File: mstats_extras.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (450 lines) | stat: -rw-r--r-- 14,219 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
"""
Additional statistics functions with support for masked arrays.

"""

# Original author (2007): Pierre GF Gerard-Marchant


from __future__ import division, print_function, absolute_import


__all__ = ['compare_medians_ms',
           'hdquantiles', 'hdmedian', 'hdquantiles_sd',
           'idealfourths',
           'median_cihs','mjci','mquantiles_cimj',
           'rsh',
           'trimmed_mean_ci',]


import numpy as np
from numpy import float_, int_, ndarray

import numpy.ma as ma
from numpy.ma import MaskedArray

from . import mstats_basic as mstats

from scipy.stats.distributions import norm, beta, t, binom


def hdquantiles(data, prob=list([.25,.5,.75]), axis=None, var=False,):
    """
    Computes quantile estimates with the Harrell-Davis method.

    The quantile estimates are calculated as a weighted linear combination
    of order statistics.

    Parameters
    ----------
    data : array_like
        Data array.
    prob : sequence, optional
        Sequence of quantiles to compute.
    axis : int or None, optional
        Axis along which to compute the quantiles. If None, use a flattened
        array.
    var : bool, optional
        Whether to return the variance of the estimate.

    Returns
    -------
    hdquantiles : MaskedArray
        A (p,) array of quantiles (if `var` is False), or a (2,p) array of
        quantiles and variances (if `var` is True), where ``p`` is the
        number of quantiles.

    """
    def _hd_1D(data,prob,var):
        "Computes the HD quantiles for a 1D array. Returns nan for invalid data."
        xsorted = np.squeeze(np.sort(data.compressed().view(ndarray)))
        # Don't use length here, in case we have a numpy scalar
        n = xsorted.size

        hd = np.empty((2,len(prob)), float_)
        if n < 2:
            hd.flat = np.nan
            if var:
                return hd
            return hd[0]

        v = np.arange(n+1) / float(n)
        betacdf = beta.cdf
        for (i,p) in enumerate(prob):
            _w = betacdf(v, (n+1)*p, (n+1)*(1-p))
            w = _w[1:] - _w[:-1]
            hd_mean = np.dot(w, xsorted)
            hd[0,i] = hd_mean
            #
            hd[1,i] = np.dot(w, (xsorted-hd_mean)**2)
            #
        hd[0, prob == 0] = xsorted[0]
        hd[0, prob == 1] = xsorted[-1]
        if var:
            hd[1, prob == 0] = hd[1, prob == 1] = np.nan
            return hd
        return hd[0]
    # Initialization & checks
    data = ma.array(data, copy=False, dtype=float_)
    p = np.array(prob, copy=False, ndmin=1)
    # Computes quantiles along axis (or globally)
    if (axis is None) or (data.ndim == 1):
        result = _hd_1D(data, p, var)
    else:
        if data.ndim > 2:
            raise ValueError("Array 'data' must be at most two dimensional, "
                             "but got data.ndim = %d" % data.ndim)
        result = ma.apply_along_axis(_hd_1D, axis, data, p, var)

    return ma.fix_invalid(result, copy=False)


def hdmedian(data, axis=-1, var=False):
    """
    Returns the Harrell-Davis estimate of the median along the given axis.

    Parameters
    ----------
    data : ndarray
        Data array.
    axis : int, optional
        Axis along which to compute the quantiles. If None, use a flattened
        array.
    var : bool, optional
        Whether to return the variance of the estimate.

    """
    result = hdquantiles(data,[0.5], axis=axis, var=var)
    return result.squeeze()


def hdquantiles_sd(data, prob=list([.25,.5,.75]), axis=None):
    """
    The standard error of the Harrell-Davis quantile estimates by jackknife.

    Parameters
    ----------
    data : array_like
        Data array.
    prob : sequence, optional
        Sequence of quantiles to compute.
    axis : int, optional
        Axis along which to compute the quantiles. If None, use a flattened
        array.

    Returns
    -------
    hdquantiles_sd : MaskedArray
        Standard error of the Harrell-Davis quantile estimates.

    """
    def _hdsd_1D(data,prob):
        "Computes the std error for 1D arrays."
        xsorted = np.sort(data.compressed())
        n = len(xsorted)
        #.........
        hdsd = np.empty(len(prob), float_)
        if n < 2:
            hdsd.flat = np.nan

