File: stats.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (5395 lines) | stat: -rw-r--r-- 179,053 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
# Copyright (c) Gary Strangman.  All rights reserved
#
# Disclaimer
#
# This software is provided "as-is".  There are no expressed or implied
# warranties of any kind, including, but not limited to, the warranties
# of merchantability and fitness for a given application.  In no event
# shall Gary Strangman be liable for any direct, indirect, incidental,
# special, exemplary or consequential damages (including, but not limited
# to, loss of use, data or profits, or business interruption) however
# caused and on any theory of liability, whether in contract, strict
# liability or tort (including negligence or otherwise) arising in any way
# out of the use of this software, even if advised of the possibility of
# such damage.
#

#
# Heavily adapted for use by SciPy 2002 by Travis Oliphant
"""
A collection of basic statistical functions for python.  The function
names appear below.

 Some scalar functions defined here are also available in the scipy.special
 package where they work on arbitrary sized arrays.

Disclaimers:  The function list is obviously incomplete and, worse, the
functions are not optimized.  All functions have been tested (some more
so than others), but they are far from bulletproof.  Thus, as with any
free software, no warranty or guarantee is expressed or implied. :-)  A
few extra functions that don't appear in the list below can be found by
interested treasure-hunters.  These functions don't necessarily have
both list and array versions but were deemed useful.

Central Tendency
----------------
.. autosummary::
   :toctree: generated/

    gmean
    hmean
    mode

Moments
-------
.. autosummary::
   :toctree: generated/

    moment
    variation
    skew
    kurtosis
    normaltest

Altered Versions
----------------
.. autosummary::
   :toctree: generated/

    tmean
    tvar
    tstd
    tsem
    describe

Frequency Stats
---------------
.. autosummary::
   :toctree: generated/

    itemfreq
    scoreatpercentile
    percentileofscore
    histogram
    cumfreq
    relfreq

Variability
-----------
.. autosummary::
   :toctree: generated/

    obrientransform
    signaltonoise
    sem
    zmap
    zscore
    iqr

Trimming Functions
------------------
.. autosummary::
   :toctree: generated/

   threshold
   trimboth
   trim1

Correlation Functions
---------------------
.. autosummary::
   :toctree: generated/

   pearsonr
   fisher_exact
   spearmanr
   pointbiserialr
   kendalltau
   linregress
   theilslopes

Inferential Stats
-----------------
.. autosummary::
   :toctree: generated/

   ttest_1samp
   ttest_ind
   ttest_ind_from_stats
   ttest_rel
   chisquare
   power_divergence
   ks_2samp
   mannwhitneyu
   ranksums
   wilcoxon
   kruskal
   friedmanchisquare
   combine_pvalues

Probability Calculations
------------------------
.. autosummary::
   :toctree: generated/

   chisqprob
   betai

ANOVA Functions
---------------
.. autosummary::
   :toctree: generated/

   f_oneway
   f_value

Support Functions
-----------------
.. autosummary::
   :toctree: generated/

   ss
   square_of_sums
   rankdata

References
----------
.. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
   Probability and Statistics Tables and Formulae. Chapman & Hall: New
   York. 2000.

"""

from __future__ import division, print_function, absolute_import

import warnings
import math
from collections import namedtuple

# Scipy imports.
from scipy._lib.six import callable, string_types, xrange
from scipy._lib._version import NumpyVersion
from numpy import array, asarray, ma, zeros
import scipy.special as special
import scipy.linalg as linalg
import numpy as np
from . import distributions
from . import mstats_basic
from ._distn_infrastructure import _lazywhere
from ._stats_mstats_common import _find_repeats, linregress, theilslopes
from ._stats import _kendall_condis

__all__ = ['find_repeats', 'gmean', 'hmean', 'mode', 'tmean', 'tvar',
           'tmin', 'tmax', 'tstd', 'tsem', 'moment', 'variation',
           'skew', 'kurtosis', 'describe', 'skewtest', 'kurtosistest',
           'normaltest', 'jarque_bera', 'itemfreq',
           'scoreatpercentile', 'percentileofscore', 'histogram',
           'histogram2', 'cumfreq', 'relfreq', 'obrientransform',
           'signaltonoise', 'sem', 'zmap', 'zscore', 'iqr', 'threshold',
           'sigmaclip', 'trimboth', 'trim1', 'trim_mean', 'f_oneway',
           'pearsonr', 'fisher_exact', 'spearmanr', 'pointbiserialr',
           'kendalltau', 'linregress', 'theilslopes', 'ttest_1samp',
           'ttest_ind', 'ttest_ind_from_stats', 'ttest_rel', 'kstest',
           'chisquare', 'power_divergence', 'ks_2samp', 'mannwhitneyu',
           'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare',
           'chisqprob', 'betai',
           'f_value_wilks_lambda', 'f_value', 'f_value_multivariate',
           'ss', 'square_of_sums', 'fastsort', 'rankdata',
           'combine_pvalues', ]


def _chk_asarray(a, axis):
    if axis is None:
        a = np.ravel(a)
        outaxis = 0
    else:
        a = np.asarray(a)
        outaxis = axis

    if a.ndim == 0:
        a = np.atleast_1d(a)

    return a, outaxis


def _chk2_asarray(a, b, axis):
    if axis is None:
        a = np.ravel(a)
        b = np.ravel(b)
        outaxis = 0
    else:
        a = np.asarray(a)
        b = np.asarray(b)
        outaxis = axis

    if a.ndim == 0:
        a = np.atleast_1d(a)
    if b.ndim == 0:
        b = np.atleast_1d(b)

    return a, b, outaxis


def _contains_nan(a, nan_policy='propagate'):
    policies = ['propagate', 'raise', 'omit']
    if nan_policy not in policies:
        raise ValueError("nan_policy must be one of {%s}" %
                         ', '.join("'%s'" % s for s in policies))
    try:
        # Calling np.sum to avoid creating a huge array into memory
        # e.g. np.isnan(a).any()
        with np.errstate(invalid='ignore'):
            contains_nan = np.isnan(np.sum(a))
    except TypeError:
        # If the check cannot be properly performed we fallback to omiting
        # nan values and raising a warning. This can happen when attempting to
        # sum things that are not numbers (e.g. as in the function `mode`).
        contains_nan = False
        nan_policy = 'omit'
        warnings.warn("The input array could not be properly checked for nan "
                      "values. nan values will be ignored.", RuntimeWarning)

    if contains_nan and nan_policy == 'raise':
        raise ValueError("The input contains nan values")

    return (contains_nan, nan_policy)


#####################################
#         CENTRAL TENDENCY          #
#####################################


def gmean(a, axis=0, dtype=None):
    """
    Compute the geometric mean along the specified axis.

    Returns the geometric average of the array elements.
    That is:  n-th root of (x1 * x2 * ... * xn)

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    axis : int or None, optional
        Axis along which the geometric mean is computed. Default is 0.
        If None, compute over the whole array `a`.
    dtype : dtype, optional
        Type of the returned array and of the accumulator in which the
        elements are summed. If dtype is not specified, it defaults to the
        dtype of a, unless a has an integer dtype with a precision less than
        that of the default platform integer. In that case, the default
        platform integer is used.

    Returns
    -------
    gmean : ndarray
        see dtype parameter above

    See Also
    --------
    numpy.mean : Arithmetic average
    numpy.average : Weighted average
    hmean : Harmonic mean

    Notes
    -----
    The geometric average is computed over a single dimension of the input
    array, axis=0 by default, or all values in the array if axis=None.
    float64 intermediate and return values are used for integer inputs.

    Use masked arrays to ignore any non-finite values in the input or that
    arise in the calculations such as Not a Number and infinity because masked
    arrays automatically mask any non-finite values.

    """
    if not isinstance(a, np.ndarray):  # if not an ndarray object attempt to convert it
        log_a = np.log(np.array(a, dtype=dtype))
    elif dtype:  # Must change the default dtype allowing array type
        if isinstance(a, np.ma.MaskedArray):
            log_a = np.log(np.ma.asarray(a, dtype=dtype))
        else:
            log_a = np.log(np.asarray(a, dtype=dtype))
    else:
        log_a = np.log(a)
    return np.exp(log_a.mean(axis=axis))


def hmean(a, axis=0, dtype=None):
    """
    Calculates the harmonic mean along the specified axis.

    That is:  n / (1/x1 + 1/x2 + ... + 1/xn)

    Parameters
    ----------
    a : array_like
        Input array, masked array or object that can be converted to an array.
    axis : int or None, optional
        Axis along which the harmonic mean is computed. Default is 0.
        If None, compute over the whole array `a`.
    dtype : dtype, optional
        Type of the returned array and of the accumulator in which the
        elements are summed. If `dtype` is not specified, it defaults to the
        dtype of `a`, unless `a` has an integer `dtype` with a precision less
        than that of the default platform integer. In that case, the default
        platform integer is used.

    Returns
    -------
    hmean : ndarray
        see `dtype` parameter above

    See Also
    --------
    numpy.mean : Arithmetic average
    numpy.average : Weighted average
    gmean : Geometric mean

    Notes
    -----
    The harmonic mean is computed over a single dimension of the input
    array, axis=0 by default, or all values in the array if axis=None.
    float64 intermediate and return values are used for integer inputs.

    Use masked arrays to ignore any non-finite values in the input or that
    arise in the calculations such as Not a Number and infinity.

    """
    if not isinstance(a, np.ndarray):
        a = np.array(a, dtype=dtype)
    if np.all(a > 0):  # Harmonic mean only defined if greater than zero
        if isinstance(a, np.ma.MaskedArray):
            size = a.count(axis)
        else:
            if axis is None:
                a = a.ravel()
                size = a.shape[0]
            else:
                size = a.shape[axis]
        return size / np.sum(1.0/a, axis=axis, dtype=dtype)
    else:
        raise ValueError("Harmonic mean only defined if all elements greater than zero")

ModeResult = namedtuple('ModeResult', ('mode', 'count'))


def mode(a, axis=0, nan_policy='propagate'):
    """
    Returns an array of the modal (most common) value in the passed array.

    If there is more than one such value, only the first is returned.
    The bin-count for the modal bins is also returned.

    Parameters
    ----------
    a : array_like
        n-dimensional array of which to find mode(s).
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over
        the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    mode : ndarray
        Array of modal values.
    count : ndarray
        Array of counts for each mode.

    Examples
    --------
    >>> a = np.array([[6, 8, 3, 0],
    ...               [3, 2, 1, 7],
    ...               [8, 1, 8, 4],
    ...               [5, 3, 0, 5],
    ...               [4, 7, 5, 9]])
    >>> from scipy import stats
    >>> stats.mode(a)
    (array([[3, 1, 0, 0]]), array([[1, 1, 1, 1]]))

    To get mode of whole array, specify ``axis=None``:

    >>> stats.mode(a, axis=None)
    (array([3]), array([3]))

    """
    a, axis = _chk_asarray(a, axis)
    if a.size == 0:
        return np.array([]), np.array([])

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.mode(a, axis)

    scores = np.unique(np.ravel(a))       # get ALL unique values
    testshape = list(a.shape)
    testshape[axis] = 1
    oldmostfreq = np.zeros(testshape, dtype=a.dtype)
    oldcounts = np.zeros(testshape, dtype=int)
    for score in scores:
        template = (a == score)
        counts = np.expand_dims(np.sum(template, axis), axis)
        mostfrequent = np.where(counts > oldcounts, score, oldmostfreq)
        oldcounts = np.maximum(counts, oldcounts)
        oldmostfreq = mostfrequent

    return ModeResult(mostfrequent, oldcounts)


def _mask_to_limits(a, limits, inclusive):
    """Mask an array for values outside of given limits.

    This is primarily a utility function.

    Parameters
    ----------
    a : array
    limits : (float or None, float or None)
        A tuple consisting of the (lower limit, upper limit).  Values in the
        input array less than the lower limit or greater than the upper limit
        will be masked out. None implies no limit.
    inclusive : (bool, bool)
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to lower or upper are allowed.

    Returns
    -------
    A MaskedArray.

    Raises
    ------
    A ValueError if there are no values within the given limits.
    """
    lower_limit, upper_limit = limits
    lower_include, upper_include = inclusive
    am = ma.MaskedArray(a)
    if lower_limit is not None:
        if lower_include:
            am = ma.masked_less(am, lower_limit)
        else:
            am = ma.masked_less_equal(am, lower_limit)

    if upper_limit is not None:
        if upper_include:
            am = ma.masked_greater(am, upper_limit)
        else:
            am = ma.masked_greater_equal(am, upper_limit)

    if am.count() == 0:
        raise ValueError("No array values within given limits")

    return am


def tmean(a, limits=None, inclusive=(True, True), axis=None):
    """
    Compute the trimmed mean.

    This function finds the arithmetic mean of given values, ignoring values
    outside the given `limits`.

    Parameters
    ----------
    a : array_like
        Array of values.
    limits : None or (lower limit, upper limit), optional
        Values in the input array less than the lower limit or greater than the
        upper limit will be ignored.  When limits is None (default), then all
        values are used.  Either of the limit values in the tuple can also be
        None representing a half-open interval.
    inclusive : (bool, bool), optional
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to the lower or upper limits
        are included.  The default value is (True, True).
    axis : int or None, optional
        Axis along which to compute test. Default is None.

    Returns
    -------
    tmean : float

    See also
    --------
    trim_mean : returns mean after trimming a proportion from both tails.

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.tmean(x)
    9.5
    >>> stats.tmean(x, (3,17))
    10.0

    """
    a = asarray(a)
    if limits is None:
        return np.mean(a, None)

    am = _mask_to_limits(a.ravel(), limits, inclusive)
    return am.mean(axis=axis)


def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
    """
    Compute the trimmed variance

    This function computes the sample variance of an array of values,
    while ignoring values which are outside of given `limits`.

    Parameters
    ----------
    a : array_like
        Array of values.
    limits : None or (lower limit, upper limit), optional
        Values in the input array less than the lower limit or greater than the
        upper limit will be ignored. When limits is None, then all values are
        used. Either of the limit values in the tuple can also be None
        representing a half-open interval.  The default value is None.
    inclusive : (bool, bool), optional
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to the lower or upper limits
        are included.  The default value is (True, True).
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over the
        whole array `a`.
    ddof : int, optional
        Delta degrees of freedom.  Default is 1.

    Returns
    -------
    tvar : float
        Trimmed variance.

    Notes
    -----
    `tvar` computes the unbiased sample variance, i.e. it uses a correction
    factor ``n / (n - 1)``.

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.tvar(x)
    35.0
    >>> stats.tvar(x, (3,17))
    20.0

    """
    a = asarray(a)
    a = a.astype(float).ravel()
    if limits is None:
        n = len(a)
        return a.var() * n/(n-1.)
    am = _mask_to_limits(a, limits, inclusive)
    return np.ma.var(am, ddof=ddof, axis=axis)


def tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy='propagate'):
    """
    Compute the trimmed minimum

    This function finds the miminum value of an array `a` along the
    specified axis, but only considering values greater than a specified
    lower limit.

    Parameters
    ----------
    a : array_like
        array of values
    lowerlimit : None or float, optional
        Values in the input array less than the given limit will be ignored.
        When lowerlimit is None, then all values are used. The default value
        is None.
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over the
        whole array `a`.
    inclusive : {True, False}, optional
        This flag determines whether values exactly equal to the lower limit
        are included.  The default value is True.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    tmin : float, int or ndarray

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.tmin(x)
    0

    >>> stats.tmin(x, 13)
    13

    >>> stats.tmin(x, 13, inclusive=False)
    14

    """
    a, axis = _chk_asarray(a, axis)
    am = _mask_to_limits(a, (lowerlimit, None), (inclusive, False))

    contains_nan, nan_policy = _contains_nan(am, nan_policy)

    if contains_nan and nan_policy == 'omit':
        am = ma.masked_invalid(am)

    res = ma.minimum.reduce(am, axis).data
    if res.ndim == 0:
        return res[()]
    return res


def tmax(a, upperlimit=None, axis=0, inclusive=True, nan_policy='propagate'):
    """
    Compute the trimmed maximum

    This function computes the maximum value of an array along a given axis,
    while ignoring values larger than a specified upper limit.

    Parameters
    ----------
    a : array_like
        array of values
    upperlimit : None or float, optional
        Values in the input array greater than the given limit will be ignored.
        When upperlimit is None, then all values are used. The default value
        is None.
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over the
        whole array `a`.
    inclusive : {True, False}, optional
        This flag determines whether values exactly equal to the upper limit
        are included.  The default value is True.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    tmax : float, int or ndarray

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.tmax(x)
    19

    >>> stats.tmax(x, 13)
    13

    >>> stats.tmax(x, 13, inclusive=False)
    12

    """
    a, axis = _chk_asarray(a, axis)
    am = _mask_to_limits(a, (None, upperlimit), (False, inclusive))

    contains_nan, nan_policy = _contains_nan(am, nan_policy)

    if contains_nan and nan_policy == 'omit':
        am = ma.masked_invalid(am)

    res = ma.maximum.reduce(am, axis).data
    if res.ndim == 0:
        return res[()]
    return res


def tstd(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
    """
    Compute the trimmed sample standard deviation

    This function finds the sample standard deviation of given values,
    ignoring values outside the given `limits`.

    Parameters
    ----------
    a : array_like
        array of values
    limits : None or (lower limit, upper limit), optional
        Values in the input array less than the lower limit or greater than the
        upper limit will be ignored. When limits is None, then all values are
        used. Either of the limit values in the tuple can also be None
        representing a half-open interval.  The default value is None.
    inclusive : (bool, bool), optional
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to the lower or upper limits
        are included.  The default value is (True, True).
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over the
        whole array `a`.
    ddof : int, optional
        Delta degrees of freedom.  Default is 1.

    Returns
    -------
    tstd : float

    Notes
    -----
    `tstd` computes the unbiased sample standard deviation, i.e. it uses a
    correction factor ``n / (n - 1)``.

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.tstd(x)
    5.9160797830996161
    >>> stats.tstd(x, (3,17))
    4.4721359549995796

    """
    return np.sqrt(tvar(a, limits, inclusive, axis, ddof))


def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
    """
    Compute the trimmed standard error of the mean.

    This function finds the standard error of the mean for given
    values, ignoring values outside the given `limits`.

    Parameters
    ----------
    a : array_like
        array of values
    limits : None or (lower limit, upper limit), optional
        Values in the input array less than the lower limit or greater than the
        upper limit will be ignored. When limits is None, then all values are
        used. Either of the limit values in the tuple can also be None
        representing a half-open interval.  The default value is None.
    inclusive : (bool, bool), optional
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to the lower or upper limits
        are included.  The default value is (True, True).
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over the
        whole array `a`.
    ddof : int, optional
        Delta degrees of freedom.  Default is 1.

    Returns
    -------
    tsem : float

    Notes
    -----
    `tsem` uses unbiased sample standard deviation, i.e. it uses a
    correction factor ``n / (n - 1)``.

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.tsem(x)
    1.3228756555322954
    >>> stats.tsem(x, (3,17))
    1.1547005383792515

    """
    a = np.asarray(a).ravel()
    if limits is None:
        return a.std(ddof=ddof) / np.sqrt(a.size)

    am = _mask_to_limits(a, limits, inclusive)
    sd = np.sqrt(np.ma.var(am, ddof=ddof, axis=axis))
    return sd / np.sqrt(am.count())


#####################################
#              MOMENTS              #
#####################################

def moment(a, moment=1, axis=0, nan_policy='propagate'):
    r"""
    Calculates the nth moment about the mean for a sample.

    A moment is a specific quantitative measure of the shape of a set of points.
    It is often used to calculate coefficients of skewness and kurtosis due
    to its close relationship with them.


