File: morestats.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (2809 lines) | stat: -rw-r--r-- 94,811 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
# Author:  Travis Oliphant, 2002
#
# Further updates and enhancements by many SciPy developers.
#
from __future__ import division, print_function, absolute_import

import math
import warnings
from collections import namedtuple

import numpy as np
from numpy import (isscalar, r_, log, around, unique, asarray,
                   zeros, arange, sort, amin, amax, any, atleast_1d,
                   sqrt, ceil, floor, array, poly1d, compress,
                   pi, exp, ravel, count_nonzero, sin, cos, arctan2, hypot)
from numpy.testing.decorators import setastest

from scipy._lib.six import string_types
from scipy import optimize
from scipy import special
from . import statlib
from . import stats
from .stats import find_repeats
from .contingency import chi2_contingency
from . import distributions
from ._distn_infrastructure import rv_generic


__all__ = ['mvsdist',
           'bayes_mvs', 'kstat', 'kstatvar', 'probplot', 'ppcc_max', 'ppcc_plot',
           'boxcox_llf', 'boxcox', 'boxcox_normmax', 'boxcox_normplot',
           'shapiro', 'anderson', 'ansari', 'bartlett', 'levene', 'binom_test',
           'fligner', 'mood', 'wilcoxon', 'median_test',
           'pdf_fromgamma', 'circmean', 'circvar', 'circstd', 'anderson_ksamp'
           ]


Mean = namedtuple('Mean', ('statistic', 'minmax'))
Variance = namedtuple('Variance', ('statistic', 'minmax'))
Std_dev = namedtuple('Std_dev', ('statistic', 'minmax'))


def bayes_mvs(data, alpha=0.90):
    r"""
    Bayesian confidence intervals for the mean, var, and std.

    Parameters
    ----------
    data : array_like
        Input data, if multi-dimensional it is flattened to 1-D by `bayes_mvs`.
        Requires 2 or more data points.
    alpha : float, optional
        Probability that the returned confidence interval contains
        the true parameter.

    Returns
    -------
    mean_cntr, var_cntr, std_cntr : tuple
        The three results are for the mean, variance and standard deviation,
        respectively.  Each result is a tuple of the form::

            (center, (lower, upper))

        with `center` the mean of the conditional pdf of the value given the
        data, and `(lower, upper)` a confidence interval, centered on the
        median, containing the estimate to a probability ``alpha``.

    See Also
    --------
    mvsdist

    Notes
    -----
    Each tuple of mean, variance, and standard deviation estimates represent
    the (center, (lower, upper)) with center the mean of the conditional pdf
    of the value given the data and (lower, upper) is a confidence interval
    centered on the median, containing the estimate to a probability
    ``alpha``.

    Converts data to 1-D and assumes all data has the same mean and variance.
    Uses Jeffrey's prior for variance and std.

    Equivalent to ``tuple((x.mean(), x.interval(alpha)) for x in mvsdist(dat))``

    References
    ----------
    T.E. Oliphant, "A Bayesian perspective on estimating mean, variance, and
    standard-deviation from data", http://scholarsarchive.byu.edu/facpub/278,
    2006.

    Examples
    --------
    First a basic example to demonstrate the outputs:

    >>> from scipy import stats
    >>> data = [6, 9, 12, 7, 8, 8, 13]
    >>> mean, var, std = stats.bayes_mvs(data)
    >>> mean
    Mean(statistic=9.0, minmax=(7.1036502226125329, 10.896349777387467))
    >>> var
    Variance(statistic=10.0, minmax=(3.176724206..., 24.45910382...))
    >>> std
    Std_dev(statistic=2.9724954732045084, minmax=(1.7823367265645143, 4.9456146050146295))

    Now we generate some normally distributed random data, and get estimates of
    mean and standard deviation with 95% confidence intervals for those
    estimates:

    >>> n_samples = 100000
    >>> data = stats.norm.rvs(size=n_samples)
    >>> res_mean, res_var, res_std = stats.bayes_mvs(data, alpha=0.95)

    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> ax.hist(data, bins=100, normed=True, label='Histogram of data')
    >>> ax.vlines(res_mean.statistic, 0, 0.5, colors='r', label='Estimated mean')
    >>> ax.axvspan(res_mean.minmax[0],res_mean.minmax[1], facecolor='r',
    ...            alpha=0.2, label=r'Estimated mean (95% limits)')
    >>> ax.vlines(res_std.statistic, 0, 0.5, colors='g', label='Estimated scale')
    >>> ax.axvspan(res_std.minmax[0],res_std.minmax[1], facecolor='g', alpha=0.2,
    ...            label=r'Estimated scale (95% limits)')

    >>> ax.legend(fontsize=10)
    >>> ax.set_xlim([-4, 4])
    >>> ax.set_ylim([0, 0.5])
    >>> plt.show()

    """
    m, v, s = mvsdist(data)
    if alpha >= 1 or alpha <= 0:
        raise ValueError("0 < alpha < 1 is required, but alpha=%s was given."
                         % alpha)

    m_res = Mean(m.mean(), m.interval(alpha))
    v_res = Variance(v.mean(), v.interval(alpha))
    s_res = Std_dev(s.mean(), s.interval(alpha))

    return m_res, v_res, s_res


def mvsdist(data):
    """
    'Frozen' distributions for mean, variance, and standard deviation of data.

    Parameters
    ----------
    data : array_like
        Input array. Converted to 1-D using ravel.
        Requires 2 or more data-points.

    Returns
    -------
    mdist : "frozen" distribution object
        Distribution object representing the mean of the data
    vdist : "frozen" distribution object
        Distribution object representing the variance of the data
    sdist : "frozen" distribution object
        Distribution object representing the standard deviation of the data

    See Also
    --------
    bayes_mvs

    Notes
    -----
    The return values from ``bayes_mvs(data)`` is equivalent to
    ``tuple((x.mean(), x.interval(0.90)) for x in mvsdist(data))``.

    In other words, calling ``<dist>.mean()`` and ``<dist>.interval(0.90)``
    on the three distribution objects returned from this function will give
    the same results that are returned from `bayes_mvs`.

    References
    ----------
    T.E. Oliphant, "A Bayesian perspective on estimating mean, variance, and
    standard-deviation from data", http://scholarsarchive.byu.edu/facpub/278,
    2006.

    Examples
    --------
    >>> from scipy import stats
    >>> data = [6, 9, 12, 7, 8, 8, 13]
    >>> mean, var, std = stats.mvsdist(data)

    We now have frozen distribution objects "mean", "var" and "std" that we can
    examine:

    >>> mean.mean()
    9.0
    >>> mean.interval(0.95)
    (6.6120585482655692, 11.387941451734431)
    >>> mean.std()
    1.1952286093343936

    """
    x = ravel(data)
    n = len(x)
    if n < 2:
        raise ValueError("Need at least 2 data-points.")
    xbar = x.mean()
    C = x.var()
    if n > 1000:  # gaussian approximations for large n
        mdist = distributions.norm(loc=xbar, scale=math.sqrt(C / n))
        sdist = distributions.norm(loc=math.sqrt(C), scale=math.sqrt(C / (2. * n)))
        vdist = distributions.norm(loc=C, scale=math.sqrt(2.0 / n) * C)
    else:
        nm1 = n - 1
        fac = n * C / 2.
        val = nm1 / 2.
        mdist = distributions.t(nm1, loc=xbar, scale=math.sqrt(C / nm1))
        sdist = distributions.gengamma(val, -2, scale=math.sqrt(fac))
        vdist = distributions.invgamma(val, scale=fac)
    return mdist, vdist, sdist


def kstat(data, n=2):
    r"""
    Return the nth k-statistic (1<=n<=4 so far).

    The nth k-statistic k_n is the unique symmetric unbiased estimator of the
    nth cumulant kappa_n.

    Parameters
    ----------
    data : array_like
        Input array. Note that n-D input gets flattened.
    n : int, {1, 2, 3, 4}, optional
        Default is equal to 2.

    Returns
    -------
    kstat : float
        The nth k-statistic.

    See Also
    --------
    kstatvar: Returns an unbiased estimator of the variance of the k-statistic.
    moment: Returns the n-th central moment about the mean for a sample.

    Notes
    -----
    For a sample size n, the first few k-statistics are given by:

    .. math::

        k_{1} = \mu
        k_{2} = \frac{n}{n-1} m_{2}
        k_{3} = \frac{ n^{2} } {(n-1) (n-2)} m_{3}
        k_{4} = \frac{ n^{2} [(n + 1)m_{4} - 3(n - 1) m^2_{2}]} {(n-1) (n-2) (n-3)}

    where ``:math:\mu`` is the sample mean, ``:math:m_2`` is the sample
    variance, and ``:math:m_i`` is the i-th sample central moment.

    References
    ----------
    http://mathworld.wolfram.com/k-Statistic.html

    http://mathworld.wolfram.com/Cumulant.html

    Examples
    --------
    >>> from scipy import stats
    >>> rndm = np.random.RandomState(1234)

    As sample size increases, n-th moment and n-th k-statistic converge to the
    same number (although they aren't identical). In the case of the normal
    distribution, they converge to zero.

    >>> for n in [2, 3, 4, 5, 6, 7]:
    ...     x = rndm.normal(size=10**n)
    ...     m, k = stats.moment(x, 3), stats.kstat(x, 3)
    ...     print("%.3g %.3g %.3g" % (m, k, m-k))
    -0.631 -0.651 0.0194
    0.0282 0.0283 -8.49e-05
    -0.0454 -0.0454 1.36e-05
    7.53e-05 7.53e-05 -2.26e-09
    0.00166 0.00166 -4.99e-09
    -2.88e-06 -2.88e-06 8.63e-13
    """
    if n > 4 or n < 1:
        raise ValueError("k-statistics only supported for 1<=n<=4")
    n = int(n)
    S = np.zeros(n + 1, np.float64)
    data = ravel(data)
    N = data.size

    # raise ValueError on empty input
    if N == 0:
        raise ValueError("Data input must not be empty")

    # on nan input, return nan without warning
    if np.isnan(np.sum(data)):
        return np.nan

    for k in range(1, n + 1):
        S[k] = np.sum(data**k, axis=0)
    if n == 1:
        return S[1] * 1.0/N
    elif n == 2:
        return (N*S[2] - S[1]**2.0) / (N*(N - 1.0))
    elif n == 3:
        return (2*S[1]**3 - 3*N*S[1]*S[2] + N*N*S[3]) / (N*(N - 1.0)*(N - 2.0))
    elif n == 4:
        return ((-6*S[1]**4 + 12*N*S[1]**2 * S[2] - 3*N*(N-1.0)*S[2]**2 -
                 4*N*(N+1)*S[1]*S[3] + N*N*(N+1)*S[4]) /
                 (N*(N-1.0)*(N-2.0)*(N-3.0)))
    else:
        raise ValueError("Should not be here.")


def kstatvar(data, n=2):
    r"""
    Returns an unbiased estimator of the variance of the k-statistic.

    See `kstat` for more details of the k-statistic.

    Parameters
    ----------
    data : array_like
        Input array. Note that n-D input gets flattened.
    n : int, {1, 2}, optional
        Default is equal to 2.

    Returns
    -------
    kstatvar : float
        The nth k-statistic variance.

    See Also
    --------
    kstat: Returns the n-th k-statistic.
    moment: Returns the n-th central moment about the mean for a sample.