        vv = np.arange(n) / float(n-1)
        betacdf = beta.cdf

        for (i,p) in enumerate(prob):
            _w = betacdf(vv, (n+1)*p, (n+1)*(1-p))
            w = _w[1:] - _w[:-1]
            mx_ = np.fromiter([np.dot(w,xsorted[np.r_[list(range(0,k)),
                                                      list(range(k+1,n))].astype(int_)])
                                  for k in range(n)], dtype=float_)
            mx_var = np.array(mx_.var(), copy=False, ndmin=1) * n / float(n-1)
            hdsd[i] = float(n-1) * np.sqrt(np.diag(mx_var).diagonal() / float(n))
        return hdsd
    # Initialization & checks
    data = ma.array(data, copy=False, dtype=float_)
    p = np.array(prob, copy=False, ndmin=1)
    # Computes quantiles along axis (or globally)
    if (axis is None):
        result = _hdsd_1D(data, p)
    else:
        if data.ndim > 2:
            raise ValueError("Array 'data' must be at most two dimensional, "
                             "but got data.ndim = %d" % data.ndim)
        result = ma.apply_along_axis(_hdsd_1D, axis, data, p)

    return ma.fix_invalid(result, copy=False).ravel()


def trimmed_mean_ci(data, limits=(0.2,0.2), inclusive=(True,True),
                    alpha=0.05, axis=None):
    """
    Selected confidence interval of the trimmed mean along the given axis.

    Parameters
    ----------
    data : array_like
        Input data.
    limits : {None, tuple}, optional
        None or a two item tuple.
        Tuple of the percentages to cut on each side of the array, with respect
        to the number of unmasked data, as floats between 0. and 1. If ``n``
        is the number of unmasked data before trimming, then
        (``n * limits[0]``)th smallest data and (``n * limits[1]``)th
        largest data are masked.  The total number of unmasked data after
        trimming is ``n * (1. - sum(limits))``.
        The value of one limit can be set to None to indicate an open interval.

        Defaults to (0.2, 0.2).
    inclusive : (2,) tuple of boolean, optional
        If relative==False, tuple indicating whether values exactly equal to
        the absolute limits are allowed.
        If relative==True, tuple indicating whether the number of data being
        masked on each side should be rounded (True) or truncated (False).

        Defaults to (True, True).
    alpha : float, optional
        Confidence level of the intervals.

        Defaults to 0.05.
    axis : int, optional
        Axis along which to cut. If None, uses a flattened version of `data`.

        Defaults to None.

    Returns
    -------
    trimmed_mean_ci : (2,) ndarray
        The lower and upper confidence intervals of the trimmed data.

    """
    data = ma.array(data, copy=False)
    trimmed = mstats.trimr(data, limits=limits, inclusive=inclusive, axis=axis)
    tmean = trimmed.mean(axis)
    tstde = mstats.trimmed_stde(data,limits=limits,inclusive=inclusive,axis=axis)
    df = trimmed.count(axis) - 1
    tppf = t.ppf(1-alpha/2.,df)
    return np.array((tmean - tppf*tstde, tmean+tppf*tstde))


def mjci(data, prob=[0.25,0.5,0.75], axis=None):
    """
    Returns the Maritz-Jarrett estimators of the standard error of selected
    experimental quantiles of the data.

    Parameters
    ----------
    data : ndarray
        Data array.
    prob : sequence, optional
        Sequence of quantiles to compute.
    axis : int or None, optional
        Axis along which to compute the quantiles. If None, use a flattened
        array.

    """
    def _mjci_1D(data, p):
        data = np.sort(data.compressed())
        n = data.size
        prob = (np.array(p) * n + 0.5).astype(int_)
        betacdf = beta.cdf

        mj = np.empty(len(prob), float_)
        x = np.arange(1,n+1, dtype=float_) / n
        y = x - 1./n
        for (i,m) in enumerate(prob):
            W = betacdf(x,m-1,n-m) - betacdf(y,m-1,n-m)
            C1 = np.dot(W,data)
            C2 = np.dot(W,data**2)
            mj[i] = np.sqrt(C2 - C1**2)
        return mj

    data = ma.array(data, copy=False)
    if data.ndim > 2:
        raise ValueError("Array 'data' must be at most two dimensional, "
                         "but got data.ndim = %d" % data.ndim)

    p = np.array(prob, copy=False, ndmin=1)
    # Computes quantiles along axis (or globally)
    if (axis is None):
        return _mjci_1D(data, p)
    else:
        return ma.apply_along_axis(_mjci_1D, axis, data, p)


def mquantiles_cimj(data, prob=[0.25,0.50,0.75], alpha=0.05, axis=None):
    """
    Computes the alpha confidence interval for the selected quantiles of the
    data, with Maritz-Jarrett estimators.

    Parameters
    ----------
    data : ndarray
        Data array.
    prob : sequence, optional
        Sequence of quantiles to compute.
    alpha : float, optional
        Confidence level of the intervals.
    axis : int or None, optional
        Axis along which to compute the quantiles.
        If None, use a flattened array.

    """
    alpha = min(alpha, 1-alpha)
    z = norm.ppf(1-alpha/2.)
    xq = mstats.mquantiles(data, prob, alphap=0, betap=0, axis=axis)
    smj = mjci(data, prob, axis=axis)
    return (xq - z * smj, xq + z * smj)


def median_cihs(data, alpha=0.05, axis=None):
    """
    Computes the alpha-level confidence interval for the median of the data.