    Parameters
    ----------
    a : array_like
       data
    moment : int or array_like of ints, optional
       order of central moment that is returned. Default is 1.
    axis : int or None, optional
       Axis along which the central moment is computed. Default is 0.
       If None, compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    n-th central moment : ndarray or float
       The appropriate moment along the given axis or over all values if axis
       is None. The denominator for the moment calculation is the number of
       observations, no degrees of freedom correction is done.

    See also
    --------
    kurtosis, skew, describe

    Notes
    -----
    The k-th central moment of a data sample is:

    .. math::

        m_k = \frac{1}{n} \sum_{i = 1}^n (x_i - \bar{x})^k

    Where n is the number of samples and x-bar is the mean. This function uses
    exponentiation by squares [1]_ for efficiency.

    References
    ----------
    .. [1] http://eli.thegreenplace.net/2009/03/21/efficient-integer-exponentiation-algorithms
    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.moment(a, moment, axis)

    if a.size == 0:
        # empty array, return nan(s) with shape matching `moment`
        if np.isscalar(moment):
            return np.nan
        else:
            return np.ones(np.asarray(moment).shape, dtype=np.float64) * np.nan

    # for array_like moment input, return a value for each.
    if not np.isscalar(moment):
        mmnt = [_moment(a, i, axis) for i in moment]
        return np.array(mmnt)
    else:
        return _moment(a, moment, axis)

def _moment(a, moment, axis):
    if np.abs(moment - np.round(moment)) > 0:
        raise ValueError("All moment parameters must be integers")

    if moment == 0:
        # When moment equals 0, the result is 1, by definition.
        shape = list(a.shape)
        del shape[axis]
        if shape:
            # return an actual array of the appropriate shape
            return np.ones(shape, dtype=float)
        else:
            # the input was 1D, so return a scalar instead of a rank-0 array
            return 1.0

    elif moment == 1:
        # By definition the first moment about the mean is 0.
        shape = list(a.shape)
        del shape[axis]
        if shape:
            # return an actual array of the appropriate shape
            return np.zeros(shape, dtype=float)
        else:
            # the input was 1D, so return a scalar instead of a rank-0 array
            return np.float64(0.0)
    else:
        # Exponentiation by squares: form exponent sequence
        n_list = [moment]
        current_n = moment
        while current_n > 2:
            if current_n % 2:
                current_n = (current_n-1)/2
            else:
                current_n /= 2
            n_list.append(current_n)

        # Starting point for exponentiation by squares
        a_zero_mean = a - np.expand_dims(np.mean(a, axis), axis)
        if n_list[-1] == 1:
            s = a_zero_mean.copy()
        else:
            s = a_zero_mean**2

        # Perform multiplications
        for n in n_list[-2::-1]:
            s = s**2
            if n % 2:
                s *= a_zero_mean
        return np.mean(s, axis)


def variation(a, axis=0, nan_policy='propagate'):
    """
    Computes the coefficient of variation, the ratio of the biased standard
    deviation to the mean.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int or None, optional
        Axis along which to calculate the coefficient of variation. Default
        is 0. If None, compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    variation : ndarray
        The calculated variation along the requested axis.

    References
    ----------
    .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
       Probability and Statistics Tables and Formulae. Chapman & Hall: New
       York. 2000.

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.variation(a, axis)

    return a.std(axis) / a.mean(axis)


def skew(a, axis=0, bias=True, nan_policy='propagate'):
    """
    Computes the skewness of a data set.

    For normally distributed data, the skewness should be about 0. A skewness
    value > 0 means that there is more weight in the left tail of the
    distribution. The function `skewtest` can be used to determine if the
    skewness value is close enough to 0, statistically speaking.

    Parameters
    ----------
    a : ndarray
        data
    axis : int or None, optional
        Axis along which skewness is calculated. Default is 0.
        If None, compute over the whole array `a`.
    bias : bool, optional
        If False, then the calculations are corrected for statistical bias.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    skewness : ndarray
        The skewness of values along an axis, returning 0 where all values are
        equal.

    References
    ----------

    .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
       Probability and Statistics Tables and Formulae. Chapman & Hall: New
       York. 2000.
       Section 2.2.24.1

    """
    a, axis = _chk_asarray(a, axis)
    n = a.shape[axis]

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.skew(a, axis, bias)

    m2 = moment(a, 2, axis)
    m3 = moment(a, 3, axis)
    zero = (m2 == 0)
    vals = _lazywhere(~zero, (m2, m3),
                             lambda m2, m3: m3 / m2**1.5,
                             0.)
    if not bias:
        can_correct = (n > 2) & (m2 > 0)
        if can_correct.any():
            m2 = np.extract(can_correct, m2)
            m3 = np.extract(can_correct, m3)
            nval = np.sqrt((n-1.0)*n) / (n-2.0) * m3/m2**1.5
            np.place(vals, can_correct, nval)

    if vals.ndim == 0:
        return vals.item()

    return vals


def kurtosis(a, axis=0, fisher=True, bias=True, nan_policy='propagate'):
    """
    Computes the kurtosis (Fisher or Pearson) of a dataset.

    Kurtosis is the fourth central moment divided by the square of the
    variance. If Fisher's definition is used, then 3.0 is subtracted from
    the result to give 0.0 for a normal distribution.

    If bias is False then the kurtosis is calculated using k statistics to
    eliminate bias coming from biased moment estimators

    Use `kurtosistest` to see if result is close enough to normal.

    Parameters
    ----------
    a : array
        data for which the kurtosis is calculated
    axis : int or None, optional
        Axis along which the kurtosis is calculated. Default is 0.
        If None, compute over the whole array `a`.
    fisher : bool, optional
        If True, Fisher's definition is used (normal ==> 0.0). If False,
        Pearson's definition is used (normal ==> 3.0).
    bias : bool, optional
        If False, then the calculations are corrected for statistical bias.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    kurtosis : array
        The kurtosis of values along an axis. If all values are equal,
        return -3 for Fisher's definition and 0 for Pearson's definition.

    References
    ----------
    .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
       Probability and Statistics Tables and Formulae. Chapman & Hall: New
       York. 2000.

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.kurtosis(a, axis, fisher, bias)

    n = a.shape[axis]
    m2 = moment(a, 2, axis)
    m4 = moment(a, 4, axis)
    zero = (m2 == 0)
    olderr = np.seterr(all='ignore')
    try:
        vals = np.where(zero, 0, m4 / m2**2.0)
    finally:
        np.seterr(**olderr)

    if not bias:
        can_correct = (n > 3) & (m2 > 0)
        if can_correct.any():
            m2 = np.extract(can_correct, m2)
            m4 = np.extract(can_correct, m4)
            nval = 1.0/(n-2)/(n-3) * ((n**2-1.0)*m4/m2**2.0 - 3*(n-1)**2.0)
            np.place(vals, can_correct, nval + 3.0)

    if vals.ndim == 0:
        vals = vals.item()  # array scalar

    if fisher:
        return vals - 3
    else:
        return vals

DescribeResult = namedtuple('DescribeResult',
                            ('nobs', 'minmax', 'mean', 'variance', 'skewness',
                             'kurtosis'))


def describe(a, axis=0, ddof=1, bias=True, nan_policy='propagate'):
    """
    Computes several descriptive statistics of the passed array.

    Parameters
    ----------
    a : array_like
       Input data.
    axis : int or None, optional
       Axis along which statistics are calculated. Default is 0.
       If None, compute over the whole array `a`.
    ddof : int, optional
        Delta degrees of freedom (only for variance).  Default is 1.
    bias : bool, optional
        If False, then the skewness and kurtosis calculations are corrected for
        statistical bias.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    nobs : int
       Number of observations (length of data along `axis`).
    minmax: tuple of ndarrays or floats
       Minimum and maximum value of data array.
    mean : ndarray or float
       Arithmetic mean of data along axis.
    variance : ndarray or float
       Unbiased variance of the data along axis, denominator is number of
       observations minus one.
    skewness : ndarray or float
       Skewness, based on moment calculations with denominator equal to
       the number of observations, i.e. no degrees of freedom correction.
    kurtosis : ndarray or float
       Kurtosis (Fisher).  The kurtosis is normalized so that it is
       zero for the normal distribution.  No degrees of freedom are used.

    See Also
    --------
    skew, kurtosis

    Examples
    --------
    >>> from scipy import stats
    >>> a = np.arange(10)
    >>> stats.describe(a)
    DescribeResult(nobs=10, minmax=(0, 9), mean=4.5, variance=9.1666666666666661,
                   skewness=0.0, kurtosis=-1.2242424242424244)
    >>> b = [[1, 2], [3, 4]]
    >>> stats.describe(b)
    DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])),
                   mean=array([ 2., 3.]), variance=array([ 2., 2.]),
                   skewness=array([ 0., 0.]), kurtosis=array([-2., -2.]))

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.describe(a, axis, ddof, bias)

    if a.size == 0:
        raise ValueError("The input must not be empty.")
    n = a.shape[axis]
    mm = (np.min(a, axis=axis), np.max(a, axis=axis))
    m = np.mean(a, axis=axis)
    v = np.var(a, axis=axis, ddof=ddof)
    sk = skew(a, axis, bias=bias)
    kurt = kurtosis(a, axis, bias=bias)

    return DescribeResult(n, mm, m, v, sk, kurt)

#####################################
#         NORMALITY TESTS           #
#####################################

SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue'))


def skewtest(a, axis=0, nan_policy='propagate'):
    """
    Tests whether the skew is different from the normal distribution.

    This function tests the null hypothesis that the skewness of
    the population that the sample was drawn from is the same
    as that of a corresponding normal distribution.

    Parameters
    ----------
    a : array
        The data to be tested
    axis : int or None, optional
       Axis along which statistics are calculated. Default is 0.
       If None, compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    statistic : float
        The computed z-score for this test.
    pvalue : float
        a 2-sided p-value for the hypothesis test

    Notes
    -----
    The sample size must be at least 8.

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.skewtest(a, axis)

    if axis is None:
        a = np.ravel(a)
        axis = 0
    b2 = skew(a, axis)
    n = float(a.shape[axis])
    if n < 8:
        raise ValueError(
            "skewtest is not valid with less than 8 samples; %i samples"
            " were given." % int(n))
    y = b2 * math.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2)))
    beta2 = (3.0 * (n**2 + 27*n - 70) * (n+1) * (n+3) /
             ((n-2.0) * (n+5) * (n+7) * (n+9)))
    W2 = -1 + math.sqrt(2 * (beta2 - 1))
    delta = 1 / math.sqrt(0.5 * math.log(W2))
    alpha = math.sqrt(2.0 / (W2 - 1))
    y = np.where(y == 0, 1, y)
    Z = delta * np.log(y / alpha + np.sqrt((y / alpha)**2 + 1))

    return SkewtestResult(Z, 2 * distributions.norm.sf(np.abs(Z)))

KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue'))


def kurtosistest(a, axis=0, nan_policy='propagate'):
    """
    Tests whether a dataset has normal kurtosis

    This function tests the null hypothesis that the kurtosis
    of the population from which the sample was drawn is that
    of the normal distribution: ``kurtosis = 3(n-1)/(n+1)``.

    Parameters
    ----------
    a : array
        array of the sample data
    axis : int or None, optional
       Axis along which to compute test. Default is 0. If None,
       compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    statistic : float
        The computed z-score for this test.
    pvalue : float
        The 2-sided p-value for the hypothesis test

    Notes
    -----
    Valid only for n>20.  The Z-score is set to 0 for bad entries.
    This function uses the method described in [1]_.

    References
    ----------
    .. [1] see e.g. F. J. Anscombe, W. J. Glynn, "Distribution of the kurtosis
       statistic b2 for normal samples", Biometrika, vol. 70, pp. 227-234, 1983.

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.kurtosistest(a, axis)

    n = float(a.shape[axis])
    if n < 5:
        raise ValueError(
            "kurtosistest requires at least 5 observations; %i observations"
            " were given." % int(n))
    if n < 20:
        warnings.warn("kurtosistest only valid for n>=20 ... continuing "
                      "anyway, n=%i" % int(n))
    b2 = kurtosis(a, axis, fisher=False)

    E = 3.0*(n-1) / (n+1)
    varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5))  # [1]_ Eq. 1
    x = (b2-E) / np.sqrt(varb2)  # [1]_ Eq. 4
    # [1]_ Eq. 2:
    sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) /
                                                        (n*(n-2)*(n-3)))
    # [1]_ Eq. 3:
    A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
    term1 = 1 - 2/(9.0*A)
    denom = 1 + x*np.sqrt(2/(A-4.0))
    denom = np.where(denom < 0, 99, denom)
    term2 = np.where(denom < 0, term1, np.power((1-2.0/A)/denom, 1/3.0))
    Z = (term1 - term2) / np.sqrt(2/(9.0*A))  # [1]_ Eq. 5
    Z = np.where(denom == 99, 0, Z)
    if Z.ndim == 0:
        Z = Z[()]

    # zprob uses upper tail, so Z needs to be positive
    return KurtosistestResult(Z, 2 * distributions.norm.sf(np.abs(Z)))

NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue'))

def normaltest(a, axis=0, nan_policy='propagate'):
    """
    Tests whether a sample differs from a normal distribution.

    This function tests the null hypothesis that a sample comes
    from a normal distribution.  It is based on D'Agostino and
    Pearson's [1]_, [2]_ test that combines skew and kurtosis to
    produce an omnibus test of normality.


    Parameters
    ----------
    a : array_like
        The array containing the data to be tested.
    axis : int or None, optional
        Axis along which to compute test. Default is 0. If None,
        compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    statistic : float or array
        ``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and
        ``k`` is the z-score returned by `kurtosistest`.
    pvalue : float or array
       A 2-sided chi squared probability for the hypothesis test.

    References
    ----------
    .. [1] D'Agostino, R. B. (1971), "An omnibus test of normality for
           moderate and large sample size", Biometrika, 58, 341-348

    .. [2] D'Agostino, R. and Pearson, E. S. (1973), "Tests for departure from
           normality", Biometrika, 60, 613-622

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.normaltest(a, axis)

    s, _ = skewtest(a, axis)
    k, _ = kurtosistest(a, axis)
    k2 = s*s + k*k

    return NormaltestResult(k2, distributions.chi2.sf(k2, 2))


def jarque_bera(x):
    """
    Perform the Jarque-Bera goodness of fit test on sample data.

    The Jarque-Bera test tests whether the sample data has the skewness and
    kurtosis matching a normal distribution.

    Note that this test only works for a large enough number of data samples
    (>2000) as the test statistic asymptotically has a Chi-squared distribution
    with 2 degrees of freedom.

    Parameters
    ----------
    x : array_like
        Observations of a random variable.

    Returns
    -------
    jb_value : float
        The test statistic.
    p : float
        The p-value for the hypothesis test.

    References
    ----------
    .. [1] Jarque, C. and Bera, A. (1980) "Efficient tests for normality,
           homoscedasticity and serial independence of regression residuals",
           6 Econometric Letters 255-259.

    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(987654321)
    >>> x = np.random.normal(0, 1, 100000)
    >>> y = np.random.rayleigh(1, 100000)
    >>> stats.jarque_bera(x)
    (4.7165707989581342, 0.09458225503041906)
    >>> stats.jarque_bera(y)
    (6713.7098548143422, 0.0)

    """
    x = np.asarray(x)
    n = float(x.size)
    if n == 0:
        raise ValueError('At least one observation is required.')

    mu = x.mean()
    diffx = x - mu
    skewness = (1 / n * np.sum(diffx**3)) / (1 / n * np.sum(diffx**2))**(3 / 2.)
    kurtosis = (1 / n * np.sum(diffx**4)) / (1 / n * np.sum(diffx**2))**2
    jb_value = n / 6 * (skewness**2 + (kurtosis - 3)**2 / 4)
    p = 1 - distributions.chi2.cdf(jb_value, 2)

    return jb_value, p


#####################################
#        FREQUENCY FUNCTIONS        #
#####################################

def itemfreq(a):
    """
    Returns a 2-D array of item frequencies.

    Parameters
    ----------
    a : (N,) array_like
        Input array.

    Returns
    -------
    itemfreq : (K, 2) ndarray
        A 2-D frequency table.  Column 1 contains sorted, unique values from
        `a`, column 2 contains their respective counts.

    Examples
    --------
    >>> from scipy import stats
    >>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4])
    >>> stats.itemfreq(a)
    array([[ 0.,  2.],
           [ 1.,  4.],
           [ 2.,  2.],
           [ 4.,  1.],
           [ 5.,  1.]])
    >>> np.bincount(a)
    array([2, 4, 2, 0, 1, 1])

    >>> stats.itemfreq(a/10.)
    array([[ 0. ,  2. ],
           [ 0.1,  4. ],
           [ 0.2,  2. ],
           [ 0.4,  1. ],
           [ 0.5,  1. ]])

    """
    items, inv = np.unique(a, return_inverse=True)
    freq = np.bincount(inv)
    return np.array([items, freq]).T


def scoreatpercentile(a, per, limit=(), interpolation_method='fraction',
                      axis=None):
    """
    Calculate the score at a given percentile of the input sequence.

    For example, the score at `per=50` is the median. If the desired quantile
    lies between two data points, we interpolate between them, according to
    the value of `interpolation`. If the parameter `limit` is provided, it
    should be a tuple (lower, upper) of two values.

    Parameters
    ----------
    a : array_like
        A 1-D array of values from which to extract score.
    per : array_like
        Percentile(s) at which to extract score.  Values should be in range
        [0,100].
    limit : tuple, optional
        Tuple of two scalars, the lower and upper limits within which to
        compute the percentile. Values of `a` outside
        this (closed) interval will be ignored.
    interpolation_method : {'fraction', 'lower', 'higher'}, optional
        This optional parameter specifies the interpolation method to use,
        when the desired quantile lies between two data points `i` and `j`

          - fraction: ``i + (j - i) * fraction`` where ``fraction`` is the
            fractional part of the index surrounded by ``i`` and ``j``.
          - lower: ``i``.
          - higher: ``j``.

    axis : int, optional
        Axis along which the percentiles are computed. Default is None. If
        None, compute over the whole array `a`.

    Returns
    -------
    score : float or ndarray
        Score at percentile(s).

    See Also
    --------
    percentileofscore, numpy.percentile

    Notes
    -----
    This function will become obsolete in the future.
    For Numpy 1.9 and higher, `numpy.percentile` provides all the functionality
    that `scoreatpercentile` provides.  And it's significantly faster.
    Therefore it's recommended to use `numpy.percentile` for users that have
    numpy >= 1.9.

    Examples
    --------
    >>> from scipy import stats
    >>> a = np.arange(100)
    >>> stats.scoreatpercentile(a, 50)
    49.5

    """
    # adapted from NumPy's percentile function.  When we require numpy >= 1.8,
    # the implementation of this function can be replaced by np.percentile.
    a = np.asarray(a)
    if a.size == 0:
        # empty array, return nan(s) with shape matching `per`
        if np.isscalar(per):
            return np.nan
        else:
            return np.ones(np.asarray(per).shape, dtype=np.float64) * np.nan

    if limit:
        a = a[(limit[0] <= a) & (a <= limit[1])]

    sorted = np.sort(a, axis=axis)
    if axis is None:
        axis = 0

    return _compute_qth_percentile(sorted, per, interpolation_method, axis)


# handle sequence of per's without calling sort multiple times
def _compute_qth_percentile(sorted, per, interpolation_method, axis):
    if not np.isscalar(per):
        score = [_compute_qth_percentile(sorted, i, interpolation_method, axis)
                 for i in per]
        return np.array(score)

    if (per < 0) or (per > 100):
        raise ValueError("percentile must be in the range [0, 100]")

    indexer = [slice(None)] * sorted.ndim
    idx = per / 100. * (sorted.shape[axis] - 1)

    if int(idx) != idx:
        # round fractional indices according to interpolation method
        if interpolation_method == 'lower':
            idx = int(np.floor(idx))
        elif interpolation_method == 'higher':
            idx = int(np.ceil(idx))
        elif interpolation_method == 'fraction':
            pass  # keep idx as fraction and interpolate
        else:
            raise ValueError("interpolation_method can only be 'fraction', "
                             "'lower' or 'higher'")

    i = int(idx)
    if i == idx:
        indexer[axis] = slice(i, i + 1)
        weights = array(1)
        sumval = 1.0
    else:
        indexer[axis] = slice(i, i + 2)
        j = i + 1
        weights = array([(j - idx), (idx - i)], float)
        wshape = [1] * sorted.ndim
        wshape[axis] = 2
        weights.shape = wshape
        sumval = weights.sum()

    # Use np.add.reduce (== np.sum but a little faster) to coerce data type
    return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval


def percentileofscore(a, score, kind='rank'):
    """
    The percentile rank of a score relative to a list of scores.