    Notes
    -----
    The variances of the first few k-statistics are given by:

    .. math::

        var(k_{1}) = \frac{\kappa^2}{n}
        var(k_{2}) = \frac{\kappa^4}{n} + \frac{2\kappa^2_{2}}{n - 1}
        var(k_{3}) = \frac{\kappa^6}{n} + \frac{9 \kappa_2 \kappa_4}{n - 1} +
                     \frac{9 \kappa^2_{3}}{n - 1} +
                     \frac{6 n \kappa^3_{2}}{(n-1) (n-2)}
        var(k_{4}) = \frac{\kappa^8}{n} + \frac{16 \kappa_2 \kappa_6}{n - 1} +
                     \frac{48 \kappa_{3} \kappa_5}{n - 1} +
                     \frac{34 \kappa^2_{4}}{n-1} + \frac{72 n \kappa^2_{2} \kappa_4}{(n - 1) (n - 2)} +
                     \frac{144 n \kappa_{2} \kappa^2_{3}}{(n - 1) (n - 2)} +
                     \frac{24 (n + 1) n \kappa^4_{2}}{(n - 1) (n - 2) (n - 3)}
    """
    data = ravel(data)
    N = len(data)
    if n == 1:
        return kstat(data, n=2) * 1.0/N
    elif n == 2:
        k2 = kstat(data, n=2)
        k4 = kstat(data, n=4)
        return (2*N*k2**2 + (N-1)*k4) / (N*(N+1))
    else:
        raise ValueError("Only n=1 or n=2 supported.")


def _calc_uniform_order_statistic_medians(n):
    """
    Approximations of uniform order statistic medians.

    Parameters
    ----------
    n : int
        Sample size.

    Returns
    -------
    v : 1d float array
        Approximations of the order statistic medians.

    References
    ----------
    .. [1] James J. Filliben, "The Probability Plot Correlation Coefficient
           Test for Normality", Technometrics, Vol. 17, pp. 111-117, 1975.

    Examples
    --------
    Order statistics of the uniform distribution on the unit interval
    are marginally distributed according to beta distributions.
    The expectations of these order statistic are evenly spaced across
    the interval, but the distributions are skewed in a way that
    pushes the medians slightly towards the endpoints of the unit interval:

    >>> n = 4
    >>> k = np.arange(1, n+1)
    >>> from scipy.stats import beta
    >>> a = k
    >>> b = n-k+1
    >>> beta.mean(a, b)
    array([ 0.2,  0.4,  0.6,  0.8])
    >>> beta.median(a, b)
    array([ 0.15910358,  0.38572757,  0.61427243,  0.84089642])

    The Filliben approximation uses the exact medians of the smallest
    and greatest order statistics, and the remaining medians are approximated
    by points spread evenly across a sub-interval of the unit interval:

    >>> from scipy.morestats import _calc_uniform_order_statistic_medians
    >>> _calc_uniform_order_statistic_medians(n)
    array([ 0.15910358,  0.38545246,  0.61454754,  0.84089642])

    This plot shows the skewed distributions of the order statistics
    of a sample of size four from a uniform distribution on the unit interval:

    >>> import matplotlib.pyplot as plt
    >>> x = np.linspace(0.0, 1.0, num=50, endpoint=True)
    >>> pdfs = [beta.pdf(x, a[i], b[i]) for i in range(n)]
    >>> plt.figure()
    >>> plt.plot(x, pdfs[0], x, pdfs[1], x, pdfs[2], x, pdfs[3])

    """
    v = np.zeros(n, dtype=np.float64)
    v[-1] = 0.5**(1.0 / n)
    v[0] = 1 - v[-1]
    i = np.arange(2, n)
    v[1:-1] = (i - 0.3175) / (n + 0.365)
    return v


def _parse_dist_kw(dist, enforce_subclass=True):
    """Parse `dist` keyword.

    Parameters
    ----------
    dist : str or stats.distributions instance.
        Several functions take `dist` as a keyword, hence this utility
        function.
    enforce_subclass : bool, optional
        If True (default), `dist` needs to be a
        `_distn_infrastructure.rv_generic` instance.
        It can sometimes be useful to set this keyword to False, if a function
        wants to accept objects that just look somewhat like such an instance
        (for example, they have a ``ppf`` method).

    """
    if isinstance(dist, rv_generic):
        pass
    elif isinstance(dist, string_types):
        try:
            dist = getattr(distributions, dist)
        except AttributeError:
            raise ValueError("%s is not a valid distribution name" % dist)
    elif enforce_subclass:
        msg = ("`dist` should be a stats.distributions instance or a string "
               "with the name of such a distribution.")
        raise ValueError(msg)

    return dist


def _add_axis_labels_title(plot, xlabel, ylabel, title):
    """Helper function to add axes labels and a title to stats plots"""
    try:
        if hasattr(plot, 'set_title'):
            # Matplotlib Axes instance or something that looks like it
            plot.set_title(title)
            plot.set_xlabel(xlabel)
            plot.set_ylabel(ylabel)
        else:
            # matplotlib.pyplot module
            plot.title(title)
            plot.xlabel(xlabel)
            plot.ylabel(ylabel)
    except:
        # Not an MPL object or something that looks (enough) like it.
        # Don't crash on adding labels or title
        pass


def probplot(x, sparams=(), dist='norm', fit=True, plot=None, rvalue=False):
    """
    Calculate quantiles for a probability plot, and optionally show the plot.

    Generates a probability plot of sample data against the quantiles of a
    specified theoretical distribution (the normal distribution by default).
    `probplot` optionally calculates a best-fit line for the data and plots the
    results using Matplotlib or a given plot function.

    Parameters
    ----------
    x : array_like
        Sample/response data from which `probplot` creates the plot.
    sparams : tuple, optional
        Distribution-specific shape parameters (shape parameters plus location
        and scale).
    dist : str or stats.distributions instance, optional
        Distribution or distribution function name. The default is 'norm' for a
        normal probability plot.  Objects that look enough like a
        stats.distributions instance (i.e. they have a ``ppf`` method) are also
        accepted.
    fit : bool, optional
        Fit a least-squares regression (best-fit) line to the sample data if
        True (default).
    plot : object, optional
        If given, plots the quantiles and least squares fit.
        `plot` is an object that has to have methods "plot" and "text".
        The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
        or a custom object with the same methods.
        Default is None, which means that no plot is created.

    Returns
    -------
    (osm, osr) : tuple of ndarrays
        Tuple of theoretical quantiles (osm, or order statistic medians) and
        ordered responses (osr).  `osr` is simply sorted input `x`.
        For details on how `osm` is calculated see the Notes section.
    (slope, intercept, r) : tuple of floats, optional
        Tuple  containing the result of the least-squares fit, if that is
        performed by `probplot`. `r` is the square root of the coefficient of
        determination.  If ``fit=False`` and ``plot=None``, this tuple is not
        returned.

    Notes
    -----
    Even if `plot` is given, the figure is not shown or saved by `probplot`;
    ``plt.show()`` or ``plt.savefig('figname.png')`` should be used after
    calling `probplot`.

    `probplot` generates a probability plot, which should not be confused with
    a Q-Q or a P-P plot.  Statsmodels has more extensive functionality of this
    type, see ``statsmodels.api.ProbPlot``.

    The formula used for the theoretical quantiles (horizontal axis of the
    probability plot) is Filliben's estimate::

        quantiles = dist.ppf(val), for

                0.5**(1/n),                  for i = n
          val = (i - 0.3175) / (n + 0.365),  for i = 2, ..., n-1
                1 - 0.5**(1/n),              for i = 1

    where ``i`` indicates the i-th ordered value and ``n`` is the total number
    of values.

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>> nsample = 100
    >>> np.random.seed(7654321)

    A t distribution with small degrees of freedom:

    >>> ax1 = plt.subplot(221)
    >>> x = stats.t.rvs(3, size=nsample)
    >>> res = stats.probplot(x, plot=plt)

    A t distribution with larger degrees of freedom:

    >>> ax2 = plt.subplot(222)
    >>> x = stats.t.rvs(25, size=nsample)
    >>> res = stats.probplot(x, plot=plt)

    A mixture of two normal distributions with broadcasting:

    >>> ax3 = plt.subplot(223)
    >>> x = stats.norm.rvs(loc=[0,5], scale=[1,1.5],
    ...                    size=(nsample//2,2)).ravel()
    >>> res = stats.probplot(x, plot=plt)

    A standard normal distribution:

    >>> ax4 = plt.subplot(224)
    >>> x = stats.norm.rvs(loc=0, scale=1, size=nsample)
    >>> res = stats.probplot(x, plot=plt)

    Produce a new figure with a loggamma distribution, using the ``dist`` and
    ``sparams`` keywords:

    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> x = stats.loggamma.rvs(c=2.5, size=500)
    >>> res = stats.probplot(x, dist=stats.loggamma, sparams=(2.5,), plot=ax)
    >>> ax.set_title("Probplot for loggamma dist with shape parameter 2.5")

    Show the results with Matplotlib:

    >>> plt.show()

    """
    x = np.asarray(x)
    _perform_fit = fit or (plot is not None)
    if x.size == 0:
        if _perform_fit:
            return (x, x), (np.nan, np.nan, 0.0)
        else:
            return x, x

    osm_uniform = _calc_uniform_order_statistic_medians(len(x))
    dist = _parse_dist_kw(dist, enforce_subclass=False)
    if sparams is None:
        sparams = ()
    if isscalar(sparams):
        sparams = (sparams,)
    if not isinstance(sparams, tuple):
        sparams = tuple(sparams)

    osm = dist.ppf(osm_uniform, *sparams)
    osr = sort(x)
    if _perform_fit:
        # perform a linear least squares fit.
        slope, intercept, r, prob, sterrest = stats.linregress(osm, osr)

    if plot is not None:
        plot.plot(osm, osr, 'bo', osm, slope*osm + intercept, 'r-')
        _add_axis_labels_title(plot, xlabel='Theoretical quantiles',
                               ylabel='Ordered Values',
                               title='Probability Plot')

        # Add R^2 value to the plot as text
        if rvalue:
            xmin = amin(osm)
            xmax = amax(osm)
            ymin = amin(x)
            ymax = amax(x)
            posx = xmin + 0.70 * (xmax - xmin)
            posy = ymin + 0.01 * (ymax - ymin)
            plot.text(posx, posy, "$R^2=%1.4f$" % r**2)

    if fit:
        return (osm, osr), (slope, intercept, r)
    else:
        return osm, osr


def ppcc_max(x, brack=(0.0, 1.0), dist='tukeylambda'):
    """
    Calculate the shape parameter that maximizes the PPCC

    The probability plot correlation coefficient (PPCC) plot can be used to
    determine the optimal shape parameter for a one-parameter family of
    distributions.  ppcc_max returns the shape parameter that would maximize the
    probability plot correlation coefficient for the given data to a
    one-parameter family of distributions.

    Parameters
    ----------
    x : array_like
        Input array.
    brack : tuple, optional
        Triple (a,b,c) where (a<b<c). If bracket consists of two numbers (a, c)
        then they are assumed to be a starting interval for a downhill bracket
        search (see `scipy.optimize.brent`).
    dist : str or stats.distributions instance, optional
        Distribution or distribution function name.  Objects that look enough
        like a stats.distributions instance (i.e. they have a ``ppf`` method)
        are also accepted.  The default is ``'tukeylambda'``.

    Returns
    -------
    shape_value : float
        The shape parameter at which the probability plot correlation
        coefficient reaches its max value.

    See also
    --------
    ppcc_plot, probplot, boxcox

    Notes
    -----
    The brack keyword serves as a starting point which is useful in corner
    cases. One can use a plot to obtain a rough visual estimate of the location
    for the maximum to start the search near it.

    References
    ----------
    .. [1] J.J. Filliben, "The Probability Plot Correlation Coefficient Test for
           Normality", Technometrics, Vol. 17, pp. 111-117, 1975.

    .. [2] http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm

    Examples
    --------
    First we generate some random data from a Tukey-Lambda distribution,
    with shape parameter -0.7:

    >>> from scipy import stats
    >>> x = stats.tukeylambda.rvs(-0.7, loc=2, scale=0.5, size=10000,
    ...                           random_state=1234567) + 1e4

    Now we explore this data with a PPCC plot as well as the related
    probability plot and Box-Cox normplot.  A red line is drawn where we
    expect the PPCC value to be maximal (at the shape parameter -0.7 used
    above):

    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure(figsize=(8, 6))
    >>> ax = fig.add_subplot(111)
    >>> res = stats.ppcc_plot(x, -5, 5, plot=ax)

    We calculate the value where the shape should reach its maximum and a red
    line is drawn there. The line should coincide with the highest point in the
    ppcc_plot.