    Uses the Hettmasperger-Sheather method.

    Parameters
    ----------
    data : array_like
        Input data. Masked values are discarded. The input should be 1D only,
        or `axis` should be set to None.
    alpha : float, optional
        Confidence level of the intervals.
    axis : int or None, optional
        Axis along which to compute the quantiles. If None, use a flattened
        array.

    Returns
    -------
    median_cihs
        Alpha level confidence interval.

    """
    def _cihs_1D(data, alpha):
        data = np.sort(data.compressed())
        n = len(data)
        alpha = min(alpha, 1-alpha)
        k = int(binom._ppf(alpha/2., n, 0.5))
        gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
        if gk < 1-alpha:
            k -= 1
            gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5)
        gkk = binom.cdf(n-k-1,n,0.5) - binom.cdf(k,n,0.5)
        I = (gk - 1 + alpha)/(gk - gkk)
        lambd = (n-k) * I / float(k + (n-2*k)*I)
        lims = (lambd*data[k] + (1-lambd)*data[k-1],
                lambd*data[n-k-1] + (1-lambd)*data[n-k])
        return lims
    data = ma.rray(data, copy=False)
    # Computes quantiles along axis (or globally)
    if (axis is None):
        result = _cihs_1D(data.compressed(), alpha)
    else:
        if data.ndim > 2:
            raise ValueError("Array 'data' must be at most two dimensional, "
                             "but got data.ndim = %d" % data.ndim)
        result = ma.apply_along_axis(_cihs_1D, axis, data, alpha)

    return result


def compare_medians_ms(group_1, group_2, axis=None):
    """
    Compares the medians from two independent groups along the given axis.

    The comparison is performed using the McKean-Schrader estimate of the
    standard error of the medians.

    Parameters
    ----------
    group_1 : array_like
        First dataset.
    group_2 : array_like
        Second dataset.
    axis : int, optional
        Axis along which the medians are estimated. If None, the arrays are
        flattened.  If `axis` is not None, then `group_1` and `group_2`
        should have the same shape.

    Returns
    -------
    compare_medians_ms : {float, ndarray}
        If `axis` is None, then returns a float, otherwise returns a 1-D
        ndarray of floats with a length equal to the length of `group_1`
        along `axis`.

    """
    (med_1, med_2) = (ma.median(group_1,axis=axis), ma.median(group_2,axis=axis))
    (std_1, std_2) = (mstats.stde_median(group_1, axis=axis),
                      mstats.stde_median(group_2, axis=axis))
    W = np.abs(med_1 - med_2) / ma.sqrt(std_1**2 + std_2**2)
    return 1 - norm.cdf(W)


def idealfourths(data, axis=None):
    """
    Returns an estimate of the lower and upper quartiles.

    Uses the ideal fourths algorithm.

    Parameters
    ----------
    data : array_like
        Input array.
    axis : int, optional
        Axis along which the quartiles are estimated. If None, the arrays are
        flattened.

    Returns
    -------
    idealfourths : {list of floats, masked array}
        Returns the two internal values that divide `data` into four parts
        using the ideal fourths algorithm either along the flattened array
        (if `axis` is None) or along `axis` of `data`.

    """
    def _idf(data):
        x = data.compressed()
        n = len(x)
        if n < 3:
            return [np.nan,np.nan]
        (j,h) = divmod(n/4. + 5/12.,1)
        j = int(j)
        qlo = (1-h)*x[j-1] + h*x[j]
        k = n - j
        qup = (1-h)*x[k] + h*x[k-1]
        return [qlo, qup]
    data = ma.sort(data, axis=axis).view(MaskedArray)
    if (axis is None):
        return _idf(data)
    else:
        return ma.apply_along_axis(_idf, axis, data)


def rsh(data, points=None):
    """
    Evaluates Rosenblatt's shifted histogram estimators for each point
    on the dataset 'data'.

    Parameters
    ----------
    data : sequence
        Input data. Masked values are ignored.
    points : sequence or None, optional
        Sequence of points where to evaluate Rosenblatt shifted histogram.
        If None, use the data.

    """
    data = ma.array(data, copy=False)
    if points is None:
        points = data
    else:
        points = np.array(points, copy=False, ndmin=1)

    if data.ndim != 1:
        raise AttributeError("The input array should be 1D only !")

    n = data.count()
    r = idealfourths(data, axis=None)
    h = 1.2 * (r[-1]-r[0]) / n**(1./5)
    nhi = (data[:,None] <= points[None,:] + h).sum(0)
    nlo = (data[:,None] < points[None,:] - h).sum(0)
    return (nhi-nlo) / (2.*n*h)