1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
SUBROUTINE SWILK (INIT, X, N, N1, N2, A, W, PW, IFAULT)
C
C ALGORITHM AS R94 APPL. STATIST. (1995) VOL.44, NO.4
C
C Calculates the Shapiro-Wilk W test and its significance level
C
C IFAULT error code details from the R94 paper:
C - 0 for no fault
C - 1 if N1 < 3
C - 2 if N > 5000 (a non-fatal error)
C - 3 if N2 < N/2, so insufficient storage for A
C - 4 if N1 > N or (N1 < N and N < 20)
C - 5 if the proportion censored (N-N1)/N > 0.8
C - 6 if the data have zero range (if sorted on input)
C
INTEGER N, N1, N2, IFAULT
REAL X(*), A(*), PW, W
REAL C1(6), C2(6), C3(4), C4(4), C5(4), C6(3), C7(2)
REAL C8(2), C9(2), G(2)
REAL Z90, Z95, Z99, ZM, ZSS, BF1, XX90, XX95, ZERO, ONE, TWO
REAL THREE, SQRTH, QTR, TH, SMALL, PI6, STQR
REAL SUMM2, SSUMM2, FAC, RSN, AN, AN25, A1, A2, DELTA, RANGE
REAL SA, SX, SSX, SSA, SAX, ASA, XSX, SSASSX, W1, Y, XX, XI
REAL GAMMA, M, S, LD, BF, Z90F, Z95F, Z99F, ZFM, ZSD, ZBAR
C
C Auxiliary routines
C
REAL PPND, POLY
DOUBLE PRECISION ALNORM
C
INTEGER NCENS, NN2, I, I1, J
LOGICAL INIT, UPPER
C
DATA C1 /0.0E0, 0.221157E0, -0.147981E0, -0.207119E1,
* 0.4434685E1, -0.2706056E1/
DATA C2 /0.0E0, 0.42981E-1, -0.293762E0, -0.1752461E1,
* 0.5682633E1, -0.3582633E1/
DATA C3 /0.5440E0, -0.39978E0, 0.25054E-1, -0.6714E-3/
DATA C4 /0.13822E1, -0.77857E0, 0.62767E-1, -0.20322E-2/
DATA C5 /-0.15861E1, -0.31082E0, -0.83751E-1, 0.38915E-2/
DATA C6 /-0.4803E0, -0.82676E-1, 0.30302E-2/
DATA C7 /0.164E0, 0.533E0/
DATA C8 /0.1736E0, 0.315E0/
DATA C9 /0.256E0, -0.635E-2/
DATA G /-0.2273E1, 0.459E0/
DATA Z90, Z95, Z99 /0.12816E1, 0.16449E1, 0.23263E1/
DATA ZM, ZSS /0.17509E1, 0.56268E0/
DATA BF1 /0.8378E0/, XX90, XX95 /0.556E0, 0.622E0/
DATA ZERO /0.0E0/, ONE/1.0E0/, TWO/2.0E0/, THREE/3.0E0/
DATA SQRTH /0.70711E0/, QTR/0.25E0/, TH/0.375E0/, SMALL/1E-19/
DATA PI6 /0.1909859E1/, STQR/0.1047198E1/, UPPER/.TRUE./
C
PW = ONE
IF (W .GE. ZERO) W = ONE
AN = N
IFAULT = 3
NN2 = N/2
IF (N2 .LT. NN2) RETURN
IFAULT = 1
IF (N .LT. 3) RETURN
C
C If INIT is false, calculates coefficients for the test
C
IF (.NOT. INIT) THEN
IF (N .EQ. 3) THEN
A(1) = SQRTH
ELSE
AN25 = AN + QTR
SUMM2 = ZERO
DO 30 I = 1, N2
A(I) = PPND((REAL(I) - TH)/AN25,IFAULT)
SUMM2 = SUMM2 + A(I) ** 2
30 CONTINUE
SUMM2 = SUMM2 * TWO
SSUMM2 = SQRT(SUMM2)
RSN = ONE / SQRT(AN)
A1 = POLY(C1, 6, RSN) - A(1) / SSUMM2
C
C Normalize coefficients
C
IF (N .GT. 5) THEN
I1 = 3
A2 = -A(2)/SSUMM2 + POLY(C2,6,RSN)
FAC = SQRT((SUMM2 - TWO * A(1) ** 2 - TWO *
* A(2) ** 2)/(ONE - TWO * A1 ** 2 - TWO * A2 ** 2))
A(1) = A1
A(2) = A2
ELSE
I1 = 2
FAC = SQRT((SUMM2 - TWO * A(1) ** 2)/
* (ONE - TWO * A1 ** 2))
A(1) = A1
END IF
DO 40 I = I1, NN2
A(I) = -A(I)/FAC
40 CONTINUE
END IF
INIT = .TRUE.