    >>> max = stats.ppcc_max(x)
    >>> ax.vlines(max, 0, 1, colors='r', label='Expected shape value')

    >>> plt.show()

    """
    dist = _parse_dist_kw(dist)
    osm_uniform = _calc_uniform_order_statistic_medians(len(x))
    osr = sort(x)

    # this function computes the x-axis values of the probability plot
    #  and computes a linear regression (including the correlation)
    #  and returns 1-r so that a minimization function maximizes the
    #  correlation
    def tempfunc(shape, mi, yvals, func):
        xvals = func(mi, shape)
        r, prob = stats.pearsonr(xvals, yvals)
        return 1 - r

    return optimize.brent(tempfunc, brack=brack, args=(osm_uniform, osr, dist.ppf))


def ppcc_plot(x, a, b, dist='tukeylambda', plot=None, N=80):
    """
    Calculate and optionally plot probability plot correlation coefficient.

    The probability plot correlation coefficient (PPCC) plot can be used to
    determine the optimal shape parameter for a one-parameter family of
    distributions.  It cannot be used for distributions without shape parameters
    (like the normal distribution) or with multiple shape parameters.

    By default a Tukey-Lambda distribution (`stats.tukeylambda`) is used. A
    Tukey-Lambda PPCC plot interpolates from long-tailed to short-tailed
    distributions via an approximately normal one, and is therefore particularly
    useful in practice.

    Parameters
    ----------
    x : array_like
        Input array.
    a, b: scalar
        Lower and upper bounds of the shape parameter to use.
    dist : str or stats.distributions instance, optional
        Distribution or distribution function name.  Objects that look enough
        like a stats.distributions instance (i.e. they have a ``ppf`` method)
        are also accepted.  The default is ``'tukeylambda'``.
    plot : object, optional
        If given, plots PPCC against the shape parameter.
        `plot` is an object that has to have methods "plot" and "text".
        The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
        or a custom object with the same methods.
        Default is None, which means that no plot is created.
    N : int, optional
        Number of points on the horizontal axis (equally distributed from
        `a` to `b`).

    Returns
    -------
    svals : ndarray
        The shape values for which `ppcc` was calculated.
    ppcc : ndarray
        The calculated probability plot correlation coefficient values.

    See also
    --------
    ppcc_max, probplot, boxcox_normplot, tukeylambda

    References
    ----------
    J.J. Filliben, "The Probability Plot Correlation Coefficient Test for
    Normality", Technometrics, Vol. 17, pp. 111-117, 1975.

    Examples
    --------
    First we generate some random data from a Tukey-Lambda distribution,
    with shape parameter -0.7:

    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>> np.random.seed(1234567)
    >>> x = stats.tukeylambda.rvs(-0.7, loc=2, scale=0.5, size=10000) + 1e4

    Now we explore this data with a PPCC plot as well as the related
    probability plot and Box-Cox normplot.  A red line is drawn where we
    expect the PPCC value to be maximal (at the shape parameter -0.7 used
    above):

    >>> fig = plt.figure(figsize=(12, 4))
    >>> ax1 = fig.add_subplot(131)
    >>> ax2 = fig.add_subplot(132)
    >>> ax3 = fig.add_subplot(133)
    >>> res = stats.probplot(x, plot=ax1)
    >>> res = stats.boxcox_normplot(x, -5, 5, plot=ax2)
    >>> res = stats.ppcc_plot(x, -5, 5, plot=ax3)
    >>> ax3.vlines(-0.7, 0, 1, colors='r', label='Expected shape value')
    >>> plt.show()

    """
    if b <= a:
        raise ValueError("`b` has to be larger than `a`.")

    svals = np.linspace(a, b, num=N)
    ppcc = np.empty_like(svals)
    for k, sval in enumerate(svals):
        _, r2 = probplot(x, sval, dist=dist, fit=True)
        ppcc[k] = r2[-1]

    if plot is not None:
        plot.plot(svals, ppcc, 'x')
        _add_axis_labels_title(plot, xlabel='Shape Values',
                               ylabel='Prob Plot Corr. Coef.',
                               title='(%s) PPCC Plot' % dist)

    return svals, ppcc


def boxcox_llf(lmb, data):
    r"""The boxcox log-likelihood function.

    Parameters
    ----------
    lmb : scalar
        Parameter for Box-Cox transformation.  See `boxcox` for details.
    data : array_like
        Data to calculate Box-Cox log-likelihood for.  If `data` is
        multi-dimensional, the log-likelihood is calculated along the first
        axis.

    Returns
    -------
    llf : float or ndarray
        Box-Cox log-likelihood of `data` given `lmb`.  A float for 1-D `data`,
        an array otherwise.

    See Also
    --------
    boxcox, probplot, boxcox_normplot, boxcox_normmax

    Notes
    -----
    The Box-Cox log-likelihood function is defined here as

    .. math::

        llf = (\lambda - 1) \sum_i(\log(x_i)) -
              N/2 \log(\sum_i (y_i - \bar{y})^2 / N),

    where ``y`` is the Box-Cox transformed input data ``x``.

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>> from mpl_toolkits.axes_grid1.inset_locator import inset_axes
    >>> np.random.seed(1245)

    Generate some random variates and calculate Box-Cox log-likelihood values
    for them for a range of ``lmbda`` values:

    >>> x = stats.loggamma.rvs(5, loc=10, size=1000)
    >>> lmbdas = np.linspace(-2, 10)
    >>> llf = np.zeros(lmbdas.shape, dtype=float)
    >>> for ii, lmbda in enumerate(lmbdas):
    ...     llf[ii] = stats.boxcox_llf(lmbda, x)

    Also find the optimal lmbda value with `boxcox`:

    >>> x_most_normal, lmbda_optimal = stats.boxcox(x)

    Plot the log-likelihood as function of lmbda.  Add the optimal lmbda as a
    horizontal line to check that that's really the optimum:

    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> ax.plot(lmbdas, llf, 'b.-')
    >>> ax.axhline(stats.boxcox_llf(lmbda_optimal, x), color='r')
    >>> ax.set_xlabel('lmbda parameter')
    >>> ax.set_ylabel('Box-Cox log-likelihood')

    Now add some probability plots to show that where the log-likelihood is
    maximized the data transformed with `boxcox` looks closest to normal:

    >>> locs = [3, 10, 4]  # 'lower left', 'center', 'lower right'
    >>> for lmbda, loc in zip([-1, lmbda_optimal, 9], locs):
    ...     xt = stats.boxcox(x, lmbda=lmbda)
    ...     (osm, osr), (slope, intercept, r_sq) = stats.probplot(xt)
    ...     ax_inset = inset_axes(ax, width="20%", height="20%", loc=loc)
    ...     ax_inset.plot(osm, osr, 'c.', osm, slope*osm + intercept, 'k-')
    ...     ax_inset.set_xticklabels([])
    ...     ax_inset.set_yticklabels([])
    ...     ax_inset.set_title('$\lambda=%1.2f$' % lmbda)

    >>> plt.show()

    """
    data = np.asarray(data)
    N = data.shape[0]
    if N == 0:
        return np.nan

    y = boxcox(data, lmb)
    y_mean = np.mean(y, axis=0)
    llf = (lmb - 1) * np.sum(np.log(data), axis=0)
    llf -= N / 2.0 * np.log(np.sum((y - y_mean)**2. / N, axis=0))
    return llf


def _boxcox_conf_interval(x, lmax, alpha):
    # Need to find the lambda for which
    #  f(x,lmbda) >= f(x,lmax) - 0.5*chi^2_alpha;1
    fac = 0.5 * distributions.chi2.ppf(1 - alpha, 1)
    target = boxcox_llf(lmax, x) - fac

    def rootfunc(lmbda, data, target):
        return boxcox_llf(lmbda, data) - target

    # Find positive endpoint of interval in which answer is to be found
    newlm = lmax + 0.5
    N = 0
    while (rootfunc(newlm, x, target) > 0.0) and (N < 500):
        newlm += 0.1
        N += 1

    if N == 500:
        raise RuntimeError("Could not find endpoint.")

    lmplus = optimize.brentq(rootfunc, lmax, newlm, args=(x, target))

    # Now find negative interval in the same way
    newlm = lmax - 0.5
    N = 0
    while (rootfunc(newlm, x, target) > 0.0) and (N < 500):
        newlm -= 0.1
        N += 1

    if N == 500:
        raise RuntimeError("Could not find endpoint.")

    lmminus = optimize.brentq(rootfunc, newlm, lmax, args=(x, target))
    return lmminus, lmplus


def boxcox(x, lmbda=None, alpha=None):
    r"""
    Return a positive dataset transformed by a Box-Cox power transformation.

    Parameters
    ----------
    x : ndarray
        Input array.  Should be 1-dimensional.
    lmbda : {None, scalar}, optional
        If `lmbda` is not None, do the transformation for that value.

        If `lmbda` is None, find the lambda that maximizes the log-likelihood
        function and return it as the second output argument.
    alpha : {None, float}, optional
        If ``alpha`` is not None, return the ``100 * (1-alpha)%`` confidence
        interval for `lmbda` as the third output argument.
        Must be between 0.0 and 1.0.

    Returns
    -------
    boxcox : ndarray
        Box-Cox power transformed array.
    maxlog : float, optional
        If the `lmbda` parameter is None, the second returned argument is
        the lambda that maximizes the log-likelihood function.
    (min_ci, max_ci) : tuple of float, optional
        If `lmbda` parameter is None and ``alpha`` is not None, this returned
        tuple of floats represents the minimum and maximum confidence limits
        given ``alpha``.

    See Also
    --------
    probplot, boxcox_normplot, boxcox_normmax, boxcox_llf

    Notes
    -----
    The Box-Cox transform is given by::

        y = (x**lmbda - 1) / lmbda,  for lmbda > 0
            log(x),                  for lmbda = 0

    `boxcox` requires the input data to be positive.  Sometimes a Box-Cox
    transformation provides a shift parameter to achieve this; `boxcox` does
    not.  Such a shift parameter is equivalent to adding a positive constant to
    `x` before calling `boxcox`.

    The confidence limits returned when ``alpha`` is provided give the interval
    where:

    .. math::

        llf(\hat{\lambda}) - llf(\lambda) < \frac{1}{2}\chi^2(1 - \alpha, 1),

    with ``llf`` the log-likelihood function and :math:`\chi^2` the chi-squared
    function.

    References
    ----------
    G.E.P. Box and D.R. Cox, "An Analysis of Transformations", Journal of the
    Royal Statistical Society B, 26, 211-252 (1964).

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt

    We generate some random variates from a non-normal distribution and make a
    probability plot for it, to show it is non-normal in the tails:

    >>> fig = plt.figure()
    >>> ax1 = fig.add_subplot(211)
    >>> x = stats.loggamma.rvs(5, size=500) + 5
    >>> prob = stats.probplot(x, dist=stats.norm, plot=ax1)
    >>> ax1.set_xlabel('')
    >>> ax1.set_title('Probplot against normal distribution')

    We now use `boxcox` to transform the data so it's closest to normal:

    >>> ax2 = fig.add_subplot(212)
    >>> xt, _ = stats.boxcox(x)
    >>> prob = stats.probplot(xt, dist=stats.norm, plot=ax2)
    >>> ax2.set_title('Probplot after Box-Cox transformation')

    >>> plt.show()

    """
    x = np.asarray(x)
    if x.size == 0:
        return x

    if any(x <= 0):
        raise ValueError("Data must be positive.")

    if lmbda is not None:  # single transformation
        return special.boxcox(x, lmbda)

    # If lmbda=None, find the lmbda that maximizes the log-likelihood function.
    lmax = boxcox_normmax(x, method='mle')
    y = boxcox(x, lmax)

    if alpha is None:
        return y, lmax
    else:
        # Find confidence interval
        interval = _boxcox_conf_interval(x, lmax, alpha)
        return y, lmax, interval


def boxcox_normmax(x, brack=(-2.0, 2.0), method='pearsonr'):
    """Compute optimal Box-Cox transform parameter for input data.

