = g.rvs()

        """
        self._dist = special_ortho_group_gen(seed)
        self.dim = self._dist._process_parameters(dim)

    def rvs(self, size=1, random_state=None):
        return self._dist.rvs(self.dim, size, random_state)

class ortho_group_gen(multi_rv_generic):
    r"""
    A matrix-valued O(N) random variable.

    Return a random orthogonal matrix, drawn from the O(N) Haar
    distribution (the only uniform distribution on O(N)).

    The `dim` keyword specifies the dimension N.

    Methods
    -------
    ``rvs(dim=None, size=1, random_state=None)``
        Draw random samples from O(N).

    Parameters
    ----------
    dim : scalar
        Dimension of matrices

    Notes
    ----------
    This class is closely related to `special_ortho_group`.

    Some care is taken to avoid numerical error, as per the paper by Mezzadri.

    References
    ----------
    .. [1] F. Mezzadri, "How to generate random matrices from the classical
           compact groups", arXiv:math-ph/0609050v2.

    Examples
    --------
    >>> from scipy.stats import ortho_group
    >>> x = ortho_group.rvs(3)

    >>> np.dot(x, x.T)
    array([[  1.00000000e+00,   1.13231364e-17,  -2.86852790e-16],
           [  1.13231364e-17,   1.00000000e+00,  -1.46845020e-16],
           [ -2.86852790e-16,  -1.46845020e-16,   1.00000000e+00]])

    >>> import scipy.linalg
    >>> np.fabs(scipy.linalg.det(x))
    1.0

    This generates one random matrix from O(3). It is orthogonal and
    has a determinant of +1 or -1.

    """

    def __init__(self, seed=None):
        super(ortho_group_gen, self).__init__(seed)
        self.__doc__ = doccer.docformat(self.__doc__)

    def _process_parameters(self, dim):
        """
        Dimension N must be specified; it cannot be inferred.
        """

        if dim is None or not np.isscalar(dim) or dim <= 1 or dim != int(dim):
            raise ValueError("Dimension of rotation must be specified,"
                             "and must be a scalar greater than 1.")

        return dim

    def rvs(self, dim, size=1, random_state=None):
        """
        Draw random samples from O(N).

        Parameters
        ----------
        dim : integer
            Dimension of rotation space (N).
        size : integer, optional
            Number of samples to draw (default 1).

        Returns
        -------
        rvs : ndarray or scalar
            Random size N-dimensional matrices, dimension (size, dim, dim)

        """
        size = int(size)
        if size > 1:
            return np.array([self.rvs(dim, size=1, random_state=random_state)
                             for i in range(size)])

        dim = self._process_parameters(dim)

        random_state = self._get_random_state(random_state)

        H = np.eye(dim)
        for n in range(1, dim):
            x = random_state.normal(size=(dim-n+1,))
            # random sign, 50/50, but chosen carefully to avoid roundoff error
            D = np.sign(x[0])
            x[0] += D*np.sqrt((x*x).sum())
            # Householder transformation
            Hx = -D*(np.eye(dim-n+1)
                     - 2.*np.outer(x, x)/(x*x).sum())
            mat = np.eye(dim)
            mat[n-1:, n-1:] = Hx
            H = np.dot(H, mat)
        return H

ortho_group = ortho_group_gen()

class random_correlation_gen(multi_rv_generic):
    r"""
    A random correlation matrix.

    Return a random correlation matrix, given a vector of eigenvalues.

    The `eigs` keyword specifies the eigenvalues of the correlation matrix,
    and implies the dimension.

    Methods
    -------
    ``rvs(eigs=None, random_state=None)``
        Draw random correlation matrices, all with eigenvalues eigs.

    Parameters
    ----------
    eigs : 1d ndarray
        Eigenvalues of correlation matrix.

    Notes
    ----------

    Generates a random correlation matrix following a numerically stable
    algorithm spelled out by Davies & Higham. This algorithm uses a single O(N)
    similarity transformation to construct a symmetric positive semi-definite
    matrix, and applies a series of Givens rotations to scale it to have ones
    on the diagonal.