    A `percentileofscore` of, for example, 80% means that 80% of the
    scores in `a` are below the given score. In the case of gaps or
    ties, the exact definition depends on the optional keyword, `kind`.

    Parameters
    ----------
    a : array_like
        Array of scores to which `score` is compared.
    score : int or float
        Score that is compared to the elements in `a`.
    kind : {'rank', 'weak', 'strict', 'mean'}, optional
        This optional parameter specifies the interpretation of the
        resulting score:

        - "rank": Average percentage ranking of score.  In case of
                  multiple matches, average the percentage rankings of
                  all matching scores.
        - "weak": This kind corresponds to the definition of a cumulative
                  distribution function.  A percentileofscore of 80%
                  means that 80% of values are less than or equal
                  to the provided score.
        - "strict": Similar to "weak", except that only values that are
                    strictly less than the given score are counted.
        - "mean": The average of the "weak" and "strict" scores, often used in
                  testing.  See

                  http://en.wikipedia.org/wiki/Percentile_rank

    Returns
    -------
    pcos : float
        Percentile-position of score (0-100) relative to `a`.

    See Also
    --------
    numpy.percentile

    Examples
    --------
    Three-quarters of the given values lie below a given score:

    >>> from scipy import stats
    >>> stats.percentileofscore([1, 2, 3, 4], 3)
    75.0

    With multiple matches, note how the scores of the two matches, 0.6
    and 0.8 respectively, are averaged:

    >>> stats.percentileofscore([1, 2, 3, 3, 4], 3)
    70.0

    Only 2/5 values are strictly less than 3:

    >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
    40.0

    But 4/5 values are less than or equal to 3:

    >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
    80.0

    The average between the weak and the strict scores is

    >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
    60.0

    """
    a = np.array(a)
    n = len(a)

    if kind == 'rank':
        if not np.any(a == score):
            a = np.append(a, score)
            a_len = np.array(list(range(len(a))))
        else:
            a_len = np.array(list(range(len(a)))) + 1.0

        a = np.sort(a)
        idx = [a == score]
        pct = (np.mean(a_len[idx]) / n) * 100.0
        return pct

    elif kind == 'strict':
        return np.sum(a < score) / float(n) * 100
    elif kind == 'weak':
        return np.sum(a <= score) / float(n) * 100
    elif kind == 'mean':
        return (np.sum(a < score) + np.sum(a <= score)) * 50 / float(n)
    else:
        raise ValueError("kind can only be 'rank', 'strict', 'weak' or 'mean'")


@np.deprecate(message=("scipy.stats.histogram2 is deprecated in scipy 0.16.0; "
                       "use np.histogram2d instead"))
def histogram2(a, bins):
    """
    Compute histogram using divisions in bins.

    Count the number of times values from array `a` fall into
    numerical ranges defined by `bins`.  Range x is given by
    bins[x] <= range_x < bins[x+1] where x =0,N and N is the
    length of the `bins` array.  The last range is given by
    bins[N] <= range_N < infinity.  Values less than bins[0] are
    not included in the histogram.

    Parameters
    ----------
    a : array_like of rank 1
        The array of values to be assigned into bins
    bins : array_like of rank 1
        Defines the ranges of values to use during histogramming.

    Returns
    -------
    histogram2 : ndarray of rank 1
        Each value represents the occurrences for a given bin (range) of
        values.

    """
    # comment: probably obsoleted by numpy.histogram()
    n = np.searchsorted(np.sort(a), bins)
    n = np.concatenate([n, [len(a)]])
    return n[1:] - n[:-1]

HistogramResult = namedtuple('HistogramResult',
                             ('count', 'lowerlimit', 'binsize', 'extrapoints'))


@np.deprecate(message=("scipy.stats.histogram is deprecated in scipy 0.17.0; "
                       "use np.histogram instead"))
def histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False):
    # _histogram is used in relfreq/cumfreq, so need to keep it
    res = _histogram(a, numbins=numbins, defaultlimits=defaultlimits,
                     weights=weights, printextras=printextras)
    return res


def _histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False):
    """
    Separates the range into several bins and returns the number of instances
    in each bin.

    Parameters
    ----------
    a : array_like
        Array of scores which will be put into bins.
    numbins : int, optional
        The number of bins to use for the histogram. Default is 10.
    defaultlimits : tuple (lower, upper), optional
        The lower and upper values for the range of the histogram.
        If no value is given, a range slightly larger than the range of the
        values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
        where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
    weights : array_like, optional
        The weights for each value in `a`. Default is None, which gives each
        value a weight of 1.0
    printextras : bool, optional
        If True, if there are extra points (i.e. the points that fall outside
        the bin limits) a warning is raised saying how many of those points
        there are.  Default is False.

    Returns
    -------
    count : ndarray
        Number of points (or sum of weights) in each bin.
    lowerlimit : float
        Lowest value of histogram, the lower limit of the first bin.
    binsize : float
        The size of the bins (all bins have the same size).
    extrapoints : int
        The number of points outside the range of the histogram.

    See Also
    --------
    numpy.histogram

    Notes
    -----
    This histogram is based on numpy's histogram but has a larger range by
    default if default limits is not set.

    """
    a = np.ravel(a)
    if defaultlimits is None:
        if a.size == 0:
            # handle empty arrays. Undetermined range, so use 0-1.
            defaultlimits = (0, 1)
        else:
            # no range given, so use values in `a`
            data_min = a.min()
            data_max = a.max()
            # Have bins extend past min and max values slightly
            s = (data_max - data_min) / (2. * (numbins - 1.))
            defaultlimits = (data_min - s, data_max + s)

    # use numpy's histogram method to compute bins
    hist, bin_edges = np.histogram(a, bins=numbins, range=defaultlimits,
                                   weights=weights)
    # hist are not always floats, convert to keep with old output
    hist = np.array(hist, dtype=float)
    # fixed width for bins is assumed, as numpy's histogram gives
    # fixed width bins for int values for 'bins'
    binsize = bin_edges[1] - bin_edges[0]
    # calculate number of extra points
    extrapoints = len([v for v in a
                       if defaultlimits[0] > v or v > defaultlimits[1]])
    if extrapoints > 0 and printextras:
        warnings.warn("Points outside given histogram range = %s"
                      % extrapoints)

    return HistogramResult(hist, defaultlimits[0], binsize, extrapoints)


CumfreqResult = namedtuple('CumfreqResult',
                           ('cumcount', 'lowerlimit', 'binsize',
                            'extrapoints'))


def cumfreq(a, numbins=10, defaultreallimits=None, weights=None):
    """
    Returns a cumulative frequency histogram, using the histogram function.

    A cumulative histogram is a mapping that counts the cumulative number of
    observations in all of the bins up to the specified bin.

    Parameters
    ----------
    a : array_like
        Input array.
    numbins : int, optional
        The number of bins to use for the histogram. Default is 10.
    defaultreallimits : tuple (lower, upper), optional
        The lower and upper values for the range of the histogram.
        If no value is given, a range slightly larger than the range of the
        values in `a` is used. Specifically ``(a.min() - s, a.max() + s)``,
        where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
    weights : array_like, optional
        The weights for each value in `a`. Default is None, which gives each
        value a weight of 1.0

    Returns
    -------
    cumcount : ndarray
        Binned values of cumulative frequency.
    lowerlimit : float
        Lower real limit
    binsize : float
        Width of each bin.
    extrapoints : int
        Extra points.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from scipy import stats
    >>> x = [1, 4, 2, 1, 3, 1]
    >>> res = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5))
    >>> res.cumcount
    array([ 1.,  2.,  3.,  3.])
    >>> res.extrapoints
    3

    Create a normal distribution with 1000 random values

    >>> rng = np.random.RandomState(seed=12345)
    >>> samples = stats.norm.rvs(size=1000, random_state=rng)

    Calculate cumulative frequencies

    >>> res = stats.cumfreq(samples, numbins=25)

    Calculate space of values for x

    >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.cumcount.size,
    ...                                  res.cumcount.size)

    Plot histogram and cumulative histogram

    >>> fig = plt.figure(figsize=(10, 4))
    >>> ax1 = fig.add_subplot(1, 2, 1)
    >>> ax2 = fig.add_subplot(1, 2, 2)
    >>> ax1.hist(samples, bins=25)
    >>> ax1.set_title('Histogram')
    >>> ax2.bar(x, res.cumcount, width=res.binsize)
    >>> ax2.set_title('Cumulative histogram')
    >>> ax2.set_xlim([x.min(), x.max()])

    >>> plt.show()

    """
    h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights)
    cumhist = np.cumsum(h * 1, axis=0)
    return CumfreqResult(cumhist, l, b, e)


RelfreqResult = namedtuple('RelfreqResult',
                           ('frequency', 'lowerlimit', 'binsize',
                            'extrapoints'))


def relfreq(a, numbins=10, defaultreallimits=None, weights=None):
    """
    Returns a relative frequency histogram, using the histogram function.

    A relative frequency  histogram is a mapping of the number of
    observations in each of the bins relative to the total of observations.

    Parameters
    ----------
    a : array_like
        Input array.
    numbins : int, optional
        The number of bins to use for the histogram. Default is 10.
    defaultreallimits : tuple (lower, upper), optional
        The lower and upper values for the range of the histogram.
        If no value is given, a range slightly larger than the range of the
        values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
        where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
    weights : array_like, optional
        The weights for each value in `a`. Default is None, which gives each
        value a weight of 1.0

    Returns
    -------
    frequency : ndarray
        Binned values of relative frequency.
    lowerlimit : float
        Lower real limit
    binsize : float
        Width of each bin.
    extrapoints : int
        Extra points.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from scipy import stats
    >>> a = np.array([2, 4, 1, 2, 3, 2])
    >>> res = stats.relfreq(a, numbins=4)
    >>> res.frequency
    array([ 0.16666667, 0.5       , 0.16666667,  0.16666667])
    >>> np.sum(res.frequency)  # relative frequencies should add up to 1
    1.0

    Create a normal distribution with 1000 random values

    >>> rng = np.random.RandomState(seed=12345)
    >>> samples = stats.norm.rvs(size=1000, random_state=rng)

    Calculate relative frequencies

    >>> res = stats.relfreq(samples, numbins=25)

    Calculate space of values for x

    >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.frequency.size,
    ...                                  res.frequency.size)

    Plot relative frequency histogram

    >>> fig = plt.figure(figsize=(5, 4))
    >>> ax = fig.add_subplot(1, 1, 1)
    >>> ax.bar(x, res.frequency, width=res.binsize)
    >>> ax.set_title('Relative frequency histogram')
    >>> ax.set_xlim([x.min(), x.max()])

    >>> plt.show()

    """
    a = np.asanyarray(a)
    h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights)
    h = h / float(a.shape[0])

    return RelfreqResult(h, l, b, e)


#####################################
#        VARIABILITY FUNCTIONS      #
#####################################

def obrientransform(*args):
    """
    Computes the O'Brien transform on input data (any number of arrays).

    Used to test for homogeneity of variance prior to running one-way stats.
    Each array in ``*args`` is one level of a factor.
    If `f_oneway` is run on the transformed data and found significant,
    the variances are unequal.  From Maxwell and Delaney [1]_, p.112.

    Parameters
    ----------
    args : tuple of array_like
        Any number of arrays.

    Returns
    -------
    obrientransform : ndarray
        Transformed data for use in an ANOVA.  The first dimension
        of the result corresponds to the sequence of transformed
        arrays.  If the arrays given are all 1-D of the same length,
        the return value is a 2-D array; otherwise it is a 1-D array
        of type object, with each element being an ndarray.

    References
    ----------
    .. [1] S. E. Maxwell and H. D. Delaney, "Designing Experiments and
           Analyzing Data: A Model Comparison Perspective", Wadsworth, 1990.

    Examples
    --------
    We'll test the following data sets for differences in their variance.

    >>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10]
    >>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15]

    Apply the O'Brien transform to the data.

    >>> from scipy.stats import obrientransform
    >>> tx, ty = obrientransform(x, y)

    Use `scipy.stats.f_oneway` to apply a one-way ANOVA test to the
    transformed data.

    >>> from scipy.stats import f_oneway
    >>> F, p = f_oneway(tx, ty)
    >>> p
    0.1314139477040335

    If we require that ``p < 0.05`` for significance, we cannot conclude
    that the variances are different.
    """
    TINY = np.sqrt(np.finfo(float).eps)

    # `arrays` will hold the transformed arguments.
    arrays = []

    for arg in args:
        a = np.asarray(arg)
        n = len(a)
        mu = np.mean(a)
        sq = (a - mu)**2
        sumsq = sq.sum()

        # The O'Brien transform.
        t = ((n - 1.5) * n * sq - 0.5 * sumsq) / ((n - 1) * (n - 2))

        # Check that the mean of the transformed data is equal to the
        # original variance.
        var = sumsq / (n - 1)
        if abs(var - np.mean(t)) > TINY:
            raise ValueError('Lack of convergence in obrientransform.')

        arrays.append(t)

    return np.array(arrays)


@np.deprecate(message="scipy.stats.signaltonoise is deprecated in scipy 0.16.0")
def signaltonoise(a, axis=0, ddof=0):
    """
    The signal-to-noise ratio of the input data.

    Returns the signal-to-noise ratio of `a`, here defined as the mean
    divided by the standard deviation.

    Parameters
    ----------
    a : array_like
        An array_like object containing the sample data.
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over
        the whole array `a`.
    ddof : int, optional
        Degrees of freedom correction for standard deviation. Default is 0.

    Returns
    -------
    s2n : ndarray
        The mean to standard deviation ratio(s) along `axis`, or 0 where the
        standard deviation is 0.

    """
    a = np.asanyarray(a)
    m = a.mean(axis)
    sd = a.std(axis=axis, ddof=ddof)
    return np.where(sd == 0, 0, m/sd)


def sem(a, axis=0, ddof=1, nan_policy='propagate'):
    """
    Calculates the standard error of the mean (or standard error of
    measurement) of the values in the input array.

    Parameters
    ----------
    a : array_like
        An array containing the values for which the standard error is
        returned.
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over
        the whole array `a`.
    ddof : int, optional
        Delta degrees-of-freedom. How many degrees of freedom to adjust
        for bias in limited samples relative to the population estimate
        of variance. Defaults to 1.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    s : ndarray or float
        The standard error of the mean in the sample(s), along the input axis.

    Notes
    -----
    The default value for `ddof` is different to the default (0) used by other
    ddof containing routines, such as np.std and np.nanstd.

    Examples
    --------
    Find standard error along the first axis:

    >>> from scipy import stats
    >>> a = np.arange(20).reshape(5,4)
    >>> stats.sem(a)
    array([ 2.8284,  2.8284,  2.8284,  2.8284])

    Find standard error across the whole array, using n degrees of freedom:

    >>> stats.sem(a, axis=None, ddof=0)
    1.2893796958227628

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.sem(a, axis, ddof)

    n = a.shape[axis]
    s = np.std(a, axis=axis, ddof=ddof) / np.sqrt(n)
    return s


def zscore(a, axis=0, ddof=0):
    """
    Calculates the z score of each value in the sample, relative to the
    sample mean and standard deviation.

    Parameters
    ----------
    a : array_like
        An array like object containing the sample data.
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over
        the whole array `a`.
    ddof : int, optional
        Degrees of freedom correction in the calculation of the
        standard deviation. Default is 0.

    Returns
    -------
    zscore : array_like
        The z-scores, standardized by mean and standard deviation of
        input array `a`.

    Notes
    -----
    This function preserves ndarray subclasses, and works also with
    matrices and masked arrays (it uses `asanyarray` instead of
    `asarray` for parameters).

    Examples
    --------
    >>> a = np.array([ 0.7972,  0.0767,  0.4383,  0.7866,  0.8091,
    ...                0.1954,  0.6307,  0.6599,  0.1065,  0.0508])
    >>> from scipy import stats
    >>> stats.zscore(a)
    array([ 1.1273, -1.247 , -0.0552,  1.0923,  1.1664, -0.8559,  0.5786,
            0.6748, -1.1488, -1.3324])

    Computing along a specified axis, using n-1 degrees of freedom
    (``ddof=1``) to calculate the standard deviation:

    >>> b = np.array([[ 0.3148,  0.0478,  0.6243,  0.4608],
    ...               [ 0.7149,  0.0775,  0.6072,  0.9656],
    ...               [ 0.6341,  0.1403,  0.9759,  0.4064],
    ...               [ 0.5918,  0.6948,  0.904 ,  0.3721],
    ...               [ 0.0921,  0.2481,  0.1188,  0.1366]])
    >>> stats.zscore(b, axis=1, ddof=1)
    array([[-0.19264823, -1.28415119,  1.07259584,  0.40420358],
           [ 0.33048416, -1.37380874,  0.04251374,  1.00081084],
           [ 0.26796377, -1.12598418,  1.23283094, -0.37481053],
           [-0.22095197,  0.24468594,  1.19042819, -1.21416216],
           [-0.82780366,  1.4457416 , -0.43867764, -0.1792603 ]])
    """
    a = np.asanyarray(a)
    mns = a.mean(axis=axis)
    sstd = a.std(axis=axis, ddof=ddof)
    if axis and mns.ndim < a.ndim:
        return ((a - np.expand_dims(mns, axis=axis)) /
                np.expand_dims(sstd, axis=axis))
    else:
        return (a - mns) / sstd


def zmap(scores, compare, axis=0, ddof=0):
    """
    Calculates the relative z-scores.

    Returns an array of z-scores, i.e., scores that are standardized to
    zero mean and unit variance, where mean and variance are calculated
    from the comparison array.

    Parameters
    ----------
    scores : array_like
        The input for which z-scores are calculated.
    compare : array_like
        The input from which the mean and standard deviation of the
        normalization are taken; assumed to have the same dimension as
        `scores`.
    axis : int or None, optional
        Axis over which mean and variance of `compare` are calculated.
        Default is 0. If None, compute over the whole array `scores`.
    ddof : int, optional
        Degrees of freedom correction in the calculation of the
        standard deviation. Default is 0.

    Returns
    -------
    zscore : array_like
        Z-scores, in the same shape as `scores`.

    Notes
    -----
    This function preserves ndarray subclasses, and works also with
    matrices and masked arrays (it uses `asanyarray` instead of
    `asarray` for parameters).

