1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
SUBROUTINE GSCALE(TEST, OTHER, ASTART, A1, L1, A2, A3, IFAULT)
C
C ALGORITHM AS 93 APPL. STATIST. (1976) VOL.25, NO.1
C
C FROM THE SIZES OF TWO SAMPLES THE DISTRIBUTION OF THE
C ANSARI-BRADLEY TEST FOR SCALE IS GENERATED IN ARRAY A1.
C
REAL ASTART, A1(L1), A2(L1), A3(L1), AI, ONE, FPOINT
INTEGER TEST, OTHER
LOGICAL SYMM
DATA ONE /1.0/
C
C TYPE CONVERSION (EFFECT DEPENDS ON TYPE STATEMENT ABOVE).
C
FPOINT(I) = I
C
C CHECK PROBLEM SIZE AND DEFINE BASE VALUE OF THE DISTRIBUTION.
C
M = MIN0(TEST, OTHER)
IFAULT = 2
IF (M. LT. 0) RETURN
ASTART = FPOINT((TEST + 1) / 2) * FPOINT(1 + TEST / 2)
N = MAX0(TEST, OTHER)
C
C CHECK SIZE OF RESULT ARRAY.
C
IFAULT = 1
LRES = 1 + (M * N) / 2
IF (L1 .LT. LRES) RETURN
SYMM = MOD(M + N, 2) .EQ. 0
C
C TREAT SMALL SAMPLES SEPARATELY.
C
MM1 = M - 1
IF (M .GT. 2) GOTO 5
C
C START-UP PROCEDURES ONLY NEEDED.
C
IF (MM1) 1, 2, 3
C
C ONE SAMPLE ONLY.
C
1 A1(1) = ONE
GOTO 15
C
C SMALLER SAMPLE SIZE = 1.
C
2 CALL START1(N, A1, L1, LN1)
GOTO 4
C
C SMALLER SAMPLE SIZE = 2.
C
3 CALL START2(N, A1, L1, LN1)
C
C RETURN IF A1 IS NOT IN REVERSE ORDER.
C
4 IF (SYMM .OR. (OTHER .GT. TEST)) GOTO 15
GOTO 13
C
C FULL GENERATOR NEEDED
C SET UP INITIAL CONDITIONS (DEPENDS ON MOD(N, 2)).
C
5 NM1 = N - 1
NM2 = N - 2
MNOW = 3
NC = 3
IF (MOD(N, 2) .EQ. 1) GOTO 6
C SET UP FOR EVEN N.
C
N2B1 = 3
N2B2 = 2
CALL START2(N, A1, L1, LN1)
CALL START2(NM2, A3, L1, LN3)
CALL START1(NM1, A2, L1, LN2)
GOTO 8
C
C SET UP FOR ODD N.
C
6 N2B1 = 2
N2B2 = 3
CALL START1(N, A1, L1, LN1)
CALL START2(NM1, A2, L1, LN2)
C
C INCREASE ORDER OF DISTRIBUTION IN A1 BY 2
C (USING A2 AND IMPLYING A3).
C
7 CALL FRQADD(A1, LN1, L1OUT, L1, A2, LN2, N2B1)
LN1 = LN1 + N
CALL IMPLY(A1, L1OUT, LN1, A3, LN3, L1, NC)
NC = NC + 1
IF (MNOW .EQ. M) GOTO 9
MNOW = MNOW + 1
C
C INCREASE ORDER OF DISTRIBUTION IN A2 BY 2 (USING A3).
C
8 CALL FRQADD(A2, LN2, L2OUT, L1, A3, LN3, N2B2)
LN2 = LN2 + NM1
CALL IMPLY(A2, L2OUT, LN2, A3, J, L1, NC)
NC = NC + 1
IF (MNOW .EQ. M) GOTO 9
MNOW = MNOW + 1
GOTO 7
C
C IF SYMMETRICAL, RESULTS IN A1 ARE COMPLETE.
C
9 IF (SYMM) GOTO 15
C
C FOR A SKEW RESULT ADD A2 (OFFSET) INTO A1.
C
KS = (M + 3) / 2
J = 1
DO 12 I = KS, LRES
IF (I .GT. LN1) GOTO 10
A1(I) = A1(I) + A2(J)
GOTO 11
10 A1(I) = A2(J)
11 J = J + 1
12 CONTINUE
C
C DISTRIBUTION IN A1 POSSIBLY IN REVERSE ORDER.
C
IF (OTHER .LT. TEST) GOTO 15
C
C REVERSE THE RESULTS IN A1.
C
13 J = LRES
NDO = LRES / 2
DO 14 I = 1, NDO
AI = A1(I)
A1(I) =A1(J)
A1(J) = AI
J = J - 1
14 CONTINUE
C
C FINAL RESULTS NOW IN A1.
C
15 IFAULT = 0
RETURN
END
SUBROUTINE START1(N, F, L, LOUT)
C
C ALGORITHM AS 93.1 APPL. STATIST. (1976) VOL.25, NO.1
C
C GENERATES A 1,N ANSARI-BRADLEY DISTRIBUTION IN F.