END IF
IF (N1 .LT. 3) RETURN
NCENS = N - N1
IFAULT = 4
IF (NCENS .LT. 0 .OR. (NCENS .GT. 0 .AND. N .LT. 20)) RETURN
IFAULT = 5
DELTA = FLOAT(NCENS)/AN
IF (DELTA .GT. 0.8) RETURN
C
C If W input as negative, calculate significance level of -W
C
IF (W .LT. ZERO) THEN
W1 = ONE + W
IFAULT = 0
GOTO 70
END IF
C
C Check for zero range
C
IFAULT = 6
RANGE = X(N1) - X(1)
IF (RANGE .LT. SMALL) RETURN
C
C Check for correct sort order on range - scaled X
C
IFAULT = 7
XX = X(1)/RANGE
SX = XX
SA = -A(1)
J = N - 1
DO 50 I = 2, N1
XI = X(I)/RANGE
CCCCC IF (XX-XI .GT. SMALL) PRINT *,' ANYTHING'
SX = SX + XI
IF (I .NE. J) SA = SA + SIGN(1, I - J) * A(MIN(I, J))
XX = XI
J = J - 1
50 CONTINUE
IFAULT = 0
IF (N .GT. 5000) IFAULT = 2
C
C Calculate W statistic as squared correlation
C between data and coefficients
C
SA = SA/N1
SX = SX/N1
SSA = ZERO
SSX = ZERO
SAX = ZERO
J = N
DO 60 I = 1, N1
IF (I .NE. J) THEN
ASA = SIGN(1, I - J) * A(MIN(I, J)) - SA
ELSE
ASA = -SA
END IF
XSX = X(I)/RANGE - SX
SSA = SSA + ASA * ASA
SSX = SSX + XSX * XSX
SAX = SAX + ASA * XSX
J = J - 1
60 CONTINUE
C
C W1 equals (1-W) claculated to avoid excessive rounding error
C for W very near 1 (a potential problem in very large samples)
C
SSASSX = SQRT(SSA * SSX)
W1 = (SSASSX - SAX) * (SSASSX + SAX)/(SSA * SSX)
70 W = ONE - W1
C
C Calculate significance level for W (exact for N=3)
C
IF (N .EQ. 3) THEN
PW = PI6 * (ASIN(SQRT(W)) - STQR)
RETURN
END IF
Y = LOG(W1)
XX = LOG(AN)
M = ZERO
S = ONE
IF (N .LE. 11) THEN
GAMMA = POLY(G, 2, AN)
IF (Y .GE. GAMMA) THEN
PW = SMALL
RETURN
END IF
Y = -LOG(GAMMA - Y)
M = POLY(C3, 4, AN)
S = EXP(POLY(C4, 4, AN))
ELSE
M = POLY(C5, 4, XX)
S = EXP(POLY(C6, 3, XX))
END IF
IF (NCENS .GT. 0) THEN
C
C Censoring by proportion NCENS/N. Calculate mean and sd
C of normal equivalent deviate of W.
C
LD = -LOG(DELTA)
BF = ONE + XX * BF1
Z90F = Z90 + BF * POLY(C7, 2, XX90 ** XX) ** LD
Z95F = Z95 + BF * POLY(C8, 2, XX95 ** XX) ** LD
Z99F = Z99 + BF * POLY(C9, 2, XX) ** LD
C
C Regress Z90F,...,Z99F on normal deviates Z90,...,Z99 to get
C pseudo-mean and pseudo-sd of z as the slope and intercept
C
ZFM = (Z90F + Z95F + Z99F)/THREE
ZSD = (Z90*(Z90F-ZFM)+Z95*(Z95F-ZFM)+Z99*(Z99F-ZFM))/ZSS
ZBAR = ZFM - ZSD * ZM
M = M + ZBAR * S
S = S * ZSD
END IF
PW = REAL(ALNORM(DBLE((Y - M)/S), UPPER))
C
RETURN
END
DOUBLE PRECISION FUNCTION ALNORM(X, UPPER)
C
C EVALUATES THE TAIL AREA OF THE STANDARDIZED NORMAL CURVE FROM
C X TO INFINITY IF UPPER IS .TRUE. OR FROM MINUS INFINITY TO X
C IF UPPER IS .FALSE.
C
C NOTE NOVEMBER 2001: MODIFY UTZERO. ALTHOUGH NOT NECESSARY
C WHEN USING ALNORM FOR SIMPLY COMPUTING PERCENT POINTS,
C EXTENDING RANGE IS HELPFUL FOR USE WITH FUNCTIONS THAT
C USE ALNORM IN INTERMEDIATE COMPUTATIONS.