    Examples
    --------
    >>> from scipy.stats import zmap
    >>> a = [0.5, 2.0, 2.5, 3]
    >>> b = [0, 1, 2, 3, 4]
    >>> zmap(a, b)
    array([-1.06066017,  0.        ,  0.35355339,  0.70710678])
    """
    scores, compare = map(np.asanyarray, [scores, compare])
    mns = compare.mean(axis=axis)
    sstd = compare.std(axis=axis, ddof=ddof)
    if axis and mns.ndim < compare.ndim:
        return ((scores - np.expand_dims(mns, axis=axis)) /
                np.expand_dims(sstd, axis=axis))
    else:
        return (scores - mns) / sstd


# Private dictionary initialized only once at module level
# See https://en.wikipedia.org/wiki/Robust_measures_of_scale
_scale_conversions = {'raw': 1.0,
                      'normal': special.erfinv(0.5) * 2.0 * math.sqrt(2.0)}


def iqr(x, axis=None, rng=(25, 75), scale='raw', nan_policy='propagate',
        interpolation='linear', keepdims=False):
    """
    Compute the interquartile range of the data along the specified
    axis.

    The interquartile range (IQR) is the difference between the 75th and
    25th percentile of the data. It is a measure of the dispersion
    similar to standard deviation or variance, but is much more robust
    against outliers [2]_.

    The ``rng`` parameter allows this function to compute other
    percentile ranges than the actual IQR. For example, setting
    ``rng=(0, 100)`` is equivalent to `numpy.ptp`.

    The IQR of an empty array is `np.nan`.

    .. versionadded:: 0.18.0

    Parameters
    ----------
    x : array_like
        Input array or object that can be converted to an array.
    axis : int or sequence of int, optional
        Axis along which the range is computed. The default is to
        compute the IQR for the entire array.
    rng : Two-element sequence containing floats in range of [0,100] optional
        Percentiles over which to compute the range. Each must be
        between 0 and 100, inclusive. The default is the true IQR:
        `(25, 75)`. The order of the elements is not important.
    scale : scalar or str, optional
        The numerical value of scale will be divided out of the final
        result. The following string values are recognized:

          'raw' : No scaling, just return the raw IQR.
          'normal' : Scale by :math:`2 \\sqrt{2} erf^{-1}(\\frac{1}{2}) \\approx 1.349`.

        The default is 'raw'. Array-like scale is also allowed, as long
        as it broadcasts correctly to the output such that
        ``out / scale`` is a valid operation. The output dimensions
        depend on the input array, `x`, the `axis` argument, and the
        `keepdims` flag.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate'
        returns nan, 'raise' throws an error, 'omit' performs the
        calculations ignoring nan values. Default is 'propagate'.
    interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}, optional
        Specifies the interpolation method to use when the percentile
        boundaries lie between two data points `i` and `j`:

          * 'linear' : `i + (j - i) * fraction`, where `fraction` is the
              fractional part of the index surrounded by `i` and `j`.
          * 'lower' : `i`.
          * 'higher' : `j`.
          * 'nearest' : `i` or `j` whichever is nearest.
          * 'midpoint' : `(i + j) / 2`.

        Default is 'linear'.
    keepdims : bool, optional
        If this is set to `True`, the reduced axes are left in the
        result as dimensions with size one. With this option, the result
        will broadcast correctly against the original array `x`.

    Returns
    -------
    iqr : scalar or ndarray
        If ``axis=None``, a scalar is returned. If the input contains
        integers or floats of smaller precision than ``np.float64``, then the
        output data-type is ``np.float64``. Otherwise, the output data-type is
        the same as that of the input.

    See Also
    --------
    numpy.std, numpy.var

    Examples
    --------
    >>> from scipy.stats import iqr
    >>> x = np.array([[10, 7, 4], [3, 2, 1]])
    >>> x
    array([[10,  7,  4],
           [ 3,  2,  1]])
    >>> iqr(x)
    4.0
    >>> iqr(x, axis=0)
    array([ 3.5,  2.5,  1.5])
    >>> iqr(x, axis=1)
    array([ 3.,  1.])
    >>> iqr(x, axis=1, keepdims=True)
    array([[ 3.],
           [ 1.]])

    Notes
    -----
    This function is heavily dependent on the version of `numpy` that is
    installed. Versions greater than 1.11.0b3 are highly recommended, as they
    include a number of enhancements and fixes to `numpy.percentile` and
    `numpy.nanpercentile` that affect the operation of this function. The
    following modifications apply:

    Below 1.10.0 : `nan_policy` is poorly defined.
        The default behavior of `numpy.percentile` is used for 'propagate'. This
        is a hybrid of 'omit' and 'propagate' that mostly yields a skewed
        version of 'omit' since NaNs are sorted to the end of the data. A
        warning is raised if there are NaNs in the data.
    Below 1.9.0: `numpy.nanpercentile` does not exist.
        This means that `numpy.percentile` is used regardless of `nan_policy`
        and a warning is issued. See previous item for a description of the
        behavior.
    Below 1.9.0: `keepdims` and `interpolation` are not supported.
        The keywords get ignored with a warning if supplied with non-default
        values. However, multiple axes are still supported.

    References
    ----------
    .. [1] "Interquartile range" https://en.wikipedia.org/wiki/Interquartile_range
    .. [2] "Robust measures of scale" https://en.wikipedia.org/wiki/Robust_measures_of_scale
    .. [3] "Quantile" https://en.wikipedia.org/wiki/Quantile
    """
    x = asarray(x)

    # This check prevents percentile from raising an error later. Also, it is
    # consistent with `np.var` and `np.std`.
    if not x.size:
        return np.nan

    # An error may be raised here, so fail-fast, before doing lengthy
    # computations, even though `scale` is not used until later
    if isinstance(scale, string_types):
        scale_key = scale.lower()
        if scale_key not in _scale_conversions:
            raise ValueError("{0} not a valid scale for `iqr`".format(scale))
        scale = _scale_conversions[scale_key]

    # Select the percentile function to use based on nans and policy
    contains_nan, nan_policy = _contains_nan(x, nan_policy)

    if contains_nan and nan_policy == 'omit':
        percentile_func = _iqr_nanpercentile
    else:
        percentile_func = _iqr_percentile

    if len(rng) != 2:
        raise TypeError("quantile range must be two element sequence")

    rng = sorted(rng)
    pct = percentile_func(x, rng, axis=axis, interpolation=interpolation,
                          keepdims=keepdims, contains_nan=contains_nan)
    out = np.subtract(pct[1], pct[0])

    if scale != 1.0:
        out /= scale

    return out


def _iqr_percentile(x, q, axis=None, interpolation='linear', keepdims=False, contains_nan=False):
    """
    Private wrapper that works around older versions of `numpy`.

    While this function is pretty much necessary for the moment, it
    should be removed as soon as the minimum supported numpy version
    allows.
    """
    if contains_nan and NumpyVersion(np.__version__) < '1.10.0a':
        # I see no way to avoid the version check to ensure that the corrected
        # NaN behavior has been implemented except to call `percentile` on a
        # small array.
        msg = "Keyword nan_policy='propagate' not correctly supported for " \
              "numpy versions < 1.10.x. The default behavior of " \
              "`numpy.percentile` will be used."
        warnings.warn(msg, RuntimeWarning)

    try:
        # For older versions of numpy, there are two things that can cause a
        # problem here: missing keywords and non-scalar axis. The former can be
        # partially handled with a warning, the latter can be handled fully by
        # hacking in an implementation similar to numpy's function for
        # providing multi-axis functionality
        # (`numpy.lib.function_base._ureduce` for the curious).
        result = np.percentile(x, q, axis=axis, keepdims=keepdims,
                               interpolation=interpolation)
    except TypeError:
        if interpolation != 'linear' or keepdims:
            # At time or writing, this means np.__version__ < 1.9.0
            warnings.warn("Keywords interpolation and keepdims not supported "
                          "for your version of numpy", RuntimeWarning)
        try:
            # Special processing if axis is an iterable
            original_size = len(axis)
        except TypeError:
            # Axis is a scalar at this point
            pass
        else:
            axis = np.unique(np.asarray(axis) % x.ndim)
            if original_size > axis.size:
                # mimic numpy if axes are duplicated
                raise ValueError("duplicate value in axis")
            if axis.size == x.ndim:
                # axis includes all axes: revert to None
                axis = None
            elif axis.size == 1:
                # no rolling necessary
                axis = axis[0]
            else:
                # roll multiple axes to the end and flatten that part out
                for ax in axis[::-1]:
                    x = np.rollaxis(x, ax, x.ndim)
                x = x.reshape(x.shape[:-axis.size] +
                              (np.prod(x.shape[-axis.size:]),))
                axis = -1
        result = np.percentile(x, q, axis=axis)

    return result


def _iqr_nanpercentile(x, q, axis=None, interpolation='linear', keepdims=False, contains_nan=False):
    """
    Private wrapper that works around the following:

      1. A bug in `np.nanpercentile` that was around until numpy version
         1.11.0.
      2. A bug in `np.percentile` NaN handling that was fixed in numpy
         version 1.10.0.
      3. The non-existence of `np.nanpercentile` before numpy version
         1.9.0.

    While this function is pretty much necessary for the moment, it
    should be removed as soon as the minimum supported numpy version
    allows.
    """
    if hasattr(np, 'nanpercentile'):
        # At time or writing, this means np.__version__ < 1.9.0
        result = np.nanpercentile(x, q, axis=axis,
                                  interpolation=interpolation, keepdims=keepdims)
        # If non-scalar result and nanpercentile does not do proper axis roll.
        # I see no way of avoiding the version test since dimensions may just
        # happen to match in the data.
        if result.ndim > 1 and NumpyVersion(np.__version__) < '1.11.0a':
            axis = np.asarray(axis)
            if axis.size == 1:
                # If only one axis specified, reduction happens along that dimension
                if axis.ndim == 0:
                    axis = axis[None]
                result = np.rollaxis(result, axis[0])
            else:
                # If multiple axes, reduced dimeision is last
                result = np.rollaxis(result, -1)
    else:
        msg = "Keyword nan_policy='omit' not correctly supported for numpy " \
              "versions < 1.9.x. The default behavior of  numpy.percentile " \
              "will be used."
        warnings.warn(msg, RuntimeWarning)
        result = _iqr_percentile(x, q, axis=axis)

    return result


#####################################
#         TRIMMING FUNCTIONS        #
#####################################

@np.deprecate(message="stats.threshold is deprecated in scipy 0.17.0")
def threshold(a, threshmin=None, threshmax=None, newval=0):
    """
    Clip array to a given value.

    Similar to numpy.clip(), except that values less than `threshmin` or
    greater than `threshmax` are replaced by `newval`, instead of by
    `threshmin` and `threshmax` respectively.

    Parameters
    ----------
    a : array_like
        Data to threshold.
    threshmin : float, int or None, optional
        Minimum threshold, defaults to None.
    threshmax : float, int or None, optional
        Maximum threshold, defaults to None.
    newval : float or int, optional
        Value to put in place of values in `a` outside of bounds.
        Defaults to 0.

    Returns
    -------
    out : ndarray
        The clipped input array, with values less than `threshmin` or
        greater than `threshmax` replaced with `newval`.

    Examples
    --------
    >>> a = np.array([9, 9, 6, 3, 1, 6, 1, 0, 0, 8])
    >>> from scipy import stats
    >>> stats.threshold(a, threshmin=2, threshmax=8, newval=-1)
    array([-1, -1,  6,  3, -1,  6, -1, -1, -1,  8])

    """
    a = asarray(a).copy()
    mask = zeros(a.shape, dtype=bool)
    if threshmin is not None:
        mask |= (a < threshmin)
    if threshmax is not None:
        mask |= (a > threshmax)
    a[mask] = newval
    return a

SigmaclipResult = namedtuple('SigmaclipResult', ('clipped', 'lower', 'upper'))


def sigmaclip(a, low=4., high=4.):
    """
    Iterative sigma-clipping of array elements.

    The output array contains only those elements of the input array `c`
    that satisfy the conditions ::

        mean(c) - std(c)*low < c < mean(c) + std(c)*high

    Starting from the full sample, all elements outside the critical range are
    removed. The iteration continues with a new critical range until no
    elements are outside the range.

    Parameters
    ----------
    a : array_like
        Data array, will be raveled if not 1-D.
    low : float, optional
        Lower bound factor of sigma clipping. Default is 4.
    high : float, optional
        Upper bound factor of sigma clipping. Default is 4.

    Returns
    -------
    clipped : ndarray
        Input array with clipped elements removed.
    lower : float
        Lower threshold value use for clipping.
    upper : float
        Upper threshold value use for clipping.

    Examples
    --------
    >>> from scipy.stats import sigmaclip
    >>> a = np.concatenate((np.linspace(9.5, 10.5, 31),
    ...                     np.linspace(0, 20, 5)))
    >>> fact = 1.5
    >>> c, low, upp = sigmaclip(a, fact, fact)
    >>> c
    array([  9.96666667,  10.        ,  10.03333333,  10.        ])
    >>> c.var(), c.std()
    (0.00055555555555555165, 0.023570226039551501)
    >>> low, c.mean() - fact*c.std(), c.min()
    (9.9646446609406727, 9.9646446609406727, 9.9666666666666668)
    >>> upp, c.mean() + fact*c.std(), c.max()
    (10.035355339059327, 10.035355339059327, 10.033333333333333)

    >>> a = np.concatenate((np.linspace(9.5, 10.5, 11),
    ...                     np.linspace(-100, -50, 3)))
    >>> c, low, upp = sigmaclip(a, 1.8, 1.8)
    >>> (c == np.linspace(9.5, 10.5, 11)).all()
    True

    """
    c = np.asarray(a).ravel()
    delta = 1
    while delta:
        c_std = c.std()
        c_mean = c.mean()
        size = c.size
        critlower = c_mean - c_std*low
        critupper = c_mean + c_std*high
        c = c[(c > critlower) & (c < critupper)]
        delta = size - c.size

    return SigmaclipResult(c, critlower, critupper)


def trimboth(a, proportiontocut, axis=0):
    """
    Slices off a proportion of items from both ends of an array.

    Slices off the passed proportion of items from both ends of the passed
    array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and**
    rightmost 10% of scores). The trimmed values are the lowest and
    highest ones.
    Slices off less if proportion results in a non-integer slice index (i.e.,
    conservatively slices off`proportiontocut`).

    Parameters
    ----------
    a : array_like
        Data to trim.
    proportiontocut : float
        Proportion (in range 0-1) of total data set to trim of each end.
    axis : int or None, optional
        Axis along which to trim data. Default is 0. If None, compute over
        the whole array `a`.

    Returns
    -------
    out : ndarray
        Trimmed version of array `a`. The order of the trimmed content
        is undefined.

    See Also
    --------
    trim_mean

    Examples
    --------
    >>> from scipy import stats
    >>> a = np.arange(20)
    >>> b = stats.trimboth(a, 0.1)
    >>> b.shape
    (16,)

    """
    a = np.asarray(a)

    if a.size == 0:
        return a

    if axis is None:
        a = a.ravel()
        axis = 0

    nobs = a.shape[axis]
    lowercut = int(proportiontocut * nobs)
    uppercut = nobs - lowercut
    if (lowercut >= uppercut):
        raise ValueError("Proportion too big.")

    # np.partition is preferred but it only exist in numpy 1.8.0 and higher,
    # in those cases we use np.sort
    try:
        atmp = np.partition(a, (lowercut, uppercut - 1), axis)
    except AttributeError:
        atmp = np.sort(a, axis)

    sl = [slice(None)] * atmp.ndim
    sl[axis] = slice(lowercut, uppercut)
    return atmp[sl]


def trim1(a, proportiontocut, tail='right', axis=0):
    """
    Slices off a proportion from ONE end of the passed array distribution.

    If `proportiontocut` = 0.1, slices off 'leftmost' or 'rightmost'
    10% of scores. The lowest or highest values are trimmed (depending on
    the tail).
    Slices off less if proportion results in a non-integer slice index
    (i.e., conservatively slices off `proportiontocut` ).

    Parameters
    ----------
    a : array_like
        Input array
    proportiontocut : float
        Fraction to cut off of 'left' or 'right' of distribution
    tail : {'left', 'right'}, optional
        Defaults to 'right'.
    axis : int or None, optional
        Axis along which to trim data. Default is 0. If None, compute over
        the whole array `a`.

    Returns
    -------
    trim1 : ndarray
        Trimmed version of array `a`. The order of the trimmed content is
        undefined.

    """
    a = np.asarray(a)
    if axis is None:
        a = a.ravel()
        axis = 0

    nobs = a.shape[axis]

    # avoid possible corner case
    if proportiontocut >= 1:
        return []

    if tail.lower() == 'right':
        lowercut = 0
        uppercut = nobs - int(proportiontocut * nobs)

    elif tail.lower() == 'left':
        lowercut = int(proportiontocut * nobs)
        uppercut = nobs

    # np.partition is preferred but it only exist in numpy 1.8.0 and higher,
    # in those cases we use np.sort
    try:
        atmp = np.partition(a, (lowercut, uppercut - 1), axis)
    except AttributeError:
        atmp = np.sort(a, axis)

    return atmp[lowercut:uppercut]


def trim_mean(a, proportiontocut, axis=0):
    """
    Return mean of array after trimming distribution from both tails.

    If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of
    scores. The input is sorted before slicing. Slices off less if proportion
    results in a non-integer slice index (i.e., conservatively slices off
    `proportiontocut` ).

    Parameters
    ----------
    a : array_like
        Input array
    proportiontocut : float
        Fraction to cut off of both tails of the distribution
    axis : int or None, optional
        Axis along which the trimmed means are computed. Default is 0.
        If None, compute over the whole array `a`.

    Returns
    -------
    trim_mean : ndarray
        Mean of trimmed array.

    See Also
    --------
    trimboth
    tmean : compute the trimmed mean ignoring values outside given `limits`.

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.trim_mean(x, 0.1)
    9.5
    >>> x2 = x.reshape(5, 4)
    >>> x2
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11],
           [12, 13, 14, 15],
           [16, 17, 18, 19]])
    >>> stats.trim_mean(x2, 0.25)
    array([  8.,   9.,  10.,  11.])
    >>> stats.trim_mean(x2, 0.25, axis=1)
    array([  1.5,   5.5,   9.5,  13.5,  17.5])

    """
    a = np.asarray(a)

    if a.size == 0:
        return np.nan

    if axis is None:
        a = a.ravel()
        axis = 0

    nobs = a.shape[axis]
    lowercut = int(proportiontocut * nobs)
    uppercut = nobs - lowercut
    if (lowercut > uppercut):
        raise ValueError("Proportion too big.")

    # np.partition is preferred but it only exist in numpy 1.8.0 and higher,
    # in those cases we use np.sort
    try:
        atmp = np.partition(a, (lowercut, uppercut - 1), axis)
    except AttributeError:
        atmp = np.sort(a, axis)

    sl = [slice(None)] * atmp.ndim
    sl[axis] = slice(lowercut, uppercut)
    return np.mean(atmp[sl], axis=axis)

F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue'))


def f_oneway(*args):
    """
    Performs a 1-way ANOVA.

    The one-way ANOVA tests the null hypothesis that two or more groups have
    the same population mean.  The test is applied to samples from two or
    more groups, possibly with differing sizes.

    Parameters
    ----------
    sample1, sample2, ... : array_like
        The sample measurements for each group.

    Returns
    -------
    statistic : float
        The computed F-value of the test.
    pvalue : float
        The associated p-value from the F-distribution.

    Notes
    -----
    The ANOVA test has important assumptions that must be satisfied in order
    for the associated p-value to be valid.

    1. The samples are independent.
    2. Each sample is from a normally distributed population.
    3. The population standard deviations of the groups are all equal.  This
       property is known as homoscedasticity.

    If these assumptions are not true for a given set of data, it may still be
    possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`) although
    with some loss of power.

    The algorithm is from Heiman[2], pp.394-7.