    Parameters
    ----------
    x : array_like
        Input array.
    brack : 2-tuple, optional
        The starting interval for a downhill bracket search with
        `optimize.brent`.  Note that this is in most cases not critical; the
        final result is allowed to be outside this bracket.
    method : str, optional
        The method to determine the optimal transform parameter (`boxcox`
        ``lmbda`` parameter). Options are:

        'pearsonr'  (default)
            Maximizes the Pearson correlation coefficient between
            ``y = boxcox(x)`` and the expected values for ``y`` if `x` would be
            normally-distributed.

        'mle'
            Minimizes the log-likelihood `boxcox_llf`.  This is the method used
            in `boxcox`.

        'all'
            Use all optimization methods available, and return all results.
            Useful to compare different methods.

    Returns
    -------
    maxlog : float or ndarray
        The optimal transform parameter found.  An array instead of a scalar
        for ``method='all'``.

    See Also
    --------
    boxcox, boxcox_llf, boxcox_normplot

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt
    >>> np.random.seed(1234)  # make this example reproducible

    Generate some data and determine optimal ``lmbda`` in various ways:

    >>> x = stats.loggamma.rvs(5, size=30) + 5
    >>> y, lmax_mle = stats.boxcox(x)
    >>> lmax_pearsonr = stats.boxcox_normmax(x)

    >>> lmax_mle
    7.177...
    >>> lmax_pearsonr
    7.916...
    >>> stats.boxcox_normmax(x, method='all')
    array([ 7.91667384,  7.17718692])

    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> prob = stats.boxcox_normplot(x, -10, 10, plot=ax)
    >>> ax.axvline(lmax_mle, color='r')
    >>> ax.axvline(lmax_pearsonr, color='g', ls='--')

    >>> plt.show()

    """

    def _pearsonr(x, brack):
        osm_uniform = _calc_uniform_order_statistic_medians(len(x))
        xvals = distributions.norm.ppf(osm_uniform)

        def _eval_pearsonr(lmbda, xvals, samps):
            # This function computes the x-axis values of the probability plot
            # and computes a linear regression (including the correlation) and
            # returns ``1 - r`` so that a minimization function maximizes the
            # correlation.
            y = boxcox(samps, lmbda)
            yvals = np.sort(y)
            r, prob = stats.pearsonr(xvals, yvals)
            return 1 - r

        return optimize.brent(_eval_pearsonr, brack=brack, args=(xvals, x))

    def _mle(x, brack):
        def _eval_mle(lmb, data):
            # function to minimize
            return -boxcox_llf(lmb, data)

        return optimize.brent(_eval_mle, brack=brack, args=(x,))

    def _all(x, brack):
        maxlog = np.zeros(2, dtype=float)
        maxlog[0] = _pearsonr(x, brack)
        maxlog[1] = _mle(x, brack)
        return maxlog

    methods = {'pearsonr': _pearsonr,
               'mle': _mle,
               'all': _all}
    if method not in methods.keys():
        raise ValueError("Method %s not recognized." % method)

    optimfunc = methods[method]
    return optimfunc(x, brack)


def boxcox_normplot(x, la, lb, plot=None, N=80):
    """Compute parameters for a Box-Cox normality plot, optionally show it.

    A Box-Cox normality plot shows graphically what the best transformation
    parameter is to use in `boxcox` to obtain a distribution that is close
    to normal.

    Parameters
    ----------
    x : array_like
        Input array.
    la, lb : scalar
        The lower and upper bounds for the ``lmbda`` values to pass to `boxcox`
        for Box-Cox transformations.  These are also the limits of the
        horizontal axis of the plot if that is generated.
    plot : object, optional
        If given, plots the quantiles and least squares fit.
        `plot` is an object that has to have methods "plot" and "text".
        The `matplotlib.pyplot` module or a Matplotlib Axes object can be used,
        or a custom object with the same methods.
        Default is None, which means that no plot is created.
    N : int, optional
        Number of points on the horizontal axis (equally distributed from
        `la` to `lb`).

    Returns
    -------
    lmbdas : ndarray
        The ``lmbda`` values for which a Box-Cox transform was done.
    ppcc : ndarray
        Probability Plot Correlelation Coefficient, as obtained from `probplot`
        when fitting the Box-Cox transformed input `x` against a normal
        distribution.

    See Also
    --------
    probplot, boxcox, boxcox_normmax, boxcox_llf, ppcc_max

    Notes
    -----
    Even if `plot` is given, the figure is not shown or saved by
    `boxcox_normplot`; ``plt.show()`` or ``plt.savefig('figname.png')``
    should be used after calling `probplot`.

    Examples
    --------
    >>> from scipy import stats
    >>> import matplotlib.pyplot as plt

    Generate some non-normally distributed data, and create a Box-Cox plot:

    >>> x = stats.loggamma.rvs(5, size=500) + 5
    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> prob = stats.boxcox_normplot(x, -20, 20, plot=ax)

    Determine and plot the optimal ``lmbda`` to transform ``x`` and plot it in
    the same plot:

    >>> _, maxlog = stats.boxcox(x)
    >>> ax.axvline(maxlog, color='r')

    >>> plt.show()

    """
    x = np.asarray(x)
    if x.size == 0:
        return x

    if lb <= la:
        raise ValueError("`lb` has to be larger than `la`.")

    lmbdas = np.linspace(la, lb, num=N)
    ppcc = lmbdas * 0.0
    for i, val in enumerate(lmbdas):
        # Determine for each lmbda the correlation coefficient of transformed x
        z = boxcox(x, lmbda=val)
        _, r2 = probplot(z, dist='norm', fit=True)
        ppcc[i] = r2[-1]

    if plot is not None:
        plot.plot(lmbdas, ppcc, 'x')
        _add_axis_labels_title(plot, xlabel='$\lambda$',
                               ylabel='Prob Plot Corr. Coef.',
                               title='Box-Cox Normality Plot')

    return lmbdas, ppcc


def shapiro(x, a=None, reta=False):
    """
    Perform the Shapiro-Wilk test for normality.

    The Shapiro-Wilk test tests the null hypothesis that the
    data was drawn from a normal distribution.

    Parameters
    ----------
    x : array_like
        Array of sample data.
    a : array_like, optional
        Array of internal parameters used in the calculation.  If these
        are not given, they will be computed internally.  If x has length
        n, then a must have length n/2.
    reta : bool, optional
        Whether or not to return the internally computed a values.  The
        default is False.

    Returns
    -------
    W : float
        The test statistic.
    p-value : float
        The p-value for the hypothesis test.
    a : array_like, optional
        If `reta` is True, then these are the internally computed "a"
        values that may be passed into this function on future calls.

    See Also
    --------
    anderson : The Anderson-Darling test for normality
    kstest : The Kolmogorov-Smirnov test for goodness of fit.

    Notes
    -----
    The algorithm used is described in [4]_ but censoring parameters as
    described are not implemented. For N > 5000 the W test statistic is accurate
    but the p-value may not be.

    The chance of rejecting the null hypothesis when it is true is close to 5%
    regardless of sample size.

    References
    ----------
    .. [1] http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
    .. [2] Shapiro, S. S. & Wilk, M.B (1965). An analysis of variance test for
           normality (complete samples), Biometrika, Vol. 52, pp. 591-611.
    .. [3] Razali, N. M. & Wah, Y. B. (2011) Power comparisons of Shapiro-Wilk,
           Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests, Journal of
           Statistical Modeling and Analytics, Vol. 2, pp. 21-33.
    .. [4] ALGORITHM AS R94 APPL. STATIST. (1995) VOL. 44, NO. 4.

    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(12345678)
    >>> x = stats.norm.rvs(loc=5, scale=3, size=100)
    >>> stats.shapiro(x)
    (0.9772805571556091, 0.08144091814756393)

    """
    if a is not None or reta:
        warnings.warn("input parameters 'a' and 'reta' are scheduled to be "
                      "removed in version 0.18.0", FutureWarning)
    x = np.ravel(x)

    N = len(x)
    if N < 3:
        raise ValueError("Data must be at least length 3.")
    if a is None:
        a = zeros(N, 'f')
        init = 0
    else:
        if len(a) != N // 2:
            raise ValueError("len(a) must equal len(x)/2")
        init = 1
    y = sort(x)
    a, w, pw, ifault = statlib.swilk(y, a[:N//2], init)
    if ifault not in [0, 2]:
        warnings.warn("Input data for shapiro has range zero. The results "
                      "may not be accurate.")
    if N > 5000:
        warnings.warn("p-value may not be accurate for N > 5000.")
    if reta:
        return w, pw, a
    else:
        return w, pw

# Values from Stephens, M A, "EDF Statistics for Goodness of Fit and
#             Some Comparisons", Journal of he American Statistical
#             Association, Vol. 69, Issue 347, Sept. 1974, pp 730-737
_Avals_norm = array([0.576, 0.656, 0.787, 0.918, 1.092])
_Avals_expon = array([0.922, 1.078, 1.341, 1.606, 1.957])
# From Stephens, M A, "Goodness of Fit for the Extreme Value Distribution",
#             Biometrika, Vol. 64, Issue 3, Dec. 1977, pp 583-588.
_Avals_gumbel = array([0.474, 0.637, 0.757, 0.877, 1.038])
# From Stephens, M A, "Tests of Fit for the Logistic Distribution Based
#             on the Empirical Distribution Function.", Biometrika,
#             Vol. 66, Issue 3, Dec. 1979, pp 591-595.
_Avals_logistic = array([0.426, 0.563, 0.660, 0.769, 0.906, 1.010])


AndersonResult = namedtuple('AndersonResult', ('statistic',
                                               'critical_values',
                                               'significance_level'))


def anderson(x, dist='norm'):
    """
    Anderson-Darling test for data coming from a particular distribution

    The Anderson-Darling test is a modification of the Kolmogorov-
    Smirnov test `kstest` for the null hypothesis that a sample is
    drawn from a population that follows a particular distribution.
    For the Anderson-Darling test, the critical values depend on
    which distribution is being tested against.  This function works
    for normal, exponential, logistic, or Gumbel (Extreme Value
    Type I) distributions.

    Parameters
    ----------
    x : array_like
        array of sample data
    dist : {'norm','expon','logistic','gumbel','extreme1'}, optional
        the type of distribution to test against.  The default is 'norm'
        and 'extreme1' is a synonym for 'gumbel'

    Returns
    -------
    statistic : float
        The Anderson-Darling test statistic
    critical_values : list
        The critical values for this distribution
    significance_level : list
        The significance levels for the corresponding critical values
        in percents.  The function returns critical values for a
        differing set of significance levels depending on the
        distribution that is being tested against.

    Notes
    -----
    Critical values provided are for the following significance levels:

    normal/exponenential
        15%, 10%, 5%, 2.5%, 1%
    logistic
        25%, 10%, 5%, 2.5%, 1%, 0.5%
    Gumbel
        25%, 10%, 5%, 2.5%, 1%

    If A2 is larger than these critical values then for the corresponding
    significance level, the null hypothesis that the data come from the
    chosen distribution can be rejected.