C
DOUBLE PRECISION LTONE,UTZERO,ZERO,HALF,ONE,CON,
$ A1,A2,A3,A4,A5,A6,A7,B1,B2,
$ B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,X,Y,Z,ZEXP
LOGICAL UPPER,UP
C
C LTONE AND UTZERO MUST BE SET TO SUIT THE PARTICULAR COMPUTER
C
CCCCC DATA LTONE, UTZERO /7.0D0, 18.66D0/
DATA LTONE, UTZERO /7.0D0, 38.00D0/
DATA ZERO,HALF,ONE,CON /0.0D0,0.5D0,1.0D0,1.28D0/
DATA A1, A2, A3,
$ A4, A5, A6,
$ A7
$ /0.398942280444D0, 0.399903438504D0, 5.75885480458D0,
$ 29.8213557808D0, 2.62433121679D0, 48.6959930692D0,
$ 5.92885724438D0/
DATA B1, B2, B3,
$ B4, B5, B6,
$ B7, B8, B9,
$ B10, B11, B12
$ /0.398942280385D0, 3.8052D-8, 1.00000615302D0,
$ 3.98064794D-4, 1.98615381364D0, 0.151679116635D0,
$ 5.29330324926D0, 4.8385912808D0, 15.1508972451D0,
$ 0.742380924027D0, 30.789933034D0, 3.99019417011D0/
C
ZEXP(Z) = DEXP(Z)
C
UP = UPPER
Z = X
IF (Z .GE. ZERO) GOTO 10
UP = .NOT. UP
Z = -Z
10 IF (Z .LE. LTONE .OR. UP .AND. Z .LE. UTZERO) GOTO 20
ALNORM = ZERO
GOTO 40
20 Y = HALF * Z * Z
IF (Z .GT. CON) GOTO 30
C
ALNORM = HALF - Z * (A1- A2 * Y / (Y + A3- A4 / (Y + A5 + A6 /
$ (Y + A7))))
GOTO 40
C
30 ALNORM = B1* ZEXP(-Y)/(Z - B2 + B3/ (Z +B4 +B5/(Z -B6 +B7/
$ (Z +B8 -B9/ (Z +B10 +B11/ (Z + B12))))))
C
40 IF (.NOT. UP) ALNORM = ONE - ALNORM
RETURN
END
REAL FUNCTION PPND(P, IFAULT)
C
C ALGORITHM AS 111 APPL. STATIST. (1977), VOL.26, NO.1
C
C PRODUCES NORMAL DEVIATE CORRESPONDING TO LOWER TAIL AREA OF P
C REAL VERSION FOR EPS = 2 **(-31)
C THE HASH SUMS ARE THE SUMS OF THE MODULI OF THE COEFFICIENTS
C THEY HAVE NO INHERENT MEANINGS BUT ARE INCLUDED FOR USE IN
C CHECKING TRANSCRIPTIONS
C STANDARD FUNCTIONS ABS, ALOG AND SQRT ARE USED
C
C NOTE: WE COULD USE DATAPLOT NORPPF, BUT VARIOUS APPLIED
C STATISTICS ALGORITHMS USE THIS. SO WE PROVIDE IT TO
C MAKE USE OF APPLIED STATISTICS ALGORITHMS EASIER.
C
REAL ZERO, SPLIT, HALF, ONE
REAL A0, A1, A2, A3, B1, B2, B3, B4, C0, C1, C2, C3, D1, D2
REAL P, Q, R
INTEGER IFAULT
DATA ZERO /0.0E0/, HALF/0.5E0/, ONE/1.0E0/
DATA SPLIT /0.42E0/
DATA A0 / 2.50662823884E0/
DATA A1 / -18.61500062529E0/
DATA A2 / 41.39119773534E0/
DATA A3 / -25.44106049637E0/
DATA B1 / -8.47351093090E0/
DATA B2 / 23.08336743743E0/
DATA B3 / -21.06224101826E0/
DATA B4 / 3.13082909833E0/
DATA C0 / -2.78718931138E0/
DATA C1 / -2.29796479134E0/
DATA C2 / 4.85014127135E0/
DATA C3 / 2.32121276858E0/
DATA D1 / 3.54388924762E0/
DATA D2 / 1.63706781897E0/
C
IFAULT = 0
Q = P - HALF
IF (ABS(Q) .GT. SPLIT) GOTO 1
R = Q*Q
PPND = Q * (((A3*R + A2)*R + A1) * R + A0) /
* ((((B4*R + B3)*R + B2) * R + B1) * R + ONE)
RETURN
1 R = P
IF (Q .GT. ZERO)R = ONE - P
IF (R .LE. ZERO) GOTO 2
R = SQRT(-ALOG(R))
PPND = (((C3 * R + C2) * R + C1) * R + C0)/
* ((D2*R + D1) * R + ONE)
IF (Q .LT. ZERO) PPND = -PPND
RETURN
2 IFAULT = 1
PPND = ZERO
RETURN
END
REAL FUNCTION POLY(C, NORD, X)
C
C
C ALGORITHM AS 181.2 APPL. STATIST. (1982) VOL. 31, NO. 2
C
C CALCULATES THE ALGEBRAIC POLYNOMIAL OF ORDER NORED-1 WITH
C ARRAY OF COEFFICIENTS C. ZERO ORDER COEFFICIENT IS C(1)
C
REAL C(NORD)
POLY = C(1)
IF(NORD.EQ.1) RETURN
P = X*C(NORD)
IF(NORD.EQ.2) GOTO 20
N2 = NORD-2
J = N2+1
DO 10 I = 1,N2
P = (P+C(J))*X
J = J-1
10 CONTINUE
20 POLY = POLY+P
RETURN
END
|