    References
    ----------
    .. [1] Lowry, Richard.  "Concepts and Applications of Inferential
           Statistics". Chapter 14.
           http://faculty.vassar.edu/lowry/ch14pt1.html

    .. [2] Heiman, G.W.  Research Methods in Statistics. 2002.

    .. [3] McDonald, G. H. "Handbook of Biological Statistics", One-way ANOVA.
           http://www.biostathandbook.com/onewayanova.html

    Examples
    --------
    >>> import scipy.stats as stats

    [3]_ Here are some data on a shell measurement (the length of the anterior
    adductor muscle scar, standardized by dividing by length) in the mussel
    Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon;
    Petersburg, Alaska; Magadan, Russia; and Tvarminne, Finland, taken from a
    much larger data set used in McDonald et al. (1991).

    >>> tillamook = [0.0571, 0.0813, 0.0831, 0.0976, 0.0817, 0.0859, 0.0735,
    ...              0.0659, 0.0923, 0.0836]
    >>> newport = [0.0873, 0.0662, 0.0672, 0.0819, 0.0749, 0.0649, 0.0835,
    ...            0.0725]
    >>> petersburg = [0.0974, 0.1352, 0.0817, 0.1016, 0.0968, 0.1064, 0.105]
    >>> magadan = [0.1033, 0.0915, 0.0781, 0.0685, 0.0677, 0.0697, 0.0764,
    ...            0.0689]
    >>> tvarminne = [0.0703, 0.1026, 0.0956, 0.0973, 0.1039, 0.1045]
    >>> stats.f_oneway(tillamook, newport, petersburg, magadan, tvarminne)
    (7.1210194716424473, 0.00028122423145345439)

    """
    args = [np.asarray(arg, dtype=float) for arg in args]
    # ANOVA on N groups, each in its own array
    num_groups = len(args)
    alldata = np.concatenate(args)
    bign = len(alldata)

    # Determine the mean of the data, and subtract that from all inputs to a
    # variance (via sum_of_sq / sq_of_sum) calculation.  Variance is invariance
    # to a shift in location, and centering all data around zero vastly
    # improves numerical stability.
    offset = alldata.mean()
    alldata -= offset

    sstot = _sum_of_squares(alldata) - (_square_of_sums(alldata) / float(bign))
    ssbn = 0
    for a in args:
        ssbn += _square_of_sums(a - offset) / float(len(a))

    # Naming: variables ending in bn/b are for "between treatments", wn/w are
    # for "within treatments"
    ssbn -= (_square_of_sums(alldata) / float(bign))
    sswn = sstot - ssbn
    dfbn = num_groups - 1
    dfwn = bign - num_groups
    msb = ssbn / float(dfbn)
    msw = sswn / float(dfwn)
    f = msb / msw

    prob = special.fdtrc(dfbn, dfwn, f)   # equivalent to stats.f.sf

    return F_onewayResult(f, prob)


def pearsonr(x, y):
    """
    Calculates a Pearson correlation coefficient and the p-value for testing
    non-correlation.

    The Pearson correlation coefficient measures the linear relationship
    between two datasets. Strictly speaking, Pearson's correlation requires
    that each dataset be normally distributed, and not necessarily zero-mean.
    Like other correlation coefficients, this one varies between -1 and +1
    with 0 implying no correlation. Correlations of -1 or +1 imply an exact
    linear relationship. Positive correlations imply that as x increases, so
    does y. Negative correlations imply that as x increases, y decreases.

    The p-value roughly indicates the probability of an uncorrelated system
    producing datasets that have a Pearson correlation at least as extreme
    as the one computed from these datasets. The p-values are not entirely
    reliable but are probably reasonable for datasets larger than 500 or so.

    Parameters
    ----------
    x : (N,) array_like
        Input
    y : (N,) array_like
        Input

    Returns
    -------
    r : float
        Pearson's correlation coefficient
    p-value : float
        2-tailed p-value

    References
    ----------
    http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

    """
    # x and y should have same length.
    x = np.asarray(x)
    y = np.asarray(y)
    n = len(x)
    mx = x.mean()
    my = y.mean()
    xm, ym = x - mx, y - my
    r_num = np.add.reduce(xm * ym)
    r_den = np.sqrt(_sum_of_squares(xm) * _sum_of_squares(ym))
    r = r_num / r_den

    # Presumably, if abs(r) > 1, then it is only some small artifact of floating
    # point arithmetic.
    r = max(min(r, 1.0), -1.0)
    df = n - 2
    if abs(r) == 1.0:
        prob = 0.0
    else:
        t_squared = r**2 * (df / ((1.0 - r) * (1.0 + r)))
        prob = _betai(0.5*df, 0.5, df/(df+t_squared))

    return r, prob


def fisher_exact(table, alternative='two-sided'):
    """Performs a Fisher exact test on a 2x2 contingency table.

    Parameters
    ----------
    table : array_like of ints
        A 2x2 contingency table.  Elements should be non-negative integers.
    alternative : {'two-sided', 'less', 'greater'}, optional
        Which alternative hypothesis to the null hypothesis the test uses.
        Default is 'two-sided'.

    Returns
    -------
    oddsratio : float
        This is prior odds ratio and not a posterior estimate.
    p_value : float
        P-value, the probability of obtaining a distribution at least as
        extreme as the one that was actually observed, assuming that the
        null hypothesis is true.

    See Also
    --------
    chi2_contingency : Chi-square test of independence of variables in a
        contingency table.

    Notes
    -----
    The calculated odds ratio is different from the one R uses. This scipy
    implementation returns the (more common) "unconditional Maximum
    Likelihood Estimate", while R uses the "conditional Maximum Likelihood
    Estimate".

    For tables with large numbers, the (inexact) chi-square test implemented
    in the function `chi2_contingency` can also be used.

    Examples
    --------
    Say we spend a few days counting whales and sharks in the Atlantic and
    Indian oceans. In the Atlantic ocean we find 8 whales and 1 shark, in the
    Indian ocean 2 whales and 5 sharks. Then our contingency table is::

                Atlantic  Indian
        whales     8        2
        sharks     1        5

    We use this table to find the p-value:

    >>> import scipy.stats as stats
    >>> oddsratio, pvalue = stats.fisher_exact([[8, 2], [1, 5]])
    >>> pvalue
    0.0349...

    The probability that we would observe this or an even more imbalanced ratio
    by chance is about 3.5%.  A commonly used significance level is 5%--if we
    adopt that, we can therefore conclude that our observed imbalance is
    statistically significant; whales prefer the Atlantic while sharks prefer
    the Indian ocean.

    """
    hypergeom = distributions.hypergeom
    c = np.asarray(table, dtype=np.int64)  # int32 is not enough for the algorithm
    if not c.shape == (2, 2):
        raise ValueError("The input `table` must be of shape (2, 2).")

    if np.any(c < 0):
        raise ValueError("All values in `table` must be nonnegative.")

    if 0 in c.sum(axis=0) or 0 in c.sum(axis=1):
        # If both values in a row or column are zero, the p-value is 1 and
        # the odds ratio is NaN.
        return np.nan, 1.0

    if c[1,0] > 0 and c[0,1] > 0:
        oddsratio = c[0,0] * c[1,1] / float(c[1,0] * c[0,1])
    else:
        oddsratio = np.inf

    n1 = c[0,0] + c[0,1]
    n2 = c[1,0] + c[1,1]
    n = c[0,0] + c[1,0]

    def binary_search(n, n1, n2, side):
        """Binary search for where to begin lower/upper halves in two-sided
        test.
        """
        if side == "upper":
            minval = mode
            maxval = n
        else:
            minval = 0
            maxval = mode
        guess = -1
        while maxval - minval > 1:
            if maxval == minval + 1 and guess == minval:
                guess = maxval
            else:
                guess = (maxval + minval) // 2
            pguess = hypergeom.pmf(guess, n1 + n2, n1, n)
            if side == "upper":
                ng = guess - 1
            else:
                ng = guess + 1
            if pguess <= pexact < hypergeom.pmf(ng, n1 + n2, n1, n):
                break
            elif pguess < pexact:
                maxval = guess
            else:
                minval = guess
        if guess == -1:
            guess = minval
        if side == "upper":
            while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon:
                guess -= 1
            while hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon:
                guess += 1
        else:
            while hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon:
                guess += 1
            while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon:
                guess -= 1
        return guess

    if alternative == 'less':
        pvalue = hypergeom.cdf(c[0,0], n1 + n2, n1, n)
    elif alternative == 'greater':
        # Same formula as the 'less' case, but with the second column.
        pvalue = hypergeom.cdf(c[0,1], n1 + n2, n1, c[0,1] + c[1,1])
    elif alternative == 'two-sided':
        mode = int(float((n + 1) * (n1 + 1)) / (n1 + n2 + 2))
        pexact = hypergeom.pmf(c[0,0], n1 + n2, n1, n)
        pmode = hypergeom.pmf(mode, n1 + n2, n1, n)

        epsilon = 1 - 1e-4
        if np.abs(pexact - pmode) / np.maximum(pexact, pmode) <= 1 - epsilon:
            return oddsratio, 1.

        elif c[0,0] < mode:
            plower = hypergeom.cdf(c[0,0], n1 + n2, n1, n)
            if hypergeom.pmf(n, n1 + n2, n1, n) > pexact / epsilon:
                return oddsratio, plower

            guess = binary_search(n, n1, n2, "upper")
            pvalue = plower + hypergeom.sf(guess - 1, n1 + n2, n1, n)
        else:
            pupper = hypergeom.sf(c[0,0] - 1, n1 + n2, n1, n)
            if hypergeom.pmf(0, n1 + n2, n1, n) > pexact / epsilon:
                return oddsratio, pupper

            guess = binary_search(n, n1, n2, "lower")
            pvalue = pupper + hypergeom.cdf(guess, n1 + n2, n1, n)
    else:
        msg = "`alternative` should be one of {'two-sided', 'less', 'greater'}"
        raise ValueError(msg)

    if pvalue > 1.0:
        pvalue = 1.0

    return oddsratio, pvalue

SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue'))


def spearmanr(a, b=None, axis=0, nan_policy='propagate'):
    """
    Calculates a Spearman rank-order correlation coefficient and the p-value
    to test for non-correlation.

    The Spearman correlation is a nonparametric measure of the monotonicity
    of the relationship between two datasets. Unlike the Pearson correlation,
    the Spearman correlation does not assume that both datasets are normally
    distributed. Like other correlation coefficients, this one varies
    between -1 and +1 with 0 implying no correlation. Correlations of -1 or
    +1 imply an exact monotonic relationship. Positive correlations imply that
    as x increases, so does y. Negative correlations imply that as x
    increases, y decreases.

    The p-value roughly indicates the probability of an uncorrelated system
    producing datasets that have a Spearman correlation at least as extreme
    as the one computed from these datasets. The p-values are not entirely
    reliable but are probably reasonable for datasets larger than 500 or so.

    Parameters
    ----------
    a, b : 1D or 2D array_like, b is optional
        One or two 1-D or 2-D arrays containing multiple variables and
        observations. When these are 1-D, each represents a vector of
        observations of a single variable. For the behavior in the 2-D case,
        see under ``axis``, below.
        Both arrays need to have the same length in the ``axis`` dimension.
    axis : int or None, optional
        If axis=0 (default), then each column represents a variable, with
        observations in the rows. If axis=1, the relationship is transposed:
        each row represents a variable, while the columns contain observations.
        If axis=None, then both arrays will be raveled.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    correlation : float or ndarray (2-D square)
        Spearman correlation matrix or correlation coefficient (if only 2
        variables are given as parameters. Correlation matrix is square with
        length equal to total number of variables (columns or rows) in a and b
        combined.
    pvalue : float
        The two-sided p-value for a hypothesis test whose null hypothesis is
        that two sets of data are uncorrelated, has same dimension as rho.

    Notes
    -----
    Changes in scipy 0.8.0: rewrite to add tie-handling, and axis.

    References
    ----------

    .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
       Probability and Statistics Tables and Formulae. Chapman & Hall: New
       York. 2000.
       Section  14.7

    Examples
    --------
    >>> from scipy import stats
    >>> stats.spearmanr([1,2,3,4,5], [5,6,7,8,7])
    (0.82078268166812329, 0.088587005313543798)
    >>> np.random.seed(1234321)
    >>> x2n = np.random.randn(100, 2)
    >>> y2n = np.random.randn(100, 2)
    >>> stats.spearmanr(x2n)
    (0.059969996999699973, 0.55338590803773591)
    >>> stats.spearmanr(x2n[:,0], x2n[:,1])
    (0.059969996999699973, 0.55338590803773591)
    >>> rho, pval = stats.spearmanr(x2n, y2n)
    >>> rho
    array([[ 1.        ,  0.05997   ,  0.18569457,  0.06258626],
           [ 0.05997   ,  1.        ,  0.110003  ,  0.02534653],
           [ 0.18569457,  0.110003  ,  1.        ,  0.03488749],
           [ 0.06258626,  0.02534653,  0.03488749,  1.        ]])
    >>> pval
    array([[ 0.        ,  0.55338591,  0.06435364,  0.53617935],
           [ 0.55338591,  0.        ,  0.27592895,  0.80234077],
           [ 0.06435364,  0.27592895,  0.        ,  0.73039992],
           [ 0.53617935,  0.80234077,  0.73039992,  0.        ]])
    >>> rho, pval = stats.spearmanr(x2n.T, y2n.T, axis=1)
    >>> rho
    array([[ 1.        ,  0.05997   ,  0.18569457,  0.06258626],
           [ 0.05997   ,  1.        ,  0.110003  ,  0.02534653],
           [ 0.18569457,  0.110003  ,  1.        ,  0.03488749],
           [ 0.06258626,  0.02534653,  0.03488749,  1.        ]])
    >>> stats.spearmanr(x2n, y2n, axis=None)
    (0.10816770419260482, 0.1273562188027364)
    >>> stats.spearmanr(x2n.ravel(), y2n.ravel())
    (0.10816770419260482, 0.1273562188027364)

    >>> xint = np.random.randint(10, size=(100, 2))
    >>> stats.spearmanr(xint)
    (0.052760927029710199, 0.60213045837062351)

    """
    a, axisout = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        b = ma.masked_invalid(b)
        return mstats_basic.spearmanr(a, b, axis)

    if a.size <= 1:
        return SpearmanrResult(np.nan, np.nan)
    ar = np.apply_along_axis(rankdata, axisout, a)

    br = None
    if b is not None:
        b, axisout = _chk_asarray(b, axis)

        contains_nan, nan_policy = _contains_nan(b, nan_policy)

        if contains_nan and nan_policy == 'omit':
            b = ma.masked_invalid(b)
            return mstats_basic.spearmanr(a, b, axis)

        br = np.apply_along_axis(rankdata, axisout, b)
    n = a.shape[axisout]
    rs = np.corrcoef(ar, br, rowvar=axisout)

    olderr = np.seterr(divide='ignore')  # rs can have elements equal to 1
    try:
        # clip the small negative values possibly caused by rounding
        # errors before taking the square root
        t = rs * np.sqrt(((n-2)/((rs+1.0)*(1.0-rs))).clip(0))
    finally:
        np.seterr(**olderr)

    prob = 2 * distributions.t.sf(np.abs(t), n-2)

    if rs.shape == (2, 2):
        return SpearmanrResult(rs[1, 0], prob[1, 0])
    else:
        return SpearmanrResult(rs, prob)

PointbiserialrResult = namedtuple('PointbiserialrResult',
                                  ('correlation', 'pvalue'))


def pointbiserialr(x, y):
    r"""
    Calculates a point biserial correlation coefficient and its p-value.

    The point biserial correlation is used to measure the relationship
    between a binary variable, x, and a continuous variable, y. Like other
    correlation coefficients, this one varies between -1 and +1 with 0
    implying no correlation. Correlations of -1 or +1 imply a determinative
    relationship.

    This function uses a shortcut formula but produces the same result as
    `pearsonr`.

    Parameters
    ----------
    x : array_like of bools
        Input array.
    y : array_like
        Input array.

    Returns
    -------
    correlation : float
        R value
    pvalue : float
        2-tailed p-value

    Notes
    -----
    `pointbiserialr` uses a t-test with ``n-1`` degrees of freedom.
    It is equivalent to `pearsonr.`

    The value of the point-biserial correlation can be calculated from:

    .. math::

        r_{pb} = \frac{\overline{Y_{1}} -
                 \overline{Y_{0}}}{s_{y}}\sqrt{\frac{N_{1} N_{2}}{N (N - 1))}}

    Where :math:`Y_{0}` and :math:`Y_{1}` are means of the metric
    observations coded 0 and 1 respectively; :math:`N_{0}` and :math:`N_{1}`
    are number of observations coded 0 and 1 respectively; :math:`N` is the
    total number of observations and :math:`s_{y}` is the standard
    deviation of all the metric observations.

    A value of :math:`r_{pb}` that is significantly different from zero is
    completely equivalent to a significant difference in means between the two
    groups. Thus, an independent groups t Test with :math:`N-2` degrees of
    freedom may be used to test whether :math:`r_{pb}` is nonzero. The
    relation between the t-statistic for comparing two independent groups and
    :math:`r_{pb}` is given by:

    .. math::

        t = \sqrt{N - 2}\frac{r_{pb}}{\sqrt{1 - r^{2}_{pb}}}

    References
    ----------
    .. [1] J. Lev, "The Point Biserial Coefficient of Correlation", Ann. Math.
           Statist., Vol. 20, no.1, pp. 125-126, 1949.

    .. [2] R.F. Tate, "Correlation Between a Discrete and a Continuous
           Variable. Point-Biserial Correlation.", Ann. Math. Statist., Vol. 25,
           np. 3, pp. 603-607, 1954.

    .. [3] http://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat06227/full

    Examples
    --------
    >>> from scipy import stats
    >>> a = np.array([0, 0, 0, 1, 1, 1, 1])
    >>> b = np.arange(7)
    >>> stats.pointbiserialr(a, b)
    (0.8660254037844386, 0.011724811003954652)
    >>> stats.pearsonr(a, b)
    (0.86602540378443871, 0.011724811003954626)
    >>> np.corrcoef(a, b)
    array([[ 1.       ,  0.8660254],
           [ 0.8660254,  1.       ]])

    """
    rpb, prob = pearsonr(x, y)
    return PointbiserialrResult(rpb, prob)

KendalltauResult = namedtuple('KendalltauResult', ('correlation', 'pvalue'))


def kendalltau(x, y, initial_lexsort=None, nan_policy='propagate'):
    """
    Calculates Kendall's tau, a correlation measure for ordinal data.

    Kendall's tau is a measure of the correspondence between two rankings.
    Values close to 1 indicate strong agreement, values close to -1 indicate
    strong disagreement.  This is the tau-b version of Kendall's tau which
    accounts for ties.

    Parameters
    ----------
    x, y : array_like
        Arrays of rankings, of the same shape. If arrays are not 1-D, they will
        be flattened to 1-D.
    initial_lexsort : bool, optional
        Whether to use lexsort or quicksort as the sorting method for the
        initial sort of the inputs. Default is lexsort (True), for which
        `kendalltau` is of complexity O(n log(n)). If False, the complexity is
        O(n^2), but with a smaller pre-factor (so quicksort may be faster for
        small arrays).
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    correlation : float
       The tau statistic.
    pvalue : float
       The two-sided p-value for a hypothesis test whose null hypothesis is
       an absence of association, tau = 0.

    See also
    --------
    spearmanr : Calculates a Spearman rank-order correlation coefficient.
    theilslopes : Computes the Theil-Sen estimator for a set of points (x, y).