    References
    ----------
    .. [1] http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
    .. [2] Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and
           Some Comparisons, Journal of the American Statistical Association,
           Vol. 69, pp. 730-737.
    .. [3] Stephens, M. A. (1976). Asymptotic Results for Goodness-of-Fit
           Statistics with Unknown Parameters, Annals of Statistics, Vol. 4,
           pp. 357-369.
    .. [4] Stephens, M. A. (1977). Goodness of Fit for the Extreme Value
           Distribution, Biometrika, Vol. 64, pp. 583-588.
    .. [5] Stephens, M. A. (1977). Goodness of Fit with Special Reference
           to Tests for Exponentiality , Technical Report No. 262,
           Department of Statistics, Stanford University, Stanford, CA.
    .. [6] Stephens, M. A. (1979). Tests of Fit for the Logistic Distribution
           Based on the Empirical Distribution Function, Biometrika, Vol. 66,
           pp. 591-595.

    """
    if dist not in ['norm', 'expon', 'gumbel', 'extreme1', 'logistic']:
        raise ValueError("Invalid distribution; dist must be 'norm', "
                         "'expon', 'gumbel', 'extreme1' or 'logistic'.")
    y = sort(x)
    xbar = np.mean(x, axis=0)
    N = len(y)
    if dist == 'norm':
        s = np.std(x, ddof=1, axis=0)
        w = (y - xbar) / s
        z = distributions.norm.cdf(w)
        sig = array([15, 10, 5, 2.5, 1])
        critical = around(_Avals_norm / (1.0 + 4.0/N - 25.0/N/N), 3)
    elif dist == 'expon':
        w = y / xbar
        z = distributions.expon.cdf(w)
        sig = array([15, 10, 5, 2.5, 1])
        critical = around(_Avals_expon / (1.0 + 0.6/N), 3)
    elif dist == 'logistic':
        def rootfunc(ab, xj, N):
            a, b = ab
            tmp = (xj - a) / b
            tmp2 = exp(tmp)
            val = [np.sum(1.0/(1+tmp2), axis=0) - 0.5*N,
                   np.sum(tmp*(1.0-tmp2)/(1+tmp2), axis=0) + N]
            return array(val)

        sol0 = array([xbar, np.std(x, ddof=1, axis=0)])
        sol = optimize.fsolve(rootfunc, sol0, args=(x, N), xtol=1e-5)
        w = (y - sol[0]) / sol[1]
        z = distributions.logistic.cdf(w)
        sig = array([25, 10, 5, 2.5, 1, 0.5])
        critical = around(_Avals_logistic / (1.0 + 0.25/N), 3)
    else:  # (dist == 'gumbel') or (dist == 'extreme1'):
        xbar, s = distributions.gumbel_l.fit(x)
        w = (y - xbar) / s
        z = distributions.gumbel_l.cdf(w)
        sig = array([25, 10, 5, 2.5, 1])
        critical = around(_Avals_gumbel / (1.0 + 0.2/sqrt(N)), 3)

    i = arange(1, N + 1)
    A2 = -N - np.sum((2*i - 1.0) / N * (log(z) + log(1 - z[::-1])), axis=0)

    return AndersonResult(A2, critical, sig)


def _anderson_ksamp_midrank(samples, Z, Zstar, k, n, N):
    """
    Compute A2akN equation 7 of Scholz and Stephens.

    Parameters
    ----------
    samples : sequence of 1-D array_like
        Array of sample arrays.
    Z : array_like
        Sorted array of all observations.
    Zstar : array_like
        Sorted array of unique observations.
    k : int
        Number of samples.
    n : array_like
        Number of observations in each sample.
    N : int
        Total number of observations.

    Returns
    -------
    A2aKN : float
        The A2aKN statistics of Scholz and Stephens 1987.
    """

    A2akN = 0.
    Z_ssorted_left = Z.searchsorted(Zstar, 'left')
    if N == Zstar.size:
        lj = 1.
    else:
        lj = Z.searchsorted(Zstar, 'right') - Z_ssorted_left
    Bj = Z_ssorted_left + lj / 2.
    for i in arange(0, k):
        s = np.sort(samples[i])
        s_ssorted_right = s.searchsorted(Zstar, side='right')
        Mij = s_ssorted_right.astype(float)
        fij = s_ssorted_right - s.searchsorted(Zstar, 'left')
        Mij -= fij / 2.
        inner = lj / float(N) * (N*Mij - Bj*n[i])**2 / (Bj*(N - Bj) - N*lj/4.)
        A2akN += inner.sum() / n[i]
    A2akN *= (N - 1.) / N
    return A2akN


def _anderson_ksamp_right(samples, Z, Zstar, k, n, N):
    """
    Compute A2akN equation 6 of Scholz & Stephens.

    Parameters
    ----------
    samples : sequence of 1-D array_like
        Array of sample arrays.
    Z : array_like
        Sorted array of all observations.
    Zstar : array_like
        Sorted array of unique observations.
    k : int
        Number of samples.
    n : array_like
        Number of observations in each sample.
    N : int
        Total number of observations.

    Returns
    -------
    A2KN : float
        The A2KN statistics of Scholz and Stephens 1987.
    """

    A2kN = 0.
    lj = Z.searchsorted(Zstar[:-1], 'right') - Z.searchsorted(Zstar[:-1],
                                                              'left')
    Bj = lj.cumsum()
    for i in arange(0, k):
        s = np.sort(samples[i])
        Mij = s.searchsorted(Zstar[:-1], side='right')
        inner = lj / float(N) * (N * Mij - Bj * n[i])**2 / (Bj * (N - Bj))
        A2kN += inner.sum() / n[i]
    return A2kN


Anderson_ksampResult = namedtuple('Anderson_ksampResult',
                                  ('statistic', 'critical_values',
                                   'significance_level'))


def anderson_ksamp(samples, midrank=True):
    """The Anderson-Darling test for k-samples.

    The k-sample Anderson-Darling test is a modification of the
    one-sample Anderson-Darling test. It tests the null hypothesis
    that k-samples are drawn from the same population without having
    to specify the distribution function of that population. The
    critical values depend on the number of samples.

    Parameters
    ----------
    samples : sequence of 1-D array_like
        Array of sample data in arrays.
    midrank : bool, optional
        Type of Anderson-Darling test which is computed. Default
        (True) is the midrank test applicable to continuous and
        discrete populations. If False, the right side empirical
        distribution is used.

    Returns
    -------
    statistic : float
        Normalized k-sample Anderson-Darling test statistic.
    critical_values : array
        The critical values for significance levels 25%, 10%, 5%, 2.5%, 1%.
    significance_level : float
        An approximate significance level at which the null hypothesis for the
        provided samples can be rejected.

    Raises
    ------
    ValueError
        If less than 2 samples are provided, a sample is empty, or no
        distinct observations are in the samples.

    See Also
    --------
    ks_2samp : 2 sample Kolmogorov-Smirnov test
    anderson : 1 sample Anderson-Darling test

    Notes
    -----
    [1]_ Defines three versions of the k-sample Anderson-Darling test:
    one for continuous distributions and two for discrete
    distributions, in which ties between samples may occur. The
    default of this routine is to compute the version based on the
    midrank empirical distribution function. This test is applicable
    to continuous and discrete data. If midrank is set to False, the
    right side empirical distribution is used for a test for discrete
    data. According to [1]_, the two discrete test statistics differ
    only slightly if a few collisions due to round-off errors occur in
    the test not adjusted for ties between samples.

    .. versionadded:: 0.14.0

    References
    ----------
    .. [1] Scholz, F. W and Stephens, M. A. (1987), K-Sample
           Anderson-Darling Tests, Journal of the American Statistical
           Association, Vol. 82, pp. 918-924.

    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(314159)

    The null hypothesis that the two random samples come from the same
    distribution can be rejected at the 5% level because the returned
    test value is greater than the critical value for 5% (1.961) but
    not at the 2.5% level. The interpolation gives an approximate
    significance level of 3.1%:

    >>> stats.anderson_ksamp([np.random.normal(size=50),
    ... np.random.normal(loc=0.5, size=30)])
    (2.4615796189876105,
      array([ 0.325,  1.226,  1.961,  2.718,  3.752]),
      0.03134990135800783)


    The null hypothesis cannot be rejected for three samples from an
    identical distribution. The approximate p-value (87%) has to be
    computed by extrapolation and may not be very accurate:

    >>> stats.anderson_ksamp([np.random.normal(size=50),
    ... np.random.normal(size=30), np.random.normal(size=20)])
    (-0.73091722665244196,
      array([ 0.44925884,  1.3052767 ,  1.9434184 ,  2.57696569,  3.41634856]),
      0.8789283903979661)

    """
    k = len(samples)
    if (k < 2):
        raise ValueError("anderson_ksamp needs at least two samples")

    samples = list(map(np.asarray, samples))
    Z = np.sort(np.hstack(samples))
    N = Z.size
    Zstar = np.unique(Z)
    if Zstar.size < 2:
        raise ValueError("anderson_ksamp needs more than one distinct "
                         "observation")

    n = np.array([sample.size for sample in samples])
    if any(n == 0):
        raise ValueError("anderson_ksamp encountered sample without "
                         "observations")

    if midrank:
        A2kN = _anderson_ksamp_midrank(samples, Z, Zstar, k, n, N)
    else:
        A2kN = _anderson_ksamp_right(samples, Z, Zstar, k, n, N)

    H = (1. / n).sum()
    hs_cs = (1. / arange(N - 1, 1, -1)).cumsum()
    h = hs_cs[-1] + 1
    g = (hs_cs / arange(2, N)).sum()

    a = (4*g - 6) * (k - 1) + (10 - 6*g)*H
    b = (2*g - 4)*k**2 + 8*h*k + (2*g - 14*h - 4)*H - 8*h + 4*g - 6
    c = (6*h + 2*g - 2)*k**2 + (4*h - 4*g + 6)*k + (2*h - 6)*H + 4*h
    d = (2*h + 6)*k**2 - 4*h*k
    sigmasq = (a*N**3 + b*N**2 + c*N + d) / ((N - 1.) * (N - 2.) * (N - 3.))
    m = k - 1
    A2 = (A2kN - m) / math.sqrt(sigmasq)

    # The b_i values are the interpolation coefficients from Table 2
    # of Scholz and Stephens 1987
    b0 = np.array([0.675, 1.281, 1.645, 1.96, 2.326])
    b1 = np.array([-0.245, 0.25, 0.678, 1.149, 1.822])
    b2 = np.array([-0.105, -0.305, -0.362, -0.391, -0.396])
    critical = b0 + b1 / math.sqrt(m) + b2 / m
    pf = np.polyfit(critical, log(np.array([0.25, 0.1, 0.05, 0.025, 0.01])), 2)
    if A2 < critical.min() or A2 > critical.max():
        warnings.warn("approximate p-value will be computed by extrapolation")

    p = math.exp(np.polyval(pf, A2))
    return Anderson_ksampResult(A2, critical, p)


AnsariResult = namedtuple('AnsariResult', ('statistic', 'pvalue'))


def ansari(x, y):
    """
    Perform the Ansari-Bradley test for equal scale parameters

    The Ansari-Bradley test is a non-parametric test for the equality
    of the scale parameter of the distributions from which two
    samples were drawn.

    Parameters
    ----------
    x, y : array_like
        arrays of sample data

    Returns
    -------
    statistic : float
        The Ansari-Bradley test statistic
    pvalue : float
        The p-value of the hypothesis test

    See Also
    --------
    fligner : A non-parametric test for the equality of k variances
    mood : A non-parametric test for the equality of two scale parameters

    Notes
    -----
    The p-value given is exact when the sample sizes are both less than
    55 and there are no ties, otherwise a normal approximation for the
    p-value is used.

    References
    ----------
    .. [1] Sprent, Peter and N.C. Smeeton.  Applied nonparametric statistical
           methods.  3rd ed. Chapman and Hall/CRC. 2001.  Section 5.8.2.

    """
    x, y = asarray(x), asarray(y)
    n = len(x)
    m = len(y)
    if m < 1:
        raise ValueError("Not enough other observations.")
    if n < 1:
        raise ValueError("Not enough test observations.")