    References
    ----------

    .. [1] Davies, Philip I; Higham, Nicholas J; "Numerically stable generation
           of correlation matrices and their factors", BIT 2000, Vol. 40,
           No. 4, pp. 640 651

    Examples
    --------
    >>> from scipy.stats import random_correlation
    >>> np.random.seed(514)
    >>> x = random_correlation.rvs((.5, .8, 1.2, 1.5))
    >>> x
    array([[ 1.        , -0.20387311,  0.18366501, -0.04953711],
           [-0.20387311,  1.        , -0.24351129,  0.06703474],
           [ 0.18366501, -0.24351129,  1.        ,  0.38530195],
           [-0.04953711,  0.06703474,  0.38530195,  1.        ]])

    >>> import scipy.linalg
    >>> e, v = scipy.linalg.eigh(x)
    >>> e
    array([ 0.5,  0.8,  1.2,  1.5])

    """

    def __init__(self, seed=None):
        super(random_correlation_gen, self).__init__(seed)
        self.__doc__ = doccer.docformat(self.__doc__)

    def _process_parameters(self, eigs, tol):
        eigs = np.asarray(eigs, dtype=float)
        dim = eigs.size

        if eigs.ndim != 1 or eigs.shape[0] != dim or dim <= 1:
            raise ValueError("Array 'eigs' must be a vector of length greater than 1.")

        if np.fabs(np.sum(eigs) - dim) > tol:
            raise ValueError("Sum of eigenvalues must equal dimensionality.")

        for x in eigs:
            if x < -tol:
                raise ValueError("All eigenvalues must be non-negative.")

        return dim, eigs

    def _givens_to_1(self, aii, ajj, aij):
        """Computes a 2x2 Givens matrix to put 1's on the diagonal for the input matrix.

        The input matrix is a 2x2 symmetric matrix M = [ aii aij ; aij ajj ].

        The output matrix g is a 2x2 anti-symmetric matrix of the form [ c s ; -s c ];
        the elements c and s are returned.

        Applying the output matrix to the input matrix (as b=g.T M g)
        results in a matrix with bii=1, provided tr(M) - det(M) >= 1
        and floating point issues do not occur. Otherwise, some other
        valid rotation is returned. When tr(M)==2, also bjj=1.

        """
        aiid = aii - 1.
        ajjd = ajj - 1.

        if ajjd == 0:
            # ajj==1, so swap aii and ajj to avoid division by zero
            return 0., 1.

        dd = math.sqrt(max(aij**2 - aiid*ajjd, 0))

        # The choice of t should be chosen to avoid cancellation [1]
        t = (aij + math.copysign(dd, aij)) / ajjd
        c = 1. / math.sqrt(1. + t*t)
        if c == 0:
            # Underflow
            s = 1.0
        else:
            s = c*t
        return c, s

    def _to_corr(self, m):
        """
        Given a psd matrix m, rotate to put one's on the diagonal, turning it
        into a correlation matrix.  This also requires the trace equal the
        dimensionality. Note: modifies input matrix
        """
        # Check requirements for in-place Givens
        if not (m.flags.c_contiguous and m.dtype == np.float64 and m.shape[0] == m.shape[1]):
            raise ValueError()

        d = m.shape[0]
        for i in range(d-1):
            if m[i,i] == 1:
                continue
            elif m[i, i] > 1:
                for j in range(i+1, d):
                    if m[j, j] < 1:
                        break
            else:
                for j in range(i+1, d):
                    if m[j, j] > 1:
                        break

            c, s = self._givens_to_1(m[i,i], m[j,j], m[i,j])

            # Use BLAS to apply Givens rotations in-place. Equivalent to:
            # g = np.eye(d)
            # g[i, i] = g[j,j] = c
            # g[j, i] = -s; g[i, j] = s
            # m = np.dot(g.T, np.dot(m, g))
            mv = m.ravel()
            drot(mv, mv, c, -s, n=d,
                 offx=i*d, incx=1, offy=j*d, incy=1,
                 overwrite_x=True, overwrite_y=True)
            drot(mv, mv, c, -s, n=d,
                 offx=i, incx=d, offy=j, incy=d,
                 overwrite_x=True, overwrite_y=True)

        return m

    def rvs(self, eigs, random_state=None, tol=1e-13, diag_tol=1e-7):
        """
        Draw random correlation matrices

        Parameters
        ----------
        eigs : 1d ndarray
            Eigenvalues of correlation matrix
        tol : float, optional
            Tolerance for input parameter checks
        diag_tol : float, optional
            Tolerance for deviation of the diagonal of the resulting
            matrix. Default: 1e-7

        Raises
        ------
        RuntimeError
            Floating point error prevented generating a valid correlation
            matrix.

        Returns
        -------
        rvs : ndarray or scalar
            Random size N-dimensional matrices, dimension (size, dim, dim),
            each having eigenvalues eigs.

        """
        dim, eigs = self._process_parameters(eigs, tol=tol)

        random_state = self._get_random_state(random_state)

        m = ortho_group.rvs(dim, random_state=random_state)
        m = np.dot(np.dot(m, np.diag(eigs)), m.T)  # Set the trace of m
        m = self._to_corr(m)  # Carefully rotate to unit diagonal

        # Check diagonal
        if abs(m.diagonal() - 1).max() > diag_tol:
            raise RuntimeError("Failed to generate a valid correlation matrix")

        return m

random_correlation = random_correlation_gen()