    Notes
    -----
    The definition of Kendall's tau that is used is::

      tau = (P - Q) / sqrt((P + Q + T) * (P + Q + U))

    where P is the number of concordant pairs, Q the number of discordant
    pairs, T the number of ties only in `x`, and U the number of ties only in
    `y`.  If a tie occurs for the same pair in both `x` and `y`, it is not
    added to either T or U.

    References
    ----------
    W.R. Knight, "A Computer Method for Calculating Kendall's Tau with
    Ungrouped Data", Journal of the American Statistical Association, Vol. 61,
    No. 314, Part 1, pp. 436-439, 1966.

    Examples
    --------
    >>> from scipy import stats
    >>> x1 = [12, 2, 1, 12, 2]
    >>> x2 = [1, 4, 7, 1, 0]
    >>> tau, p_value = stats.kendalltau(x1, x2)
    >>> tau
    -0.47140452079103173
    >>> p_value
    0.24821309157521476

    """
    x = np.asarray(x).ravel()
    y = np.asarray(y).ravel()

    if x.size != y.size:
        raise ValueError("All inputs to `kendalltau` must be of the same size, "
                         "found x-size %s and y-size %s" % (x.size, y.size))
    elif not x.size or not y.size:
        return KendalltauResult(np.nan, np.nan)  # Return NaN if arrays are empty

    # check both x and y
    cnx, npx = _contains_nan(x, nan_policy)
    cny, npy = _contains_nan(y, nan_policy)
    contains_nan = cnx or cny
    if npx == 'omit' or npy == 'omit':
        nan_policy = 'omit'

    if contains_nan and nan_policy == 'propagate':
        return KendalltauResult(np.nan, np.nan)

    elif contains_nan and nan_policy == 'omit':
        x = ma.masked_invalid(x)
        y = ma.masked_invalid(y)
        return mstats_basic.kendalltau(x, y)

    if initial_lexsort is not None:  # deprecate to drop!
        warnings.warn('"initial_lexsort" is gone!')

    def count_rank_tie(ranks):
        cnt = np.bincount(ranks).astype('int64', copy=False)
        return (cnt * (cnt - 1) // 2).sum()

    size = x.size
    perm = np.argsort(y)  # sort on y and convert y to dense ranks
    x, y = x[perm], y[perm]
    y = np.r_[True, y[1:] != y[:-1]].cumsum(dtype=np.intp)

    # stable sort on x and convert x to dense ranks
    perm = np.argsort(x, kind='mergesort')
    x, y = x[perm], y[perm]
    x = np.r_[True, x[1:] != x[:-1]].cumsum(dtype=np.intp)

    con, dis = _kendall_condis(x, y)  # concordant & discordant pairs

    obs = np.r_[True, (x[1:] != x[:-1]) | (y[1:] != y[:-1]), True]
    cnt = np.diff(np.where(obs)[0]).astype('int64', copy=False)

    ntie = (cnt * (cnt - 1) // 2).sum()  # joint ties
    xtie = count_rank_tie(x) - ntie      # ties only in x
    ytie = count_rank_tie(y) - ntie      # ties only in y

    if con + dis + xtie == 0 or con + dis + ytie == 0:
        return KendalltauResult(np.nan, np.nan)

    tau = (con - dis) / np.sqrt(con + dis + xtie) / np.sqrt(con + dis + ytie)

    # what follows reproduces the ending of Gary Strangman's original
    # stats.kendalltau() in SciPy
    svar = (4.0 * size + 10.0) / (9.0 * size * (size - 1))
    z = tau / np.sqrt(svar)
    prob = special.erfc(np.abs(z) / 1.4142136)

    return KendalltauResult(tau, prob)


#####################################
#       INFERENTIAL STATISTICS      #
#####################################

Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue'))


def ttest_1samp(a, popmean, axis=0, nan_policy='propagate'):
    """
    Calculates the T-test for the mean of ONE group of scores.

    This is a two-sided test for the null hypothesis that the expected value
    (mean) of a sample of independent observations `a` is equal to the given
    population mean, `popmean`.

    Parameters
    ----------
    a : array_like
        sample observation
    popmean : float or array_like
        expected value in null hypothesis, if array_like than it must have the
        same shape as `a` excluding the axis dimension
    axis : int or None, optional
        Axis along which to compute test. If None, compute over the whole
        array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    statistic : float or array
        t-statistic
    pvalue : float or array
        two-tailed p-value

    Examples
    --------
    >>> from scipy import stats

    >>> np.random.seed(7654567)  # fix seed to get the same result
    >>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))

    Test if mean of random sample is equal to true mean, and different mean.
    We reject the null hypothesis in the second case and don't reject it in
    the first case.

    >>> stats.ttest_1samp(rvs,5.0)
    (array([-0.68014479, -0.04323899]), array([ 0.49961383,  0.96568674]))
    >>> stats.ttest_1samp(rvs,0.0)
    (array([ 2.77025808,  4.11038784]), array([ 0.00789095,  0.00014999]))

    Examples using axis and non-scalar dimension for population mean.

    >>> stats.ttest_1samp(rvs,[5.0,0.0])
    (array([-0.68014479,  4.11038784]), array([  4.99613833e-01,   1.49986458e-04]))
    >>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
    (array([-0.68014479,  4.11038784]), array([  4.99613833e-01,   1.49986458e-04]))
    >>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
    (array([[-0.68014479, -0.04323899],
           [ 2.77025808,  4.11038784]]), array([[  4.99613833e-01,   9.65686743e-01],
           [  7.89094663e-03,   1.49986458e-04]]))

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.ttest_1samp(a, popmean, axis)

    n = a.shape[axis]
    df = n - 1

    d = np.mean(a, axis) - popmean
    v = np.var(a, axis, ddof=1)
    denom = np.sqrt(v / float(n))

    with np.errstate(divide='ignore', invalid='ignore'):
        t = np.divide(d, denom)
    t, prob = _ttest_finish(df, t)

    return Ttest_1sampResult(t, prob)


def _ttest_finish(df, t):
    """Common code between all 3 t-test functions."""
    prob = distributions.t.sf(np.abs(t), df) * 2  # use np.abs to get upper tail
    if t.ndim == 0:
        t = t[()]

    return t, prob


def _ttest_ind_from_stats(mean1, mean2, denom, df):

    d = mean1 - mean2
    with np.errstate(divide='ignore', invalid='ignore'):
        t = np.divide(d, denom)
    t, prob = _ttest_finish(df, t)

    return (t, prob)


def _unequal_var_ttest_denom(v1, n1, v2, n2):
    vn1 = v1 / n1
    vn2 = v2 / n2
    with np.errstate(divide='ignore', invalid='ignore'):
        df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1))

    # If df is undefined, variances are zero (assumes n1 > 0 & n2 > 0).
    # Hence it doesn't matter what df is as long as it's not NaN.
    df = np.where(np.isnan(df), 1, df)
    denom = np.sqrt(vn1 + vn2)
    return df, denom


def _equal_var_ttest_denom(v1, n1, v2, n2):
    df = n1 + n2 - 2.0
    svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / df
    denom = np.sqrt(svar * (1.0 / n1 + 1.0 / n2))
    return df, denom

Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue'))


def ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2,
                         equal_var=True):
    """
    T-test for means of two independent samples from descriptive statistics.

    This is a two-sided test for the null hypothesis that 2 independent samples
    have identical average (expected) values.

    Parameters
    ----------
    mean1 : array_like
        The mean(s) of sample 1.
    std1 : array_like
        The standard deviation(s) of sample 1.
    nobs1 : array_like
        The number(s) of observations of sample 1.
    mean2 : array_like
        The mean(s) of sample 2
    std2 : array_like
        The standard deviations(s) of sample 2.
    nobs2 : array_like
        The number(s) of observations of sample 2.
    equal_var : bool, optional
        If True (default), perform a standard independent 2 sample test
        that assumes equal population variances [1]_.
        If False, perform Welch's t-test, which does not assume equal
        population variance [2]_.

    Returns
    -------
    statistic : float or array
        The calculated t-statistics
    pvalue : float or array
        The two-tailed p-value.

    See also
    --------
    scipy.stats.ttest_ind

    Notes
    -----

    .. versionadded:: 0.16.0

    References
    ----------
    .. [1] http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test

    .. [2] http://en.wikipedia.org/wiki/Welch%27s_t_test
    """
    if equal_var:
        df, denom = _equal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2)
    else:
        df, denom = _unequal_var_ttest_denom(std1**2, nobs1,
                                             std2**2, nobs2)

    res = _ttest_ind_from_stats(mean1, mean2, denom, df)
    return Ttest_indResult(*res)


def ttest_ind(a, b, axis=0, equal_var=True, nan_policy='propagate'):
    """
    Calculates the T-test for the means of *two independent* samples of scores.

    This is a two-sided test for the null hypothesis that 2 independent samples
    have identical average (expected) values. This test assumes that the
    populations have identical variances by default.

    Parameters
    ----------
    a, b : array_like
        The arrays must have the same shape, except in the dimension
        corresponding to `axis` (the first, by default).
    axis : int or None, optional
        Axis along which to compute test. If None, compute over the whole
        arrays, `a`, and `b`.
    equal_var : bool, optional
        If True (default), perform a standard independent 2 sample test
        that assumes equal population variances [1]_.
        If False, perform Welch's t-test, which does not assume equal
        population variance [2]_.

        .. versionadded:: 0.11.0
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.


    Returns
    -------
    statistic : float or array
        The calculated t-statistic.
    pvalue : float or array
        The two-tailed p-value.

    Notes
    -----
    We can use this test, if we observe two independent samples from
    the same or different population, e.g. exam scores of boys and
    girls or of two ethnic groups. The test measures whether the
    average (expected) value differs significantly across samples. If
    we observe a large p-value, for example larger than 0.05 or 0.1,
    then we cannot reject the null hypothesis of identical average scores.
    If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%,
    then we reject the null hypothesis of equal averages.

    References
    ----------
    .. [1] http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test

    .. [2] http://en.wikipedia.org/wiki/Welch%27s_t_test

    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(12345678)

    Test with sample with identical means:

    >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
    >>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
    >>> stats.ttest_ind(rvs1,rvs2)
    (0.26833823296239279, 0.78849443369564776)
    >>> stats.ttest_ind(rvs1,rvs2, equal_var = False)
    (0.26833823296239279, 0.78849452749500748)

    `ttest_ind` underestimates p for unequal variances:

    >>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500)
    >>> stats.ttest_ind(rvs1, rvs3)
    (-0.46580283298287162, 0.64145827413436174)
    >>> stats.ttest_ind(rvs1, rvs3, equal_var = False)
    (-0.46580283298287162, 0.64149646246569292)

    When n1 != n2, the equal variance t-statistic is no longer equal to the
    unequal variance t-statistic:

    >>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100)
    >>> stats.ttest_ind(rvs1, rvs4)
    (-0.99882539442782481, 0.3182832709103896)
    >>> stats.ttest_ind(rvs1, rvs4, equal_var = False)
    (-0.69712570584654099, 0.48716927725402048)

    T-test with different means, variance, and n:

    >>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)
    >>> stats.ttest_ind(rvs1, rvs5)
    (-1.4679669854490653, 0.14263895620529152)
    >>> stats.ttest_ind(rvs1, rvs5, equal_var = False)
    (-0.94365973617132992, 0.34744170334794122)

    """
    a, b, axis = _chk2_asarray(a, b, axis)

    # check both a and b
    cna, npa = _contains_nan(a, nan_policy)
    cnb, npb = _contains_nan(b, nan_policy)
    contains_nan = cna or cnb
    if npa == 'omit' or npb == 'omit':
        nan_policy = 'omit'

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        b = ma.masked_invalid(b)
        return mstats_basic.ttest_ind(a, b, axis, equal_var)

    if a.size == 0 or b.size == 0:
        return Ttest_indResult(np.nan, np.nan)

    v1 = np.var(a, axis, ddof=1)
    v2 = np.var(b, axis, ddof=1)
    n1 = a.shape[axis]
    n2 = b.shape[axis]

    if equal_var:
        df, denom = _equal_var_ttest_denom(v1, n1, v2, n2)
    else:
        df, denom = _unequal_var_ttest_denom(v1, n1, v2, n2)

    res = _ttest_ind_from_stats(np.mean(a, axis), np.mean(b, axis), denom, df)

    return Ttest_indResult(*res)

Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue'))


def ttest_rel(a, b, axis=0, nan_policy='propagate'):
    """
    Calculates the T-test on TWO RELATED samples of scores, a and b.

    This is a two-sided test for the null hypothesis that 2 related or
    repeated samples have identical average (expected) values.

    Parameters
    ----------
    a, b : array_like
        The arrays must have the same shape.
    axis : int or None, optional
        Axis along which to compute test. If None, compute over the whole
        arrays, `a`, and `b`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    statistic : float or array
        t-statistic
    pvalue : float or array
        two-tailed p-value

    Notes
    -----
    Examples for the use are scores of the same set of student in
    different exams, or repeated sampling from the same units. The
    test measures whether the average score differs significantly
    across samples (e.g. exams). If we observe a large p-value, for
    example greater than 0.05 or 0.1 then we cannot reject the null
    hypothesis of identical average scores. If the p-value is smaller
    than the threshold, e.g. 1%, 5% or 10%, then we reject the null
    hypothesis of equal averages. Small p-values are associated with
    large t-statistics.

    References
    ----------
    http://en.wikipedia.org/wiki/T-test#Dependent_t-test

    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(12345678) # fix random seed to get same numbers

    >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
    >>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) +
    ...         stats.norm.rvs(scale=0.2,size=500))
    >>> stats.ttest_rel(rvs1,rvs2)
    (0.24101764965300962, 0.80964043445811562)
    >>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) +
    ...         stats.norm.rvs(scale=0.2,size=500))
    >>> stats.ttest_rel(rvs1,rvs3)
    (-3.9995108708727933, 7.3082402191726459e-005)

    """
    a, b, axis = _chk2_asarray(a, b, axis)

    cna, npa = _contains_nan(a, nan_policy)
    cnb, npb = _contains_nan(b, nan_policy)
    contains_nan = cna or cnb
    if npa == 'omit' or npb == 'omit':
        nan_policy = 'omit'

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        b = ma.masked_invalid(b)
        m = ma.mask_or(ma.getmask(a), ma.getmask(b))
        aa = ma.array(a, mask=m, copy=True)
        bb = ma.array(b, mask=m, copy=True)
        return mstats_basic.ttest_rel(aa, bb, axis)

    if a.shape[axis] != b.shape[axis]:
        raise ValueError('unequal length arrays')

    if a.size == 0 or b.size == 0:
        return np.nan, np.nan

    n = a.shape[axis]
    df = float(n - 1)

    d = (a - b).astype(np.float64)
    v = np.var(d, axis, ddof=1)
    dm = np.mean(d, axis)
    denom = np.sqrt(v / float(n))

    with np.errstate(divide='ignore', invalid='ignore'):
        t = np.divide(dm, denom)
    t, prob = _ttest_finish(df, t)

    return Ttest_relResult(t, prob)

KstestResult = namedtuple('KstestResult', ('statistic', 'pvalue'))


def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', mode='approx'):
    """
    Perform the Kolmogorov-Smirnov test for goodness of fit.

    This performs a test of the distribution G(x) of an observed
    random variable against a given distribution F(x). Under the null
    hypothesis the two distributions are identical, G(x)=F(x). The
    alternative hypothesis can be either 'two-sided' (default), 'less'
    or 'greater'. The KS test is only valid for continuous distributions.

    Parameters
    ----------
    rvs : str, array or callable
        If a string, it should be the name of a distribution in `scipy.stats`.
        If an array, it should be a 1-D array of observations of random
        variables.
        If a callable, it should be a function to generate random variables;
        it is required to have a keyword argument `size`.
    cdf : str or callable
        If a string, it should be the name of a distribution in `scipy.stats`.
        If `rvs` is a string then `cdf` can be False or the same as `rvs`.
        If a callable, that callable is used to calculate the cdf.
    args : tuple, sequence, optional
        Distribution parameters, used if `rvs` or `cdf` are strings.
    N : int, optional
        Sample size if `rvs` is string or callable.  Default is 20.
    alternative : {'two-sided', 'less','greater'}, optional
        Defines the alternative hypothesis (see explanation above).
        Default is 'two-sided'.
    mode : 'approx' (default) or 'asymp', optional
        Defines the distribution used for calculating the p-value.

          - 'approx' : use approximation to exact distribution of test statistic
          - 'asymp' : use asymptotic distribution of test statistic

    Returns
    -------
    statistic : float
        KS test statistic, either D, D+ or D-.
    pvalue :  float
        One-tailed or two-tailed p-value.

    Notes
    -----
    In the one-sided test, the alternative is that the empirical
    cumulative distribution function of the random variable is "less"
    or "greater" than the cumulative distribution function F(x) of the
    hypothesis, ``G(x)<=F(x)``, resp. ``G(x)>=F(x)``.

    Examples
    --------
    >>> from scipy import stats

    >>> x = np.linspace(-15, 15, 9)
    >>> stats.kstest(x, 'norm')
    (0.44435602715924361, 0.038850142705171065)

    >>> np.random.seed(987654321) # set random seed to get the same result
    >>> stats.kstest('norm', False, N=100)
    (0.058352892479417884, 0.88531190944151261)

    The above lines are equivalent to:

    >>> np.random.seed(987654321)
    >>> stats.kstest(stats.norm.rvs(size=100), 'norm')
    (0.058352892479417884, 0.88531190944151261)

    *Test against one-sided alternative hypothesis*

    Shift distribution to larger values, so that ``cdf_dgp(x) < norm.cdf(x)``:

    >>> np.random.seed(987654321)
    >>> x = stats.norm.rvs(loc=0.2, size=100)
    >>> stats.kstest(x,'norm', alternative = 'less')
    (0.12464329735846891, 0.040989164077641749)

    Reject equal distribution against alternative hypothesis: less

    >>> stats.kstest(x,'norm', alternative = 'greater')
    (0.0072115233216311081, 0.98531158590396395)

    Don't reject equal distribution against alternative hypothesis: greater

    >>> stats.kstest(x,'norm', mode='asymp')
    (0.12464329735846891, 0.08944488871182088)

    *Testing t distributed random variables against normal distribution*

    With 100 degrees of freedom the t distribution looks close to the normal
    distribution, and the K-S test does not reject the hypothesis that the
    sample came from the normal distribution:

    >>> np.random.seed(987654321)
    >>> stats.kstest(stats.t.rvs(100,size=100),'norm')
    (0.072018929165471257, 0.67630062862479168)

    With 3 degrees of freedom the t distribution looks sufficiently different
    from the normal distribution, that we can reject the hypothesis that the
    sample came from the normal distribution at the 10% level:

    >>> np.random.seed(987654321)
    >>> stats.kstest(stats.t.rvs(3,size=100),'norm')
    (0.131016895759829, 0.058826222555312224)

    """
    if isinstance(rvs, string_types):
        if (not cdf) or (cdf == rvs):
            cdf = getattr(distributions, rvs).cdf
            rvs = getattr(distributions, rvs).rvs
        else:
            raise AttributeError("if rvs is string, cdf has to be the "
                                 "same distribution")

    if isinstance(cdf, string_types):
        cdf = getattr(distributions, cdf).cdf
    if callable(rvs):
        kwds = {'size': N}
        vals = np.sort(rvs(*args, **kwds))
    else:
        vals = np.sort(rvs)
        N = len(vals)
    cdfvals = cdf(vals, *args)

    # to not break compatibility with existing code
    if alternative == 'two_sided':
        alternative = 'two-sided'

    if alternative in ['two-sided', 'greater']:
        Dplus = (np.arange(1.0, N + 1)/N - cdfvals).max()
        if alternative == 'greater':
            return KstestResult(Dplus, distributions.ksone.sf(Dplus, N))

    if alternative in ['two-sided', 'less']:
        Dmin = (cdfvals - np.arange(0.0, N)/N).max()
        if alternative == 'less':
            return KstestResult(Dmin, distributions.ksone.sf(Dmin, N))

    if alternative == 'two-sided':
        D = np.max([Dplus, Dmin])
        if mode == 'asymp':
            return KstestResult(D, distributions.kstwobign.sf(D * np.sqrt(N)))
        if mode == 'approx':
            pval_two = distributions.kstwobign.sf(D * np.sqrt(N))
            if N > 2666 or pval_two > 0.80 - N*0.3/1000:
                return KstestResult(D, pval_two)
            else:
                return KstestResult(D, 2 * distributions.ksone.sf(D, N))


# Map from names to lambda_ values used in power_divergence().
_power_div_lambda_names = {
    "pearson": 1,
    "log-likelihood": 0,
    "freeman-tukey": -0.5,
    "mod-log-likelihood": -1,
    "neyman": -2,
    "cressie-read": 2/3,
}


def _count(a, axis=None):
    """
    Count the number of non-masked elements of an array.