    N = m + n
    xy = r_[x, y]  # combine
    rank = stats.rankdata(xy)
    symrank = amin(array((rank, N - rank + 1)), 0)
    AB = np.sum(symrank[:n], axis=0)
    uxy = unique(xy)
    repeats = (len(uxy) != len(xy))
    exact = ((m < 55) and (n < 55) and not repeats)
    if repeats and (m < 55 or n < 55):
        warnings.warn("Ties preclude use of exact statistic.")
    if exact:
        astart, a1, ifault = statlib.gscale(n, m)
        ind = AB - astart
        total = np.sum(a1, axis=0)
        if ind < len(a1)/2.0:
            cind = int(ceil(ind))
            if ind == cind:
                pval = 2.0 * np.sum(a1[:cind+1], axis=0) / total
            else:
                pval = 2.0 * np.sum(a1[:cind], axis=0) / total
        else:
            find = int(floor(ind))
            if ind == floor(ind):
                pval = 2.0 * np.sum(a1[find:], axis=0) / total
            else:
                pval = 2.0 * np.sum(a1[find+1:], axis=0) / total
        return AnsariResult(AB, min(1.0, pval))

    # otherwise compute normal approximation
    if N % 2:  # N odd
        mnAB = n * (N+1.0)**2 / 4.0 / N
        varAB = n * m * (N+1.0) * (3+N**2) / (48.0 * N**2)
    else:
        mnAB = n * (N+2.0) / 4.0
        varAB = m * n * (N+2) * (N-2.0) / 48 / (N-1.0)
    if repeats:   # adjust variance estimates
        # compute np.sum(tj * rj**2,axis=0)
        fac = np.sum(symrank**2, axis=0)
        if N % 2:  # N odd
            varAB = m * n * (16*N*fac - (N+1)**4) / (16.0 * N**2 * (N-1))
        else:  # N even
            varAB = m * n * (16*fac - N*(N+2)**2) / (16.0 * N * (N-1))

    z = (AB - mnAB) / sqrt(varAB)
    pval = distributions.norm.sf(abs(z)) * 2.0
    return AnsariResult(AB, pval)


BartlettResult = namedtuple('BartlettResult', ('statistic', 'pvalue'))


def bartlett(*args):
    """
    Perform Bartlett's test for equal variances

    Bartlett's test tests the null hypothesis that all input samples
    are from populations with equal variances.  For samples
    from significantly non-normal populations, Levene's test
    `levene` is more robust.

    Parameters
    ----------
    sample1, sample2,... : array_like
        arrays of sample data.  May be different lengths.

    Returns
    -------
    statistic : float
        The test statistic.
    pvalue : float
        The p-value of the test.

    See Also
    --------
    fligner : A non-parametric test for the equality of k variances
    levene : A robust parametric test for equality of k variances

    Notes
    -----
    Conover et al. (1981) examine many of the existing parametric and
    nonparametric tests by extensive simulations and they conclude that the
    tests proposed by Fligner and Killeen (1976) and Levene (1960) appear to be
    superior in terms of robustness of departures from normality and power [3]_.

    References
    ----------
    .. [1]  http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm

    .. [2]  Snedecor, George W. and Cochran, William G. (1989), Statistical
              Methods, Eighth Edition, Iowa State University Press.

    .. [3] Park, C. and Lindsay, B. G. (1999). Robust Scale Estimation and
           Hypothesis Testing based on Quadratic Inference Function. Technical
           Report #99-03, Center for Likelihood Studies, Pennsylvania State
           University.

    .. [4] Bartlett, M. S. (1937). Properties of Sufficiency and Statistical
           Tests. Proceedings of the Royal Society of London. Series A,
           Mathematical and Physical Sciences, Vol. 160, No.901, pp. 268-282.

    """
    # Handle empty input
    for a in args:
        if np.asanyarray(a).size == 0:
            return BartlettResult(np.nan, np.nan)

    k = len(args)
    if k < 2:
        raise ValueError("Must enter at least two input sample vectors.")
    Ni = zeros(k)
    ssq = zeros(k, 'd')
    for j in range(k):
        Ni[j] = len(args[j])
        ssq[j] = np.var(args[j], ddof=1)
    Ntot = np.sum(Ni, axis=0)
    spsq = np.sum((Ni - 1)*ssq, axis=0) / (1.0*(Ntot - k))
    numer = (Ntot*1.0 - k) * log(spsq) - np.sum((Ni - 1.0)*log(ssq), axis=0)
    denom = 1.0 + 1.0/(3*(k - 1)) * ((np.sum(1.0/(Ni - 1.0), axis=0)) -
                                     1.0/(Ntot - k))
    T = numer / denom
    pval = distributions.chi2.sf(T, k - 1)  # 1 - cdf

    return BartlettResult(T, pval)


LeveneResult = namedtuple('LeveneResult', ('statistic', 'pvalue'))


def levene(*args, **kwds):
    """
    Perform Levene test for equal variances.

    The Levene test tests the null hypothesis that all input samples
    are from populations with equal variances.  Levene's test is an
    alternative to Bartlett's test `bartlett` in the case where
    there are significant deviations from normality.

    Parameters
    ----------
    sample1, sample2, ... : array_like
        The sample data, possibly with different lengths
    center : {'mean', 'median', 'trimmed'}, optional
        Which function of the data to use in the test.  The default
        is 'median'.
    proportiontocut : float, optional
        When `center` is 'trimmed', this gives the proportion of data points
        to cut from each end. (See `scipy.stats.trim_mean`.)
        Default is 0.05.

    Returns
    -------
    statistic : float
        The test statistic.
    pvalue : float
        The p-value for the test.

    Notes
    -----
    Three variations of Levene's test are possible.  The possibilities
    and their recommended usages are:

      * 'median' : Recommended for skewed (non-normal) distributions>
      * 'mean' : Recommended for symmetric, moderate-tailed distributions.
      * 'trimmed' : Recommended for heavy-tailed distributions.

    References
    ----------
    .. [1]  http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm
    .. [2]   Levene, H. (1960). In Contributions to Probability and Statistics:
               Essays in Honor of Harold Hotelling, I. Olkin et al. eds.,
               Stanford University Press, pp. 278-292.
    .. [3]  Brown, M. B. and Forsythe, A. B. (1974), Journal of the American
              Statistical Association, 69, 364-367

    """
    # Handle keyword arguments.
    center = 'median'
    proportiontocut = 0.05
    for kw, value in kwds.items():
        if kw not in ['center', 'proportiontocut']:
            raise TypeError("levene() got an unexpected keyword "
                            "argument '%s'" % kw)
        if kw == 'center':
            center = value
        else:
            proportiontocut = value

    k = len(args)
    if k < 2:
        raise ValueError("Must enter at least two input sample vectors.")
    Ni = zeros(k)
    Yci = zeros(k, 'd')

    if center not in ['mean', 'median', 'trimmed']:
        raise ValueError("Keyword argument <center> must be 'mean', 'median'"
                        " or 'trimmed'.")

    if center == 'median':
        func = lambda x: np.median(x, axis=0)
    elif center == 'mean':
        func = lambda x: np.mean(x, axis=0)
    else:  # center == 'trimmed'
        args = tuple(stats.trimboth(np.sort(arg), proportiontocut)
                     for arg in args)
        func = lambda x: np.mean(x, axis=0)

    for j in range(k):
        Ni[j] = len(args[j])
        Yci[j] = func(args[j])
    Ntot = np.sum(Ni, axis=0)

    # compute Zij's
    Zij = [None] * k
    for i in range(k):
        Zij[i] = abs(asarray(args[i]) - Yci[i])

    # compute Zbari
    Zbari = zeros(k, 'd')
    Zbar = 0.0
    for i in range(k):
        Zbari[i] = np.mean(Zij[i], axis=0)
        Zbar += Zbari[i] * Ni[i]

    Zbar /= Ntot
    numer = (Ntot - k) * np.sum(Ni * (Zbari - Zbar)**2, axis=0)

    # compute denom_variance
    dvar = 0.0
    for i in range(k):
        dvar += np.sum((Zij[i] - Zbari[i])**2, axis=0)

    denom = (k - 1.0) * dvar

    W = numer / denom
    pval = distributions.f.sf(W, k-1, Ntot-k)  # 1 - cdf
    return LeveneResult(W, pval)


@setastest(False)
def binom_test(x, n=None, p=0.5, alternative='two-sided'):
    """
    Perform a test that the probability of success is p.

    This is an exact, two-sided test of the null hypothesis
    that the probability of success in a Bernoulli experiment
    is `p`.

    Parameters
    ----------
    x : integer or array_like
        the number of successes, or if x has length 2, it is the
        number of successes and the number of failures.
    n : integer
        the number of trials.  This is ignored if x gives both the
        number of successes and failures
    p : float, optional
        The hypothesized probability of success.  0 <= p <= 1. The
        default value is p = 0.5
    alternative : {'two-sided', 'greater', 'less'}, optional
        Indicates the alternative hypothesis. The default value is
        'two-sided'.

    Returns
    -------
    p-value : float
        The p-value of the hypothesis test

    References
    ----------
    .. [1] http://en.wikipedia.org/wiki/Binomial_test

    """
    x = atleast_1d(x).astype(np.integer)
    if len(x) == 2:
        n = x[1] + x[0]
        x = x[0]
    elif len(x) == 1:
        x = x[0]
        if n is None or n < x:
            raise ValueError("n must be >= x")
        n = np.int_(n)
    else:
        raise ValueError("Incorrect length for x.")

    if (p > 1.0) or (p < 0.0):
        raise ValueError("p must be in range [0,1]")

    if alternative not in ('two-sided', 'less', 'greater'):
        raise ValueError("alternative not recognized\n"
                         "should be 'two-sided', 'less' or 'greater'")

    if alternative == 'less':
        pval = distributions.binom.cdf(x, n, p)
        return pval

    if alternative == 'greater':
        pval = distributions.binom.sf(x-1, n, p)
        return pval

    # if alternative was neither 'less' nor 'greater', then it's 'two-sided'
    d = distributions.binom.pmf(x, n, p)
    rerr = 1 + 1e-7
    if x == p * n:
        # special case as shortcut, would also be handled by `else` below
        pval = 1.
    elif x < p * n:
        i = np.arange(np.ceil(p * n), n+1)
        y = np.sum(distributions.binom.pmf(i, n, p) <= d*rerr, axis=0)
        pval = (distributions.binom.cdf(x, n, p) +
                distributions.binom.sf(n - y, n, p))
    else:
        i = np.arange(np.floor(p*n) + 1)
        y = np.sum(distributions.binom.pmf(i, n, p) <= d*rerr, axis=0)
        pval = (distributions.binom.cdf(y-1, n, p) +
                distributions.binom.sf(x-1, n, p))

    return min(1.0, pval)


def _apply_func(x, g, func):
    # g is list of indices into x
    #  separating x into different groups
    #  func should be applied over the groups
    g = unique(r_[0, g, len(x)])
    output = []
    for k in range(len(g) - 1):
        output.append(func(x[g[k]:g[k+1]]))

    return asarray(output)


FlignerResult = namedtuple('FlignerResult', ('statistic', 'pvalue'))


def fligner(*args, **kwds):
    """
    Perform Fligner-Killeen test for equality of variance.

    Fligner's test tests the null hypothesis that all input samples
    are from populations with equal variances.  Fligner-Killeen's test is
    distribution free when populations are identical [2]_.

    Parameters
    ----------
    sample1, sample2, ... : array_like
        Arrays of sample data.  Need not be the same length.
    center : {'mean', 'median', 'trimmed'}, optional
        Keyword argument controlling which function of the data is used in
        computing the test statistic.  The default is 'median'.
    proportiontocut : float, optional
        When `center` is 'trimmed', this gives the proportion of data points
        to cut from each end. (See `scipy.stats.trim_mean`.)
        Default is 0.05.