C
REAL F(L), ONE, TWO
DATA ONE, TWO /1.0, 2.0/
LOUT = 1 + N / 2
DO 1 I = 1, LOUT
1 F(I) = TWO
IF (MOD(N, 2) .EQ. 0) F(LOUT) = ONE
RETURN
END
C
SUBROUTINE START2(N, F, L, LOUT)
C
C ALGORITHM AS 93.2 APPL. STATIST. (1976) VOL.25, NO.1
C
C GENERATES A 2,N ANSARI-BRADLEY DISTRIBUTION IN F.
C
REAL F(L), ONE, TWO, THREE, FOUR
DATA ONE, TWO, THREE, FOUR /1.0, 2.0, 3.0, 4.0/
C
C DERIVE F FOR 2, NU, WHERE NU IS HIGHEST EVEN INTEGER
C LESS THAN OR EQUAL TO N.
C DEFINE NU AND ARRAY LIMITS.
C
NU = N - MOD(N, 2)
J = NU + 1
LOUT = J
LT1 = LOUT + 1
NDO = LT1 / 2
A = ONE
B = THREE
C
C GENERATE THE SYMMETRICAL 2,NU DISTRIBUTION.
C
DO 1 I = 1, NDO
F(I) = A
F(J) = A
J = J - 1
A = A + B
B = FOUR - B
1 CONTINUE
IF (NU .EQ. N) RETURN
C
C ADD AN OFFSET 1,N DISTRIBUTION INTO F TO GIVE 2,N RESULT.
C
NU = NDO + 1
DO 2 I = NU, LOUT
2 F(I) = F(I) + TWO
F(LT1) = TWO
LOUT = LT1
RETURN
END
C
SUBROUTINE FRQADD(F1, L1IN, L1OUT, L1, F2, L2, NSTART)
C
C ALGORITHM AS 93.3 APPL. STATIST. (1976) VOL.25, NO.1
C
C ARRAY F1 HAS TWICE THE CONTENTS OF ARRAY F2 ADDED INTO IT
C STARTING WITH ELEMENTS NSTART AND 1 IN F1 AND F2 RESPECTIVELY.
C
REAL F1(L1), F2(L2), MUL2
DATA MUL2 /2.0/
I2 = 1
DO 1 I1 = NSTART, L1IN
F1(I1) = F1(I1) + MUL2 * F2(I2)
I2 = I2 + 1
1 CONTINUE
NXT = L1IN + 1
L1OUT = L2 + NSTART - 1
DO 2 I1 = NXT, L1OUT
F1(I1) = MUL2 * F2(I2)
I2 = I2 + 1
2 CONTINUE
NSTART = NSTART + 1
RETURN
END
C
SUBROUTINE IMPLY(F1, L1IN, L1OUT, F2, L2, L2MAX, NOFF)
C
C ALGORITHM AS 93.4 APPL. STATIST. (1976) VOL.25, NO.1
C
C GIVEN L1IN ELEMENTS OF AN ARRAY F1, A SYMMETRICAL
C ARRAY F2 IS DERIVED AND ADDED ONTO F1, LEAVING THE
C FIRST NOFF ELEMENTS OF F1 UNCHANGED AND GIVING A
C SYMMETRICAL RESULT OF L1OUT ELEMENTS IN F1.
C
REAL F1(L1OUT), F2(L2MAX), SUM, DIFF
C
C SET-UP SUBSCRIPTS AND LOOP COUNTER.
C
I2 = 1 - NOFF
J1 = L1OUT
J2 = L1OUT - NOFF
L2 = J2
J2MIN = (J2 + 1) / 2
NDO = (L1OUT + 1) / 2
C
C DERIVE AND IMPLY NEW VALUES FROM OUTSIDE INWARDS.
C
DO 6 I1 = 1, NDO
C
C GET NEW F1 VALUE FROM SUM OF L/H ELEMENTS OF
C F1 + F2 (IF F2 IS IN RANGE).
C
IF (I2 .GT. 0) GOTO 1
SUM = F1(I1)
GOTO 2
1 SUM = F1(I1) + F2(I2)
C
C REVISE LEFT ELEMENT OF F1.
C
F1(I1) = SUM
C
C IF F2 NOT COMPLETE IMPLY AND ASSIGN F2 VALUES
C AND REVISE SUBSCRIPTS.
C
2 I2 = I2 + 1
IF (J2 .LT. J2MIN) GOTO 5
IF (J1 .LE. L1IN) GOTO 3
DIFF = SUM
GOTO 4
3 DIFF = SUM - F1(J1)
4 F2(I1) = DIFF
F2(J2) = DIFF
J2 = J2 - 1
C
C ASSIGN R/H ELEMENT OF F1 AND REVISE SUBSCRIPT.
C
5 F1(J1) = SUM
J1 = J1 - 1
6 CONTINUE
RETURN
END
|