    This function behaves like np.ma.count(), but is much faster
    for ndarrays.
    """
    if hasattr(a, 'count'):
        num = a.count(axis=axis)
        if isinstance(num, np.ndarray) and num.ndim == 0:
            # In some cases, the `count` method returns a scalar array (e.g.
            # np.array(3)), but we want a plain integer.
            num = int(num)
    else:
        if axis is None:
            num = a.size
        else:
            num = a.shape[axis]
    return num

Power_divergenceResult = namedtuple('Power_divergenceResult',
                                    ('statistic', 'pvalue'))

def power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None):
    """
    Cressie-Read power divergence statistic and goodness of fit test.

    This function tests the null hypothesis that the categorical data
    has the given frequencies, using the Cressie-Read power divergence
    statistic.

    Parameters
    ----------
    f_obs : array_like
        Observed frequencies in each category.
    f_exp : array_like, optional
        Expected frequencies in each category.  By default the categories are
        assumed to be equally likely.
    ddof : int, optional
        "Delta degrees of freedom": adjustment to the degrees of freedom
        for the p-value.  The p-value is computed using a chi-squared
        distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
        is the number of observed frequencies.  The default value of `ddof`
        is 0.
    axis : int or None, optional
        The axis of the broadcast result of `f_obs` and `f_exp` along which to
        apply the test.  If axis is None, all values in `f_obs` are treated
        as a single data set.  Default is 0.
    lambda_ : float or str, optional
        `lambda_` gives the power in the Cressie-Read power divergence
        statistic.  The default is 1.  For convenience, `lambda_` may be
        assigned one of the following strings, in which case the
        corresponding numerical value is used::

            String              Value   Description
            "pearson"             1     Pearson's chi-squared statistic.
                                        In this case, the function is
                                        equivalent to `stats.chisquare`.
            "log-likelihood"      0     Log-likelihood ratio. Also known as
                                        the G-test [3]_.
            "freeman-tukey"      -1/2   Freeman-Tukey statistic.
            "mod-log-likelihood" -1     Modified log-likelihood ratio.
            "neyman"             -2     Neyman's statistic.
            "cressie-read"        2/3   The power recommended in [5]_.

    Returns
    -------
    statistic : float or ndarray
        The Cressie-Read power divergence test statistic.  The value is
        a float if `axis` is None or if` `f_obs` and `f_exp` are 1-D.
    pvalue : float or ndarray
        The p-value of the test.  The value is a float if `ddof` and the
        return value `stat` are scalars.

    See Also
    --------
    chisquare

    Notes
    -----
    This test is invalid when the observed or expected frequencies in each
    category are too small.  A typical rule is that all of the observed
    and expected frequencies should be at least 5.

    When `lambda_` is less than zero, the formula for the statistic involves
    dividing by `f_obs`, so a warning or error may be generated if any value
    in `f_obs` is 0.

    Similarly, a warning or error may be generated if any value in `f_exp` is
    zero when `lambda_` >= 0.

    The default degrees of freedom, k-1, are for the case when no parameters
    of the distribution are estimated. If p parameters are estimated by
    efficient maximum likelihood then the correct degrees of freedom are
    k-1-p. If the parameters are estimated in a different way, then the
    dof can be between k-1-p and k-1. However, it is also possible that
    the asymptotic distribution is not a chisquare, in which case this
    test is not appropriate.

    This function handles masked arrays.  If an element of `f_obs` or `f_exp`
    is masked, then data at that position is ignored, and does not count
    towards the size of the data set.

    .. versionadded:: 0.13.0

    References
    ----------
    .. [1] Lowry, Richard.  "Concepts and Applications of Inferential
           Statistics". Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html
    .. [2] "Chi-squared test", http://en.wikipedia.org/wiki/Chi-squared_test
    .. [3] "G-test", http://en.wikipedia.org/wiki/G-test
    .. [4] Sokal, R. R. and Rohlf, F. J. "Biometry: the principles and
           practice of statistics in biological research", New York: Freeman
           (1981)
    .. [5] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit
           Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984),
           pp. 440-464.

    Examples
    --------

    (See `chisquare` for more examples.)

    When just `f_obs` is given, it is assumed that the expected frequencies
    are uniform and given by the mean of the observed frequencies.  Here we
    perform a G-test (i.e. use the log-likelihood ratio statistic):

    >>> from scipy.stats import power_divergence
    >>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood')
    (2.006573162632538, 0.84823476779463769)

    The expected frequencies can be given with the `f_exp` argument:

    >>> power_divergence([16, 18, 16, 14, 12, 12],
    ...                  f_exp=[16, 16, 16, 16, 16, 8],
    ...                  lambda_='log-likelihood')
    (3.3281031458963746, 0.6495419288047497)

    When `f_obs` is 2-D, by default the test is applied to each column.

    >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
    >>> obs.shape
    (6, 2)
    >>> power_divergence(obs, lambda_="log-likelihood")
    (array([ 2.00657316,  6.77634498]), array([ 0.84823477,  0.23781225]))

    By setting ``axis=None``, the test is applied to all data in the array,
    which is equivalent to applying the test to the flattened array.

    >>> power_divergence(obs, axis=None)
    (23.31034482758621, 0.015975692534127565)
    >>> power_divergence(obs.ravel())
    (23.31034482758621, 0.015975692534127565)

    `ddof` is the change to make to the default degrees of freedom.

    >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1)
    (2.0, 0.73575888234288467)

    The calculation of the p-values is done by broadcasting the
    test statistic with `ddof`.

    >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
    (2.0, array([ 0.84914504,  0.73575888,  0.5724067 ]))

    `f_obs` and `f_exp` are also broadcast.  In the following, `f_obs` has
    shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
    `f_obs` and `f_exp` has shape (2, 6).  To compute the desired chi-squared
    statistics, we must use ``axis=1``:

    >>> power_divergence([16, 18, 16, 14, 12, 12],
    ...                  f_exp=[[16, 16, 16, 16, 16, 8],
    ...                         [8, 20, 20, 16, 12, 12]],
    ...                  axis=1)
    (array([ 3.5 ,  9.25]), array([ 0.62338763,  0.09949846]))

    """
    # Convert the input argument `lambda_` to a numerical value.
    if isinstance(lambda_, string_types):
        if lambda_ not in _power_div_lambda_names:
            names = repr(list(_power_div_lambda_names.keys()))[1:-1]
            raise ValueError("invalid string for lambda_: {0!r}.  Valid strings "
                             "are {1}".format(lambda_, names))
        lambda_ = _power_div_lambda_names[lambda_]
    elif lambda_ is None:
        lambda_ = 1

    f_obs = np.asanyarray(f_obs)

    if f_exp is not None:
        f_exp = np.atleast_1d(np.asanyarray(f_exp))
    else:
        # Compute the equivalent of
        #   f_exp = f_obs.mean(axis=axis, keepdims=True)
        # Older versions of numpy do not have the 'keepdims' argument, so
        # we have to do a little work to achieve the same result.
        # Ignore 'invalid' errors so the edge case of a data set with length 0
        # is handled without spurious warnings.
        with np.errstate(invalid='ignore'):
            f_exp = np.atleast_1d(f_obs.mean(axis=axis))
        if axis is not None:
            reduced_shape = list(f_obs.shape)
            reduced_shape[axis] = 1
            f_exp.shape = reduced_shape

    # `terms` is the array of terms that are summed along `axis` to create
    # the test statistic.  We use some specialized code for a few special
    # cases of lambda_.
    if lambda_ == 1:
        # Pearson's chi-squared statistic
        terms = (f_obs - f_exp)**2 / f_exp
    elif lambda_ == 0:
        # Log-likelihood ratio (i.e. G-test)
        terms = 2.0 * special.xlogy(f_obs, f_obs / f_exp)
    elif lambda_ == -1:
        # Modified log-likelihood ratio
        terms = 2.0 * special.xlogy(f_exp, f_exp / f_obs)
    else:
        # General Cressie-Read power divergence.
        terms = f_obs * ((f_obs / f_exp)**lambda_ - 1)
        terms /= 0.5 * lambda_ * (lambda_ + 1)

    stat = terms.sum(axis=axis)

    num_obs = _count(terms, axis=axis)
    ddof = asarray(ddof)
    p = distributions.chi2.sf(stat, num_obs - 1 - ddof)

    return Power_divergenceResult(stat, p)


def chisquare(f_obs, f_exp=None, ddof=0, axis=0):
    """
    Calculates a one-way chi square test.

    The chi square test tests the null hypothesis that the categorical data
    has the given frequencies.

    Parameters
    ----------
    f_obs : array_like
        Observed frequencies in each category.
    f_exp : array_like, optional
        Expected frequencies in each category.  By default the categories are
        assumed to be equally likely.
    ddof : int, optional
        "Delta degrees of freedom": adjustment to the degrees of freedom
        for the p-value.  The p-value is computed using a chi-squared
        distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
        is the number of observed frequencies.  The default value of `ddof`
        is 0.
    axis : int or None, optional
        The axis of the broadcast result of `f_obs` and `f_exp` along which to
        apply the test.  If axis is None, all values in `f_obs` are treated
        as a single data set.  Default is 0.

    Returns
    -------
    chisq : float or ndarray
        The chi-squared test statistic.  The value is a float if `axis` is
        None or `f_obs` and `f_exp` are 1-D.
    p : float or ndarray
        The p-value of the test.  The value is a float if `ddof` and the
        return value `chisq` are scalars.

    See Also
    --------
    power_divergence
    mstats.chisquare

    Notes
    -----
    This test is invalid when the observed or expected frequencies in each
    category are too small.  A typical rule is that all of the observed
    and expected frequencies should be at least 5.

    The default degrees of freedom, k-1, are for the case when no parameters
    of the distribution are estimated. If p parameters are estimated by
    efficient maximum likelihood then the correct degrees of freedom are
    k-1-p. If the parameters are estimated in a different way, then the
    dof can be between k-1-p and k-1. However, it is also possible that
    the asymptotic distribution is not a chisquare, in which case this
    test is not appropriate.

    References
    ----------
    .. [1] Lowry, Richard.  "Concepts and Applications of Inferential
           Statistics". Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html
    .. [2] "Chi-squared test", http://en.wikipedia.org/wiki/Chi-squared_test

    Examples
    --------
    When just `f_obs` is given, it is assumed that the expected frequencies
    are uniform and given by the mean of the observed frequencies.

    >>> from scipy.stats import chisquare
    >>> chisquare([16, 18, 16, 14, 12, 12])
    (2.0, 0.84914503608460956)

    With `f_exp` the expected frequencies can be given.

    >>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
    (3.5, 0.62338762774958223)

    When `f_obs` is 2-D, by default the test is applied to each column.

    >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
    >>> obs.shape
    (6, 2)
    >>> chisquare(obs)
    (array([ 2.        ,  6.66666667]), array([ 0.84914504,  0.24663415]))

    By setting ``axis=None``, the test is applied to all data in the array,
    which is equivalent to applying the test to the flattened array.

    >>> chisquare(obs, axis=None)
    (23.31034482758621, 0.015975692534127565)
    >>> chisquare(obs.ravel())
    (23.31034482758621, 0.015975692534127565)

    `ddof` is the change to make to the default degrees of freedom.

    >>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
    (2.0, 0.73575888234288467)

    The calculation of the p-values is done by broadcasting the
    chi-squared statistic with `ddof`.

    >>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
    (2.0, array([ 0.84914504,  0.73575888,  0.5724067 ]))

    `f_obs` and `f_exp` are also broadcast.  In the following, `f_obs` has
    shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
    `f_obs` and `f_exp` has shape (2, 6).  To compute the desired chi-squared
    statistics, we use ``axis=1``:

    >>> chisquare([16, 18, 16, 14, 12, 12],
    ...           f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]],
    ...           axis=1)
    (array([ 3.5 ,  9.25]), array([ 0.62338763,  0.09949846]))

    """
    return power_divergence(f_obs, f_exp=f_exp, ddof=ddof, axis=axis,
                            lambda_="pearson")

Ks_2sampResult = namedtuple('Ks_2sampResult', ('statistic', 'pvalue'))


def ks_2samp(data1, data2):
    """
    Computes the Kolmogorov-Smirnov statistic on 2 samples.

    This is a two-sided test for the null hypothesis that 2 independent samples
    are drawn from the same continuous distribution.

    Parameters
    ----------
    data1, data2 : sequence of 1-D ndarrays
        two arrays of sample observations assumed to be drawn from a continuous
        distribution, sample sizes can be different

    Returns
    -------
    statistic : float
        KS statistic
    pvalue : float
        two-tailed p-value

    Notes
    -----
    This tests whether 2 samples are drawn from the same distribution. Note
    that, like in the case of the one-sample K-S test, the distribution is
    assumed to be continuous.

    This is the two-sided test, one-sided tests are not implemented.
    The test uses the two-sided asymptotic Kolmogorov-Smirnov distribution.

    If the K-S statistic is small or the p-value is high, then we cannot
    reject the hypothesis that the distributions of the two samples
    are the same.

    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(12345678)  #fix random seed to get the same result
    >>> n1 = 200  # size of first sample
    >>> n2 = 300  # size of second sample

    For a different distribution, we can reject the null hypothesis since the
    pvalue is below 1%:

    >>> rvs1 = stats.norm.rvs(size=n1, loc=0., scale=1)
    >>> rvs2 = stats.norm.rvs(size=n2, loc=0.5, scale=1.5)
    >>> stats.ks_2samp(rvs1, rvs2)
    (0.20833333333333337, 4.6674975515806989e-005)

    For a slightly different distribution, we cannot reject the null hypothesis
    at a 10% or lower alpha since the p-value at 0.144 is higher than 10%

    >>> rvs3 = stats.norm.rvs(size=n2, loc=0.01, scale=1.0)
    >>> stats.ks_2samp(rvs1, rvs3)
    (0.10333333333333333, 0.14498781825751686)

    For an identical distribution, we cannot reject the null hypothesis since
    the p-value is high, 41%:

    >>> rvs4 = stats.norm.rvs(size=n2, loc=0.0, scale=1.0)
    >>> stats.ks_2samp(rvs1, rvs4)
    (0.07999999999999996, 0.41126949729859719)

    """
    data1 = np.sort(data1)
    data2 = np.sort(data2)
    n1 = data1.shape[0]
    n2 = data2.shape[0]
    data_all = np.concatenate([data1, data2])
    cdf1 = np.searchsorted(data1, data_all, side='right') / (1.0*n1)
    cdf2 = np.searchsorted(data2, data_all, side='right') / (1.0*n2)
    d = np.max(np.absolute(cdf1 - cdf2))
    # Note: d absolute not signed distance
    en = np.sqrt(n1 * n2 / float(n1 + n2))
    try:
        prob = distributions.kstwobign.sf((en + 0.12 + 0.11 / en) * d)
    except:
        prob = 1.0

    return Ks_2sampResult(d, prob)


def tiecorrect(rankvals):
    """
    Tie correction factor for ties in the Mann-Whitney U and
    Kruskal-Wallis H tests.

    Parameters
    ----------
    rankvals : array_like
        A 1-D sequence of ranks.  Typically this will be the array
        returned by `stats.rankdata`.

    Returns
    -------
    factor : float
        Correction factor for U or H.

    See Also
    --------
    rankdata : Assign ranks to the data
    mannwhitneyu : Mann-Whitney rank test
    kruskal : Kruskal-Wallis H test

    References
    ----------
    .. [1] Siegel, S. (1956) Nonparametric Statistics for the Behavioral
           Sciences.  New York: McGraw-Hill.

    Examples
    --------
    >>> from scipy.stats import tiecorrect, rankdata
    >>> tiecorrect([1, 2.5, 2.5, 4])
    0.9
    >>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4])
    >>> ranks
    array([ 1. ,  4. ,  2.5,  5.5,  7. ,  8. ,  2.5,  9. ,  5.5])
    >>> tiecorrect(ranks)
    0.9833333333333333

    """
    arr = np.sort(rankvals)
    idx = np.nonzero(np.r_[True, arr[1:] != arr[:-1], True])[0]
    cnt = np.diff(idx).astype(np.float64)

    size = np.float64(arr.size)
    return 1.0 if size < 2 else 1.0 - (cnt**3 - cnt).sum() / (size**3 - size)


MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic', 'pvalue'))

def mannwhitneyu(x, y, use_continuity=True, alternative=None):
    """
    Computes the Mann-Whitney rank test on samples x and y.

    Parameters
    ----------
    x, y : array_like
        Array of samples, should be one-dimensional.
    use_continuity : bool, optional
            Whether a continuity correction (1/2.) should be taken into
            account. Default is True.
    alternative : None (deprecated), 'less', 'two-sided', or 'greater'
            Whether to get the p-value for the one-sided hypothesis ('less'
            or 'greater') or for the two-sided hypothesis ('two-sided').
            Defaults to None, which results in a p-value half the size of
            the 'two-sided' p-value and a different U statistic. The
            default behavior is not the same as using 'less' or 'greater':
            it only exists for backward compatibility and is deprecated.

    Returns
    -------
    statistic : float
        The Mann-Whitney U statistic, equal to min(U for x, U for y) if
        `alternative` is equal to None (deprecated; exists for backward
        compatibility), and U for y otherwise.
    pvalue : float
        p-value assuming an asymptotic normal distribution. One-sided or
        two-sided, depending on the choice of `alternative`.

    Notes
    -----
    Use only when the number of observation in each sample is > 20 and
    you have 2 independent samples of ranks. Mann-Whitney U is
    significant if the u-obtained is LESS THAN or equal to the critical
    value of U.

    This test corrects for ties and by default uses a continuity correction.

    """
    if alternative is None:
        warnings.warn("Calling `mannwhitneyu` without specifying "
                      "`alternative` is deprecated.", DeprecationWarning)

    x = np.asarray(x)
    y = np.asarray(y)
    n1 = len(x)
    n2 = len(y)
    ranked = rankdata(np.concatenate((x, y)))
    rankx = ranked[0:n1]  # get the x-ranks
    u1 = n1*n2 + (n1*(n1+1))/2.0 - np.sum(rankx, axis=0)  # calc U for x
    u2 = n1*n2 - u1  # remainder is U for y
    T = tiecorrect(ranked)
    if T == 0:
        raise ValueError('All numbers are identical in mannwhitneyu')
    sd = np.sqrt(T * n1 * n2 * (n1+n2+1) / 12.0)

    meanrank = n1*n2/2.0 + 0.5 * use_continuity
    if alternative is None or alternative == 'two-sided':
        bigu = max(u1, u2)
    elif alternative == 'less':
        bigu = u1
    elif alternative == 'greater':
        bigu = u2
    else:
        raise ValueError("alternative should be None, 'less', 'greater' "
                         "or 'two-sided'")

    z = (bigu - meanrank) / sd
    if alternative is None:
        # This behavior, equal to half the size of the two-sided
        # p-value, is deprecated.
        p = distributions.norm.sf(abs(z))
    elif alternative == 'two-sided':
        p = 2 * distributions.norm.sf(abs(z))
    else:
        p = distributions.norm.sf(z)

    u = u2
    # This behavior is deprecated.
    if alternative is None:
        u = min(u1, u2)
    return MannwhitneyuResult(u, p)

RanksumsResult = namedtuple('RanksumsResult', ('statistic', 'pvalue'))


def ranksums(x, y):
    """
    Compute the Wilcoxon rank-sum statistic for two samples.