    Returns
    -------
    statistic : float
        The test statistic.
    pvalue : float
        The p-value for the hypothesis test.

    See Also
    --------
    bartlett : A parametric test for equality of k variances in normal samples
    levene : A robust parametric test for equality of k variances

    Notes
    -----
    As with Levene's test there are three variants of Fligner's test that
    differ by the measure of central tendency used in the test.  See `levene`
    for more information.

    Conover et al. (1981) examine many of the existing parametric and
    nonparametric tests by extensive simulations and they conclude that the
    tests proposed by Fligner and Killeen (1976) and Levene (1960) appear to be
    superior in terms of robustness of departures from normality and power [3]_.

    References
    ----------
    .. [1] http://www.stat.psu.edu/~bgl/center/tr/TR993.ps

    .. [2] Fligner, M.A. and Killeen, T.J. (1976). Distribution-free two-sample
           tests for scale. 'Journal of the American Statistical Association.'
           71(353), 210-213.

    .. [3] Park, C. and Lindsay, B. G. (1999). Robust Scale Estimation and
           Hypothesis Testing based on Quadratic Inference Function. Technical
           Report #99-03, Center for Likelihood Studies, Pennsylvania State
           University.

    .. [4] Conover, W. J., Johnson, M. E. and Johnson M. M. (1981). A
           comparative study of tests for homogeneity of variances, with
           applications to the outer continental shelf biding data.
           Technometrics, 23(4), 351-361.

    """
    # Handle empty input
    for a in args:
        if np.asanyarray(a).size == 0:
            return FlignerResult(np.nan, np.nan)

    # Handle keyword arguments.
    center = 'median'
    proportiontocut = 0.05
    for kw, value in kwds.items():
        if kw not in ['center', 'proportiontocut']:
            raise TypeError("fligner() got an unexpected keyword "
                            "argument '%s'" % kw)
        if kw == 'center':
            center = value
        else:
            proportiontocut = value

    k = len(args)
    if k < 2:
        raise ValueError("Must enter at least two input sample vectors.")

    if center not in ['mean', 'median', 'trimmed']:
        raise ValueError("Keyword argument <center> must be 'mean', 'median'"
                        " or 'trimmed'.")

    if center == 'median':
        func = lambda x: np.median(x, axis=0)
    elif center == 'mean':
        func = lambda x: np.mean(x, axis=0)
    else:  # center == 'trimmed'
        args = tuple(stats.trimboth(arg, proportiontocut) for arg in args)
        func = lambda x: np.mean(x, axis=0)

    Ni = asarray([len(args[j]) for j in range(k)])
    Yci = asarray([func(args[j]) for j in range(k)])
    Ntot = np.sum(Ni, axis=0)
    # compute Zij's
    Zij = [abs(asarray(args[i]) - Yci[i]) for i in range(k)]
    allZij = []
    g = [0]
    for i in range(k):
        allZij.extend(list(Zij[i]))
        g.append(len(allZij))

    ranks = stats.rankdata(allZij)
    a = distributions.norm.ppf(ranks / (2*(Ntot + 1.0)) + 0.5)

    # compute Aibar
    Aibar = _apply_func(a, g, np.sum) / Ni
    anbar = np.mean(a, axis=0)
    varsq = np.var(a, axis=0, ddof=1)
    Xsq = np.sum(Ni * (asarray(Aibar) - anbar)**2.0, axis=0) / varsq
    pval = distributions.chi2.sf(Xsq, k - 1)  # 1 - cdf
    return FlignerResult(Xsq, pval)


def mood(x, y, axis=0):
    """
    Perform Mood's test for equal scale parameters.

    Mood's two-sample test for scale parameters is a non-parametric
    test for the null hypothesis that two samples are drawn from the
    same distribution with the same scale parameter.

    Parameters
    ----------
    x, y : array_like
        Arrays of sample data.
    axis : int, optional
        The axis along which the samples are tested.  `x` and `y` can be of
        different length along `axis`.
        If `axis` is None, `x` and `y` are flattened and the test is done on
        all values in the flattened arrays.

    Returns
    -------
    z : scalar or ndarray
        The z-score for the hypothesis test.  For 1-D inputs a scalar is
        returned.
    p-value : scalar ndarray
        The p-value for the hypothesis test.

    See Also
    --------
    fligner : A non-parametric test for the equality of k variances
    ansari : A non-parametric test for the equality of 2 variances
    bartlett : A parametric test for equality of k variances in normal samples
    levene : A parametric test for equality of k variances

    Notes
    -----
    The data are assumed to be drawn from probability distributions ``f(x)``
    and ``f(x/s) / s`` respectively, for some probability density function f.
    The null hypothesis is that ``s == 1``.

    For multi-dimensional arrays, if the inputs are of shapes
    ``(n0, n1, n2, n3)``  and ``(n0, m1, n2, n3)``, then if ``axis=1``, the
    resulting z and p values will have shape ``(n0, n2, n3)``.  Note that
    ``n1`` and ``m1`` don't have to be equal, but the other dimensions do.

    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(1234)
    >>> x2 = np.random.randn(2, 45, 6, 7)
    >>> x1 = np.random.randn(2, 30, 6, 7)
    >>> z, p = stats.mood(x1, x2, axis=1)
    >>> p.shape
    (2, 6, 7)

    Find the number of points where the difference in scale is not significant:

    >>> (p > 0.1).sum()
    74

    Perform the test with different scales:

    >>> x1 = np.random.randn(2, 30)
    >>> x2 = np.random.randn(2, 35) * 10.0
    >>> stats.mood(x1, x2, axis=1)
    (array([-5.7178125 , -5.25342163]), array([  1.07904114e-08,   1.49299218e-07]))

    """
    x = np.asarray(x, dtype=float)
    y = np.asarray(y, dtype=float)

    if axis is None:
        x = x.flatten()
        y = y.flatten()
        axis = 0

    # Determine shape of the result arrays
    res_shape = tuple([x.shape[ax] for ax in range(len(x.shape)) if ax != axis])
    if not (res_shape == tuple([y.shape[ax] for ax in range(len(y.shape)) if
                                ax != axis])):
        raise ValueError("Dimensions of x and y on all axes except `axis` "
                         "should match")

    n = x.shape[axis]
    m = y.shape[axis]
    N = m + n
    if N < 3:
        raise ValueError("Not enough observations.")

    xy = np.concatenate((x, y), axis=axis)
    if axis != 0:
        xy = np.rollaxis(xy, axis)

    xy = xy.reshape(xy.shape[0], -1)

    # Generalized to the n-dimensional case by adding the axis argument, and
    # using for loops, since rankdata is not vectorized.  For improving
    # performance consider vectorizing rankdata function.
    all_ranks = np.zeros_like(xy)
    for j in range(xy.shape[1]):
        all_ranks[:, j] = stats.rankdata(xy[:, j])

    Ri = all_ranks[:n]
    M = np.sum((Ri - (N + 1.0) / 2)**2, axis=0)
    # Approx stat.
    mnM = n * (N * N - 1.0) / 12
    varM = m * n * (N + 1.0) * (N + 2) * (N - 2) / 180
    z = (M - mnM) / sqrt(varM)

    # sf for right tail, cdf for left tail.  Factor 2 for two-sidedness
    z_pos = z > 0
    pval = np.zeros_like(z)
    pval[z_pos] = 2 * distributions.norm.sf(z[z_pos])
    pval[~z_pos] = 2 * distributions.norm.cdf(z[~z_pos])

    if res_shape == ():
        # Return scalars, not 0-D arrays
        z = z[0]
        pval = pval[0]
    else:
        z.shape = res_shape
        pval.shape = res_shape

    return z, pval


WilcoxonResult = namedtuple('WilcoxonResult', ('statistic', 'pvalue'))


def wilcoxon(x, y=None, zero_method="wilcox", correction=False):
    """
    Calculate the Wilcoxon signed-rank test.

    The Wilcoxon signed-rank test tests the null hypothesis that two
    related paired samples come from the same distribution. In particular,
    it tests whether the distribution of the differences x - y is symmetric
    about zero. It is a non-parametric version of the paired T-test.

    Parameters
    ----------
    x : array_like
        The first set of measurements.
    y : array_like, optional
        The second set of measurements.  If `y` is not given, then the `x`
        array is considered to be the differences between the two sets of
        measurements.
    zero_method : string, {"pratt", "wilcox", "zsplit"}, optional
        "pratt":
            Pratt treatment: includes zero-differences in the ranking process
            (more conservative)
        "wilcox":
            Wilcox treatment: discards all zero-differences
        "zsplit":
            Zero rank split: just like Pratt, but spliting the zero rank
            between positive and negative ones
    correction : bool, optional
        If True, apply continuity correction by adjusting the Wilcoxon rank
        statistic by 0.5 towards the mean value when computing the
        z-statistic.  Default is False.

    Returns
    -------
    statistic : float
        The sum of the ranks of the differences above or below zero, whichever
        is smaller.
    pvalue : float
        The two-sided p-value for the test.

    Notes
    -----
    Because the normal approximation is used for the calculations, the
    samples used should be large.  A typical rule is to require that
    n > 20.

    References
    ----------
    .. [1] http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

    """

    if zero_method not in ["wilcox", "pratt", "zsplit"]:
        raise ValueError("Zero method should be either 'wilcox' "
                         "or 'pratt' or 'zsplit'")

    if y is None:
        d = asarray(x)
    else:
        x, y = map(asarray, (x, y))
        if len(x) != len(y):
            raise ValueError('Unequal N in wilcoxon.  Aborting.')
        d = x - y

    if zero_method == "wilcox":
        # Keep all non-zero differences
        d = compress(np.not_equal(d, 0), d, axis=-1)

    count = len(d)
    if count < 10:
        warnings.warn("Warning: sample size too small for normal approximation.")

    r = stats.rankdata(abs(d))
    r_plus = np.sum((d > 0) * r, axis=0)
    r_minus = np.sum((d < 0) * r, axis=0)

    if zero_method == "zsplit":
        r_zero = np.sum((d == 0) * r, axis=0)
        r_plus += r_zero / 2.
        r_minus += r_zero / 2.

    T = min(r_plus, r_minus)
    mn = count * (count + 1.) * 0.25
    se = count * (count + 1.) * (2. * count + 1.)

    if zero_method == "pratt":
        r = r[d != 0]

    replist, repnum = find_repeats(r)
    if repnum.size != 0:
        # Correction for repeated elements.
        se -= 0.5 * (repnum * (repnum * repnum - 1)).sum()

    se = sqrt(se / 24)
    correction = 0.5 * int(bool(correction)) * np.sign(T - mn)
    z = (T - mn - correction) / se
    prob = 2. * distributions.norm.sf(abs(z))

    return WilcoxonResult(T, prob)


@setastest(False)
def median_test(*args, **kwds):
    """
    Mood's median test.

    Test that two or more samples come from populations with the same median.

    Let ``n = len(args)`` be the number of samples.  The "grand median" of
    all the data is computed, and a contingency table is formed by
    classifying the values in each sample as being above or below the grand
    median.  The contingency table, along with `correction` and `lambda_`,
    are passed to `scipy.stats.chi2_contingency` to compute the test statistic
    and p-value.

    Parameters
    ----------
    sample1, sample2, ... : array_like
        The set of samples.  There must be at least two samples.
        Each sample must be a one-dimensional sequence containing at least
        one value.  The samples are not required to have the same length.
    ties : str, optional
        Determines how values equal to the grand median are classified in
        the contingency table.  The string must be one of::

            "below":
                Values equal to the grand median are counted as "below".
            "above":
                Values equal to the grand median are counted as "above".
            "ignore":
                Values equal to the grand median are not counted.