    The Wilcoxon rank-sum test tests the null hypothesis that two sets
    of measurements are drawn from the same distribution.  The alternative
    hypothesis is that values in one sample are more likely to be
    larger than the values in the other sample.

    This test should be used to compare two samples from continuous
    distributions.  It does not handle ties between measurements
    in x and y.  For tie-handling and an optional continuity correction
    see `scipy.stats.mannwhitneyu`.

    Parameters
    ----------
    x,y : array_like
        The data from the two samples

    Returns
    -------
    statistic : float
        The test statistic under the large-sample approximation that the
        rank sum statistic is normally distributed
    pvalue : float
        The two-sided p-value of the test

    References
    ----------
    .. [1] http://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test

    """
    x, y = map(np.asarray, (x, y))
    n1 = len(x)
    n2 = len(y)
    alldata = np.concatenate((x, y))
    ranked = rankdata(alldata)
    x = ranked[:n1]
    s = np.sum(x, axis=0)
    expected = n1 * (n1+n2+1) / 2.0
    z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0)
    prob = 2 * distributions.norm.sf(abs(z))

    return RanksumsResult(z, prob)

KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue'))


def kruskal(*args, **kwargs):
    """
    Compute the Kruskal-Wallis H-test for independent samples

    The Kruskal-Wallis H-test tests the null hypothesis that the population
    median of all of the groups are equal.  It is a non-parametric version of
    ANOVA.  The test works on 2 or more independent samples, which may have
    different sizes.  Note that rejecting the null hypothesis does not
    indicate which of the groups differs.  Post-hoc comparisons between
    groups are required to determine which groups are different.

    Parameters
    ----------
    sample1, sample2, ... : array_like
       Two or more arrays with the sample measurements can be given as
       arguments.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    statistic : float
       The Kruskal-Wallis H statistic, corrected for ties
    pvalue : float
       The p-value for the test using the assumption that H has a chi
       square distribution

    See Also
    --------
    f_oneway : 1-way ANOVA
    mannwhitneyu : Mann-Whitney rank test on two samples.
    friedmanchisquare : Friedman test for repeated measurements

    Notes
    -----
    Due to the assumption that H has a chi square distribution, the number
    of samples in each group must not be too small.  A typical rule is
    that each sample must have at least 5 measurements.

    References
    ----------
    .. [1] W. H. Kruskal & W. W. Wallis, "Use of Ranks in
       One-Criterion Variance Analysis", Journal of the American Statistical
       Association, Vol. 47, Issue 260, pp. 583-621, 1952.
    .. [2] http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance

    Examples
    --------
    >>> from scipy import stats
    >>> x = [1, 3, 5, 7, 9]
    >>> y = [2, 4, 6, 8, 10]
    >>> stats.kruskal(x, y)
    KruskalResult(statistic=0.27272727272727337, pvalue=0.60150813444058948)

    >>> x = [1, 1, 1]
    >>> y = [2, 2, 2]
    >>> z = [2, 2]
    >>> stats.kruskal(x, y, z)
    KruskalResult(statistic=7.0, pvalue=0.030197383422318501)

    """
    args = list(map(np.asarray, args))
    num_groups = len(args)
    if num_groups < 2:
        raise ValueError("Need at least two groups in stats.kruskal()")

    for arg in args:
        if arg.size == 0:
            return KruskalResult(np.nan, np.nan)
    n = np.asarray(list(map(len, args)))

    if 'nan_policy' in kwargs.keys():
        if kwargs['nan_policy'] not in ('propagate', 'raise', 'omit'):
            raise ValueError("nan_policy must be 'propagate', "
                             "'raise' or'omit'")
        else:
            nan_policy = kwargs['nan_policy']
    else:
        nan_policy = 'propagate'

    contains_nan = False
    for arg in args:
        cn = _contains_nan(arg, nan_policy)
        if cn[0]:
            contains_nan = True
            break

    if contains_nan and nan_policy == 'omit':
        for a in args:
            a = ma.masked_invalid(a)
        return mstats_basic.kruskal(*args)

    if contains_nan and nan_policy == 'propagate':
        return KruskalResult(np.nan, np.nan)

    alldata = np.concatenate(args)
    ranked = rankdata(alldata)
    ties = tiecorrect(ranked)
    if ties == 0:
        raise ValueError('All numbers are identical in kruskal')

    # Compute sum^2/n for each group and sum
    j = np.insert(np.cumsum(n), 0, 0)
    ssbn = 0
    for i in range(num_groups):
        ssbn += _square_of_sums(ranked[j[i]:j[i+1]]) / float(n[i])

    totaln = np.sum(n)
    h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1)
    df = num_groups - 1
    h /= ties

    return KruskalResult(h, distributions.chi2.sf(h, df))


FriedmanchisquareResult = namedtuple('FriedmanchisquareResult',
                                     ('statistic', 'pvalue'))


def friedmanchisquare(*args):
    """
    Computes the Friedman test for repeated measurements

    The Friedman test tests the null hypothesis that repeated measurements of
    the same individuals have the same distribution.  It is often used
    to test for consistency among measurements obtained in different ways.
    For example, if two measurement techniques are used on the same set of
    individuals, the Friedman test can be used to determine if the two
    measurement techniques are consistent.

    Parameters
    ----------
    measurements1, measurements2, measurements3... : array_like
        Arrays of measurements.  All of the arrays must have the same number
        of elements.  At least 3 sets of measurements must be given.

    Returns
    -------
    statistic : float
        the test statistic, correcting for ties
    pvalue : float
        the associated p-value assuming that the test statistic has a chi
        squared distribution

    Notes
    -----
    Due to the assumption that the test statistic has a chi squared
    distribution, the p-value is only reliable for n > 10 and more than
    6 repeated measurements.

    References
    ----------
    .. [1] http://en.wikipedia.org/wiki/Friedman_test

    """
    k = len(args)
    if k < 3:
        raise ValueError('\nLess than 3 levels.  Friedman test not appropriate.\n')

    n = len(args[0])
    for i in range(1, k):
        if len(args[i]) != n:
            raise ValueError('Unequal N in friedmanchisquare.  Aborting.')

    # Rank data
    data = np.vstack(args).T
    data = data.astype(float)
    for i in range(len(data)):
        data[i] = rankdata(data[i])

    # Handle ties
    ties = 0
    for i in range(len(data)):
        replist, repnum = find_repeats(array(data[i]))
        for t in repnum:
            ties += t * (t*t - 1)
    c = 1 - ties / float(k*(k*k - 1)*n)

    ssbn = np.sum(data.sum(axis=0)**2)
    chisq = (12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1)) / c

    return FriedmanchisquareResult(chisq, distributions.chi2.sf(chisq, k - 1))


def combine_pvalues(pvalues, method='fisher', weights=None):
    """
    Methods for combining the p-values of independent tests bearing upon the
    same hypothesis.

    Parameters
    ----------
    pvalues : array_like, 1-D
        Array of p-values assumed to come from independent tests.
    method : {'fisher', 'stouffer'}, optional
        Name of method to use to combine p-values. The following methods are
        available:

        - "fisher": Fisher's method (Fisher's combined probability test),
          the default.
        - "stouffer": Stouffer's Z-score method.
    weights : array_like, 1-D, optional
        Optional array of weights used only for Stouffer's Z-score method.

    Returns
    -------
    statistic: float
        The statistic calculated by the specified method:
        - "fisher": The chi-squared statistic
        - "stouffer": The Z-score
    pval: float
        The combined p-value.

    Notes
    -----
    Fisher's method (also known as Fisher's combined probability test) [1]_ uses
    a chi-squared statistic to compute a combined p-value. The closely related
    Stouffer's Z-score method [2]_ uses Z-scores rather than p-values. The
    advantage of Stouffer's method is that it is straightforward to introduce
    weights, which can make Stouffer's method more powerful than Fisher's
    method when the p-values are from studies of different size [3]_ [4]_.

    Fisher's method may be extended to combine p-values from dependent tests
    [5]_. Extensions such as Brown's method and Kost's method are not currently
    implemented.

    .. versionadded:: 0.15.0

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Fisher%27s_method
    .. [2] http://en.wikipedia.org/wiki/Fisher's_method#Relation_to_Stouffer.27s_Z-score_method
    .. [3] Whitlock, M. C. "Combining probability from independent tests: the
           weighted Z-method is superior to Fisher's approach." Journal of
           Evolutionary Biology 18, no. 5 (2005): 1368-1373.
    .. [4] Zaykin, Dmitri V. "Optimally weighted Z-test is a powerful method
           for combining probabilities in meta-analysis." Journal of
           Evolutionary Biology 24, no. 8 (2011): 1836-1841.
    .. [5] https://en.wikipedia.org/wiki/Extensions_of_Fisher%27s_method

    """
    pvalues = np.asarray(pvalues)
    if pvalues.ndim != 1:
        raise ValueError("pvalues is not 1-D")

    if method == 'fisher':
        Xsq = -2 * np.sum(np.log(pvalues))
        pval = distributions.chi2.sf(Xsq, 2 * len(pvalues))
        return (Xsq, pval)
    elif method == 'stouffer':
        if weights is None:
            weights = np.ones_like(pvalues)
        elif len(weights) != len(pvalues):
            raise ValueError("pvalues and weights must be of the same size.")

        weights = np.asarray(weights)
        if weights.ndim != 1:
            raise ValueError("weights is not 1-D")

        Zi = distributions.norm.isf(pvalues)
        Z = np.dot(weights, Zi) / np.linalg.norm(weights)
        pval = distributions.norm.sf(Z)

        return (Z, pval)
    else:
        raise ValueError(
            "Invalid method '%s'. Options are 'fisher' or 'stouffer'", method)

#####################################
#      PROBABILITY CALCULATIONS     #
#####################################


@np.deprecate(message="stats.chisqprob is deprecated in scipy 0.17.0; "
              "use stats.distributions.chi2.sf instead.")
def chisqprob(chisq, df):
    """
    Probability value (1-tail) for the Chi^2 probability distribution.

    Broadcasting rules apply.

    Parameters
    ----------
    chisq : array_like or float > 0

    df : array_like or float, probably int >= 1

    Returns
    -------
    chisqprob : ndarray
        The area from `chisq` to infinity under the Chi^2 probability
        distribution with degrees of freedom `df`.

    """
    return distributions.chi2.sf(chisq, df)


@np.deprecate(message="stats.betai is deprecated in scipy 0.17.0; "
              "use special.betainc instead")
def betai(a, b, x):
    """
    Returns the incomplete beta function.

    I_x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)

    where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma
    function of a.

    The standard broadcasting rules apply to a, b, and x.

    Parameters
    ----------
    a : array_like or float > 0

    b : array_like or float > 0

    x : array_like or float
        x will be clipped to be no greater than 1.0 .

    Returns
    -------
    betai : ndarray
        Incomplete beta function.

    """
    return _betai(a, b, x)


def _betai(a, b, x):
    x = np.asarray(x)
    x = np.where(x < 1.0, x, 1.0)  # if x > 1 then return 1.0
    return special.betainc(a, b, x)


#####################################
#         ANOVA CALCULATIONS        #
#####################################

@np.deprecate(message="stats.f_value_wilks_lambda deprecated in scipy 0.17.0")
def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
    """Calculation of Wilks lambda F-statistic for multivarite data, per
    Maxwell & Delaney p.657.
    """
    if isinstance(ER, (int, float)):
        ER = array([[ER]])
    if isinstance(EF, (int, float)):
        EF = array([[EF]])
    lmbda = linalg.det(EF) / linalg.det(ER)
    if (a-1)**2 + (b-1)**2 == 5:
        q = 1
    else:
        q = np.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5))

    n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
    d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
    return n_um / d_en


@np.deprecate(message="stats.f_value deprecated in scipy 0.17.0")
def f_value(ER, EF, dfR, dfF):
    """
    Returns an F-statistic for a restricted vs. unrestricted model.

    Parameters
    ----------
    ER : float
         `ER` is the sum of squared residuals for the restricted model
          or null hypothesis

    EF : float
         `EF` is the sum of squared residuals for the unrestricted model
          or alternate hypothesis

    dfR : int
          `dfR` is the degrees of freedom in the restricted model

    dfF : int
          `dfF` is the degrees of freedom in the unrestricted model

    Returns
    -------
    F-statistic : float

    """
    return (ER - EF) / float(dfR - dfF) / (EF / float(dfF))


@np.deprecate(message="stats.f_value_multivariate deprecated in scipy 0.17.0")
def f_value_multivariate(ER, EF, dfnum, dfden):
    """
    Returns a multivariate F-statistic.

    Parameters
    ----------
    ER : ndarray
        Error associated with the null hypothesis (the Restricted model).
        From a multivariate F calculation.
    EF : ndarray
        Error associated with the alternate hypothesis (the Full model)
        From a multivariate F calculation.
    dfnum : int
        Degrees of freedom the Restricted model.
    dfden : int
        Degrees of freedom associated with the Restricted model.

    Returns
    -------
    fstat : float
        The computed F-statistic.

    """
    if isinstance(ER, (int, float)):
        ER = array([[ER]])
    if isinstance(EF, (int, float)):
        EF = array([[EF]])
    n_um = (linalg.det(ER) - linalg.det(EF)) / float(dfnum)
    d_en = linalg.det(EF) / float(dfden)
    return n_um / d_en


#####################################
#         SUPPORT FUNCTIONS         #
#####################################

RepeatedResults = namedtuple('RepeatedResults', ('values', 'counts'))


def find_repeats(arr):
    """
    Find repeats and repeat counts.

    Parameters
    ----------
    arr : array_like
        Input array. This is cast to float64.

    Returns
    -------
    values : ndarray
        The unique values from the (flattened) input that are repeated.

    counts : ndarray
        Number of times the corresponding 'value' is repeated.

    Notes
    -----
    In numpy >= 1.9 `numpy.unique` provides similar functionality. The main
    difference is that `find_repeats` only returns repeated values.

    Examples
    --------
    >>> from scipy import stats
    >>> stats.find_repeats([2, 1, 2, 3, 2, 2, 5])
    RepeatedResults(values=array([ 2.]), counts=array([4]))

    >>> stats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]])
    RepeatedResults(values=array([ 4.,  5.]), counts=array([2, 2]))

    """
    # Note: always copies.
    return RepeatedResults(*_find_repeats(np.array(arr, dtype=np.float64)))


@np.deprecate(message="scipy.stats.ss is deprecated in scipy 0.17.0")
def ss(a, axis=0):
    return _sum_of_squares(a, axis)


def _sum_of_squares(a, axis=0):
    """
    Squares each element of the input array, and returns the sum(s) of that.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int or None, optional
        Axis along which to calculate. Default is 0. If None, compute over
        the whole array `a`.

    Returns
    -------
    sum_of_squares : ndarray
        The sum along the given axis for (a**2).

    See also
    --------
    _square_of_sums : The square(s) of the sum(s) (the opposite of
    `_sum_of_squares`).
    """
    a, axis = _chk_asarray(a, axis)
    return np.sum(a*a, axis)


@np.deprecate(message="scipy.stats.square_of_sums is deprecated "
              "in scipy 0.17.0")
def square_of_sums(a, axis=0):
    return _square_of_sums(a, axis)


def _square_of_sums(a, axis=0):
    """
    Sums elements of the input array, and returns the square(s) of that sum.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int or None, optional
        Axis along which to calculate. Default is 0. If None, compute over
        the whole array `a`.

    Returns
    -------
    square_of_sums : float or ndarray
        The square of the sum over `axis`.

    See also
    --------
    _sum_of_squares : The sum of squares (the opposite of `square_of_sums`).
    """
    a, axis = _chk_asarray(a, axis)
    s = np.sum(a, axis)
    if not np.isscalar(s):
        return s.astype(float) * s
    else:
        return float(s) * s


@np.deprecate(message="scipy.stats.fastsort is deprecated in scipy 0.16.0")
def fastsort(a):
    """
    Sort an array and provide the argsort.

    Parameters
    ----------
    a : array_like
        Input array.

    Returns
    -------
    fastsort : ndarray of type int
        sorted indices into the original array

    """
    # TODO: the wording in the docstring is nonsense.
    it = np.argsort(a)
    as_ = a[it]
    return as_, it


def rankdata(a, method='average'):
    """
    rankdata(a, method='average')

    Assign ranks to data, dealing with ties appropriately.

    Ranks begin at 1.  The `method` argument controls how ranks are assigned
    to equal values.  See [1]_ for further discussion of ranking methods.

    Parameters
    ----------
    a : array_like
        The array of values to be ranked.  The array is first flattened.
    method : str, optional
        The method used to assign ranks to tied elements.
        The options are 'average', 'min', 'max', 'dense' and 'ordinal'.

        'average':
            The average of the ranks that would have been assigned to
            all the tied values is assigned to each value.
        'min':
            The minimum of the ranks that would have been assigned to all
            the tied values is assigned to each value.  (This is also
            referred to as "competition" ranking.)
        'max':
            The maximum of the ranks that would have been assigned to all
            the tied values is assigned to each value.
        'dense':
            Like 'min', but the rank of the next highest element is assigned
            the rank immediately after those assigned to the tied elements.
        'ordinal':
            All values are given a distinct rank, corresponding to the order
            that the values occur in `a`.

        The default is 'average'.

    Returns
    -------
    ranks : ndarray
         An array of length equal to the size of `a`, containing rank
         scores.

    References
    ----------
    .. [1] "Ranking", http://en.wikipedia.org/wiki/Ranking

    Examples
    --------
    >>> from scipy.stats import rankdata
    >>> rankdata([0, 2, 3, 2])
    array([ 1. ,  2.5,  4. ,  2.5])
    >>> rankdata([0, 2, 3, 2], method='min')
    array([ 1,  2,  4,  2])
    >>> rankdata([0, 2, 3, 2], method='max')
    array([ 1,  3,  4,  3])
    >>> rankdata([0, 2, 3, 2], method='dense')
    array([ 1,  2,  3,  2])
    >>> rankdata([0, 2, 3, 2], method='ordinal')
    array([ 1,  2,  4,  3])
    """
    if method not in ('average', 'min', 'max', 'dense', 'ordinal'):
        raise ValueError('unknown method "{0}"'.format(method))

    arr = np.ravel(np.asarray(a))
    algo = 'mergesort' if method == 'ordinal' else 'quicksort'
    sorter = np.argsort(arr, kind=algo)

    inv = np.empty(sorter.size, dtype=np.intp)
    inv[sorter] = np.arange(sorter.size, dtype=np.intp)

    if method == 'ordinal':
        return inv + 1

    arr = arr[sorter]
    obs = np.r_[True, arr[1:] != arr[:-1]]
    dense = obs.cumsum()[inv]

    if method == 'dense':
        return dense

    # cumulative counts of each unique value
    count = np.r_[np.nonzero(obs)[0], len(obs)]

    if method == 'max':
        return count[dense]

    if method == 'min':
        return count[dense - 1] + 1

    # average method
    return .5 * (count[dense] + count[dense - 1] + 1)