        The default is "below".
    correction : bool, optional
        If True, *and* there are just two samples, apply Yates' correction
        for continuity when computing the test statistic associated with
        the contingency table.  Default is True.
    lambda_ : float or str, optional.
        By default, the statistic computed in this test is Pearson's
        chi-squared statistic.  `lambda_` allows a statistic from the
        Cressie-Read power divergence family to be used instead.  See
        `power_divergence` for details.
        Default is 1 (Pearson's chi-squared statistic).

    Returns
    -------
    stat : float
        The test statistic.  The statistic that is returned is determined by
        `lambda_`.  The default is Pearson's chi-squared statistic.
    p : float
        The p-value of the test.
    m : float
        The grand median.
    table : ndarray
        The contingency table.  The shape of the table is (2, n), where
        n is the number of samples.  The first row holds the counts of the
        values above the grand median, and the second row holds the counts
        of the values below the grand median.  The table allows further
        analysis with, for example, `scipy.stats.chi2_contingency`, or with
        `scipy.stats.fisher_exact` if there are two samples, without having
        to recompute the table.

    See Also
    --------
    kruskal : Compute the Kruskal-Wallis H-test for independent samples.
    mannwhitneyu : Computes the Mann-Whitney rank test on samples x and y.

    Notes
    -----
    .. versionadded:: 0.15.0

    References
    ----------
    .. [1] Mood, A. M., Introduction to the Theory of Statistics. McGraw-Hill
        (1950), pp. 394-399.
    .. [2] Zar, J. H., Biostatistical Analysis, 5th ed. Prentice Hall (2010).
        See Sections 8.12 and 10.15.

    Examples
    --------
    A biologist runs an experiment in which there are three groups of plants.
    Group 1 has 16 plants, group 2 has 15 plants, and group 3 has 17 plants.
    Each plant produces a number of seeds.  The seed counts for each group
    are::

        Group 1: 10 14 14 18 20 22 24 25 31 31 32 39 43 43 48 49
        Group 2: 28 30 31 33 34 35 36 40 44 55 57 61 91 92 99
        Group 3:  0  3  9 22 23 25 25 33 34 34 40 45 46 48 62 67 84

    The following code applies Mood's median test to these samples.

    >>> g1 = [10, 14, 14, 18, 20, 22, 24, 25, 31, 31, 32, 39, 43, 43, 48, 49]
    >>> g2 = [28, 30, 31, 33, 34, 35, 36, 40, 44, 55, 57, 61, 91, 92, 99]
    >>> g3 = [0, 3, 9, 22, 23, 25, 25, 33, 34, 34, 40, 45, 46, 48, 62, 67, 84]
    >>> from scipy.stats import median_test
    >>> stat, p, med, tbl = median_test(g1, g2, g3)

    The median is

    >>> med
    34.0

    and the contingency table is

    >>> tbl
    array([[ 5, 10,  7],
           [11,  5, 10]])

    `p` is too large to conclude that the medians are not the same:

    >>> p
    0.12609082774093244

    The "G-test" can be performed by passing ``lambda_="log-likelihood"`` to
    `median_test`.

    >>> g, p, med, tbl = median_test(g1, g2, g3, lambda_="log-likelihood")
    >>> p
    0.12224779737117837

    The median occurs several times in the data, so we'll get a different
    result if, for example, ``ties="above"`` is used:

    >>> stat, p, med, tbl = median_test(g1, g2, g3, ties="above")
    >>> p
    0.063873276069553273

    >>> tbl
    array([[ 5, 11,  9],
           [11,  4,  8]])

    This example demonstrates that if the data set is not large and there
    are values equal to the median, the p-value can be sensitive to the
    choice of `ties`.

    """
    ties = kwds.pop('ties', 'below')
    correction = kwds.pop('correction', True)
    lambda_ = kwds.pop('lambda_', None)

    if len(kwds) > 0:
        bad_kwd = kwds.keys()[0]
        raise TypeError("median_test() got an unexpected keyword "
                        "argument %r" % bad_kwd)

    if len(args) < 2:
        raise ValueError('median_test requires two or more samples.')

    ties_options = ['below', 'above', 'ignore']
    if ties not in ties_options:
        raise ValueError("invalid 'ties' option '%s'; 'ties' must be one "
                         "of: %s" % (ties, str(ties_options)[1:-1]))

    data = [np.asarray(arg) for arg in args]

    # Validate the sizes and shapes of the arguments.
    for k, d in enumerate(data):
        if d.size == 0:
            raise ValueError("Sample %d is empty. All samples must "
                             "contain at least one value." % (k + 1))
        if d.ndim != 1:
            raise ValueError("Sample %d has %d dimensions.  All "
                             "samples must be one-dimensional sequences." %
                             (k + 1, d.ndim))

    grand_median = np.median(np.concatenate(data))

    # Create the contingency table.
    table = np.zeros((2, len(data)), dtype=np.int64)
    for k, sample in enumerate(data):
        nabove = count_nonzero(sample > grand_median)
        nbelow = count_nonzero(sample < grand_median)
        nequal = sample.size - (nabove + nbelow)
        table[0, k] += nabove
        table[1, k] += nbelow
        if ties == "below":
            table[1, k] += nequal
        elif ties == "above":
            table[0, k] += nequal

    # Check that no row or column of the table is all zero.
    # Such a table can not be given to chi2_contingency, because it would have
    # a zero in the table of expected frequencies.
    rowsums = table.sum(axis=1)
    if rowsums[0] == 0:
        raise ValueError("All values are below the grand median (%r)." %
                         grand_median)
    if rowsums[1] == 0:
        raise ValueError("All values are above the grand median (%r)." %
                         grand_median)
    if ties == "ignore":
        # We already checked that each sample has at least one value, but it
        # is possible that all those values equal the grand median.  If `ties`
        # is "ignore", that would result in a column of zeros in `table`.  We
        # check for that case here.
        zero_cols = np.where((table == 0).all(axis=0))[0]
        if len(zero_cols) > 0:
            msg = ("All values in sample %d are equal to the grand "
                   "median (%r), so they are ignored, resulting in an "
                   "empty sample." % (zero_cols[0] + 1, grand_median))
            raise ValueError(msg)

    stat, p, dof, expected = chi2_contingency(table, lambda_=lambda_,
                                              correction=correction)
    return stat, p, grand_median, table


def _hermnorm(N):
    # return the negatively normalized hermite polynomials up to order N-1
    #  (inclusive)
    #  using the recursive relationship
    #  p_n+1 = p_n(x)' - x*p_n(x)
    #   and p_0(x) = 1
    plist = [None] * N
    plist[0] = poly1d(1)
    for n in range(1, N):
        plist[n] = plist[n-1].deriv() - poly1d([1, 0]) * plist[n-1]

    return plist


# Note: when removing pdf_fromgamma, also remove the _hermnorm support function
@np.deprecate(message="scipy.stats.pdf_fromgamma is deprecated in scipy 0.16.0 "
                      "in favour of statsmodels.distributions.ExpandedNormal.")
def pdf_fromgamma(g1, g2, g3=0.0, g4=None):
    if g4 is None:
        g4 = 3 * g2**2
    sigsq = 1.0 / g2
    sig = sqrt(sigsq)
    mu = g1 * sig**3.0
    p12 = _hermnorm(13)
    for k in range(13):
        p12[k] /= sig**k

    # Add all of the terms to polynomial
    totp = (p12[0] - g1/6.0*p12[3] +
            g2/24.0*p12[4] + g1**2/72.0 * p12[6] -
            g3/120.0*p12[5] - g1*g2/144.0*p12[7] - g1**3.0/1296.0*p12[9] +
            g4/720*p12[6] + (g2**2/1152.0 + g1*g3/720)*p12[8] +
            g1**2 * g2/1728.0*p12[10] + g1**4.0 / 31104.0*p12[12])
    # Final normalization
    totp = totp / sqrt(2*pi) / sig

    def thefunc(x):
        xn = (x - mu) / sig
        return totp(xn) * exp(-xn**2 / 2.)

    return thefunc


def _circfuncs_common(samples, high, low):
    samples = np.asarray(samples)
    if samples.size == 0:
        return np.nan, np.nan

    ang = (samples - low)*2*pi / (high - low)
    return samples, ang


def circmean(samples, high=2*pi, low=0, axis=None):
    """
    Compute the circular mean for samples in a range.

    Parameters
    ----------
    samples : array_like
        Input array.
    high : float or int, optional
        High boundary for circular mean range.  Default is ``2*pi``.
    low : float or int, optional
        Low boundary for circular mean range.  Default is 0.
    axis : int, optional
        Axis along which means are computed.  The default is to compute
        the mean of the flattened array.

    Returns
    -------
    circmean : float
        Circular mean.

    """
    samples, ang = _circfuncs_common(samples, high, low)
    S = sin(ang).sum(axis=axis)
    C = cos(ang).sum(axis=axis)
    res = arctan2(S, C)
    mask = res < 0
    if mask.ndim > 0:
        res[mask] += 2*pi
    elif mask:
        res += 2*pi
    return res*(high - low)/2.0/pi + low


def circvar(samples, high=2*pi, low=0, axis=None):
    """
    Compute the circular variance for samples assumed to be in a range

    Parameters
    ----------
    samples : array_like
        Input array.
    low : float or int, optional
        Low boundary for circular variance range.  Default is 0.
    high : float or int, optional
        High boundary for circular variance range.  Default is ``2*pi``.
    axis : int, optional
        Axis along which variances are computed.  The default is to compute
        the variance of the flattened array.

    Returns
    -------
    circvar : float
        Circular variance.

    Notes
    -----
    This uses a definition of circular variance that in the limit of small
    angles returns a number close to the 'linear' variance.

    """
    samples, ang = _circfuncs_common(samples, high, low)
    S = sin(ang).mean(axis=axis)
    C = cos(ang).mean(axis=axis)
    R = hypot(S, C)
    return ((high - low)/2.0/pi)**2 * 2 * log(1/R)


def circstd(samples, high=2*pi, low=0, axis=None):
    """
    Compute the circular standard deviation for samples assumed to be in the
    range [low to high].

    Parameters
    ----------
    samples : array_like
        Input array.
    low : float or int, optional
        Low boundary for circular standard deviation range.  Default is 0.
    high : float or int, optional
        High boundary for circular standard deviation range.
        Default is ``2*pi``.
    axis : int, optional
        Axis along which standard deviations are computed.  The default is
        to compute the standard deviation of the flattened array.

    Returns
    -------
    circstd : float
        Circular standard deviation.

    Notes
    -----
    This uses a definition of circular standard deviation that in the limit of
    small angles returns a number close to the 'linear' standard deviation.

    """
    samples, ang = _circfuncs_common(samples, high, low)
    S = sin(ang).mean(axis=axis)
    C = cos(ang).mean(axis=axis)
    R = hypot(S, C)
    return ((high - low)/2.0/pi) * sqrt(-2*log(R))


# Tests to include (from R) -- some of these already in stats.
########
# X Ansari-Bradley
# X Bartlett (and Levene)
# X Binomial
# Y Pearson's Chi-squared (stats.chisquare)
# Y Association Between Paired samples (stats.pearsonr, stats.spearmanr)
#                       stats.kendalltau) -- these need work though
# Fisher's exact test
# X Fligner-Killeen Test
# Y Friedman Rank Sum (stats.friedmanchisquare?)
# Y Kruskal-Wallis
# Y Kolmogorov-Smirnov
# Cochran-Mantel-Haenszel Chi-Squared for Count
# McNemar's Chi-squared for Count
# X Mood Two-Sample
# X Test For Equal Means in One-Way Layout (see stats.ttest also)
# Pairwise Comparisons of proportions
# Pairwise t tests
# Tabulate p values for pairwise comparisons
# Pairwise Wilcoxon rank sum tests
# Power calculations two sample test of prop.
# Power calculations for one and two sample t tests
# Equal or Given Proportions
# Trend in Proportions
# Quade Test
# Y Student's T Test
# Y F Test to compare two variances
# XY Wilcoxon Rank Sum and Signed Rank Tests